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A SEQUENCE OF POLYNOMIAL PAIRS
ASSIGNED TO A GRAPH

REZA JAFARPOUR-GOLZARI

Abstract. In this note, we introduce a new degree-based descriptive parameter,
namely, the degree polynomial-pair (DPP), for the edges of a simple graph. This
notion leads to a concept, namely, the degree polynomial-pair sequence (DPPS)
in graphs. We show that the DPPS of a graph gives more information about
the graph than its degree polynomial sequence does, but it still does not identify
the graph uniquely. We obtain the DPPS for some well-known graphs. Also we
prove a theorem in which a necessary condition for the graphic realizability of a
sequence of polynomial pairs is given. Several open problems concerning these
subjects are given as well.
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1. INTRODUCTION

The degree sequence of a graph is an important invariant of the graph. In
recent decades, this invariant and its applications in various branches of math-
ematics, network, cryptography, and many other sciences have been investi-
gated by several mathematicians. For instance, see [2, 3, 5, 6, 7, 10, 11, 12].

The degree sequence of a graph is not the only descriptive parameter on the
degrees of the vertices of that graph. In [1], Amanatidis, Green, and Mihail
have introduced another parameter named the joint-degree matrix which is
stronger.

Recently, the author has introduced another descriptive parameter on the
degrees of a simple graph, named the degree polynomial sequence of the graph.
This parameter is derived from a concept called the degree polynomial for the
vertices of the graph. Some properties of this parameter and its behavior under
graph operations have been studied (see [8] and [9]). The degree polynomial
sequence gives more information about a graph than a degree sequence and
also a degree-joint matrix does.
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In this note, first we introduce a new degree-based descriptive parameter
called the degree polynomial-pair (DPP) for the edges of a simple graph. This
notion leads to a concept called the degree polynomial-pair sequence (DPPS)
in graphs. Then we show that the DPPS of a graph gives more information
about the graph than its degree polynomial sequence does, but it still does not
identify the graph uniquely. Also we obtain the DPPS for some well-known
graphs. Finally, we prove a theorem in which a necessary condition for the
graphic realizability of a sequence of polynomial pairs is given. Several open
problems concerning these subjects are given as well.

2. PRELIMINARIES

In the sequel, we use [4] for the basic terminologies and notations in graph
theory. Also all graphs are finite and simple.

In a graph G, for two vertices u, v ∈ V (G), we write u ∼ v, whenever u is
adjacent to v.

Let G is a graph with n vertices. A non-increasing sequence of nonnegative
integers q = (d1, . . . , dn) is said the degree sequence of G, whenever there
exists an ordering v1, . . . , vn of the vertices of G, such that di is the degree of
vi, for 1 ≤ i ≤ n. A sequence q = (d1, . . . , dn) of integers is graphic realizable,
if there exists a graph G such that q be the degree sequence of G. Since adding
a finite number of isolated vertices to a graph and deleting a finite number of
such vertices from a nonempty graph makes no change in the degrees of the
other vertices, one can consider only the case in which each di, 1 ≤ i ≤ n, is
positive.

The degree polynomial of a graph G, denoted by dp(G), is the polynomial∑
i tix

i in R[x] in which ti is the number of vertices of G, each of degree i
(specially, t0 is the number of isolated vertices of G). If ∆ be the maximum
degree of G, then dp(G) is of degree ∆.

For a polynomial f(x) =
∑n

i=1 aix
i ∈ R[x] with an ̸= 0, The sum of ai’s for

1 ≤ i ≤ n, is denoted by sc(f). Also sec(f) and soc(f) are used for the sum
of ai’s for even i, and sum of ai’s for odd i, respectively. We define sc(0) = 0
as well.

The total order <pol on the set of all nonzero polynomials with coefficients
in nonnegative integers is defined such that <pol compares two distinct poly-
nomials f =

∑n
i=0 aix

i and g =
∑m

i=0 bix
i with nonnegative integer coefficients

and with an, bm ̸= 0, as follows:
If sc(f) ̸= sc(g), then which one of f and g whose sum of coefficients is

greater (as an integer), will be greater;
If sc(f) = sc(g), then supposing that i1 = max{i| ai ̸= 0 or bi ̸= 0}, if

ai1 ̸= bi1 , then whichever of f and g has greater coefficient in xi1 , will be
greater;
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If sc(f) = sc(g) and ai1 = bi1 , then supposing that i2 = max{i| i < i1, ai ̸=
0 or bi ̸= 0}, if ai2 ̸= bi2 , then whichever of f and g has greater coefficient in
xi2 , will be greater;

Continue on.
Let G is a graph and v is a vertex of G. The degree polynomial of v denoted

by dp(v), is a polynomial with nonnegative integer coefficients, in which the
coefficient of xi is the number of neighbors of v each of degree i; Especially,
for an isolated vertex v, dp(v) = 0.

Since adding a finite number of isolated vertices to a graph and deleting a
finite number of such vertices from a nonempty simple graph makes no change
in the degree polynomials of the other vertices, we will consider only the graphs
which has no isolated vertices.

For a graph G of order n without any isolated vertex, a sequence q =
(f1, f2, . . . , fn) of polynomials is called the degree polynomial sequence (DPS)
of G, whenever

(a) f1 ≥pol . . . ≥pol fn,
(b) there exists an ordering v1, . . . , vn of the vertices of G, such that fi is

the degree polynomial of vi, for 1 ≤ i ≤ n.
We denote the degree polynomial sequence of G by dps(G).
For the definitions and notations above, see [8].

3. DEGREE POLYNOMIAL-PAIR AND DEGREE POLYNOMIAL-PAIR SEQUENCE

Before all, for convenience we introduce some notations.
Let Q is the set of all pairs (a, b) of nonzero polynomials with coefficients

in nonnegative integers. We use the notation “<polp” for the total order R on
Q for which (a1, b1)R(a2, b2), whenever

a1 <pol a2, or
a1 = a2 and b1 <pol b2.
In fact, ”<polp” is a lexicographic total order on Q.
Let ti’s, 1 ≤ i ≤ n, are some elements in a set T . For positive integers

m1, . . . ,mn, the notation t<m1>
1 , . . . , t<mn>

n denotes the finite sequence

t1, . . . , t1︸ ︷︷ ︸
m1terms

, . . . , tn, . . . , tn︸ ︷︷ ︸
mnterms

.

If mi is 1, we can ignore writing it, 1 ≤ i ≤ n.
Let q = (q1, . . . , qm) is a finite sequence of polynomial pairs where for each

1 ≤ i ≤ m, qi = (ai, bi) for nonzero polynomials ai and bi with coefficients in
nonnegative integers. Let

P := {ai| 1 ≤ i ≤ m|} ∪ {bi| 1 ≤ i ≤ m}.

Let the distinct elements of P in non-increasing ordering (with respect to <pol)
are p1, . . . , pk. We denote the sequence p1, . . . , pk by p(q). Also for 1 ≤ j ≤ k,
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the numbers

|{1 ≤ i ≤ m | only one of the components ai and bi equals pj}|
and

|{1 ≤ i ≤ m | ai and bi equal pj}|
are denoted by rj(q) and sj(q), respectively.

Now we are ready to introduce our new notions.

Definition 3.1. Let G is a graph and e = {u, v} is an edge of G. The
degree polynomial pair (DPP) of e, denoted by dpp(e), is a pair (a, b) of
nonzero polynomials with coefficients in nonnegative integers such that

if dp(u) ≥pol dp(v), then (a, b) = (dp(u), dp(v)),
if dp(v) ≥pol dp(u), then (a, b) = (dp(v), dp(u)).

Definition 3.2. For a graph G without any isolated vertex, a sequence
q = (q1, . . . , q|E(G)|) of polynomial pairs is called the degree polynomial-pair
sequence (DPPS) of G, denoted by dpps(G), whenever

(a) q1 ≥polp . . . ≥polp q|E(G)|,
(b) there exists an ordering e1, . . . , e|E(G)| of the edges of G, such that qi is

the degree polynomial-pair of ei, for 1 ≤ i ≤ |E(G)|.

Example 3.3. Consider the graph G with the following representation.

a

b

c
d

G

The DPPS of G is the sequence

(2x2 + x, x3 + x2)<2>, (2x2 + x, x3), (x3 + x2, x3 + x2).

4. MAIN RESULTS

Theorem 4.1. If G is a graph without any isolated vertex, then dps(G) can
be obtained from dpps(G).

Proof. Let the DPPS of G be

q = ((a1, b1), . . . , (a|E(G)|, b|E(G)|)).

and let p(q) be p1, . . . , pk. Put

Vj = {v ∈ V (G)| dp(v) = pj}, 1 ≤ j ≤ k.

Since G has no isolated vertex, the set {Vj | 1 ≤ j ≤ k} is a partition of V (G).
Consider an integer 1 ≤ j ≤ k. Since for all v ∈ Vj , deg(v) = sc(pj), we have

|Vj |sc(pj) = rj(q) + 2sj(q).
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Thus

|Vj | =
rj(q) + 2sj(q)

sc(pj)
.

But the DPS of G is p
<|V1|>
1 , . . . , p

<|Vk|>
k . □

Upon Theorem 4.1, if two non-isomorphic graphs have the same DPPS, then
they have the same DPS. But the converse of this matter is not established,
as the following example shows.

Example 4.2. Consider the graphs G and H with the following represen-
tations.

G H

The degree polynomial sequence of both G and H is

3x2 + x, (x4 + x2)<2>, x4 + x, (2x2)<2>, (x2 + x)<2>, x4, (x2)<3>

but the DPPS of G is

(3x2 + x, x4 + x2)<2>, (3x2 + x, x4 + x), (3x2 + x, x4), (x4 + x2, 2x2),

(x4 + x2, x2 + x), (x4 + x, x2), (2x2, 2x2), (2x2, x2 + x), (x2 + x, x2)<2>

while the DPPS of H is

(3x2 + x, x4 + x2)<2>, (3x2 + x, x4 + x), (3x2 + x, x4), (x4 + x2, 2x2)<2>,

(x4 + x, x2), (2x2, x2 + x)<2>, (x2 + x, x2)<2>.

From what we said above, it yields that the DPPS of a graph gives more
information about the graph than its DPS does. But it still does not identify
the graph uniquely, as the following example shows.

Example 4.3. Consider the graphs G1 and G2 with the following represen-
tations.

G1 G2

The graphs G1 and G2 are non-isomorphic, but the DPPS for both of them is

(x3 + 2x2, x3 + 2x2), (x3 + 2x2, x3 + x2)<4>, (x3 + x2, x3 + x2)<2>.

Now we calculate the DPPS of some well-known graphs.
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Proposition 4.4. A graph G with no isolated vertex is r-regular, if and
only if each term of its DPPS is in the form (rxr, rxr).

Proof. Is clear. □

Proposition 4.5. Let G is a graph with no isolated vertex.
(1) If G is a complete graph, Kn, then its DPPS is

((n− 1)xn−1, (n− 1)xn−1)<
n(n−1)

2
>.

(2) If G is a cycle, Cn, then its DPPS is

(2x2, 2x2)<n>.

(3) If G is a path, Pn, then
if n = 2, its DPPS is (x, x),
if n = 3, its DPPS is (2x, x2)<2>,
if n = 4, its DPPS is (x2 + x, x2 + x), (x2 + x, x2)<2>,
if n = 5, its DPPS is (2x2, x2 + x)<2>, (x2 + x, x2)<2>,
finally, if n ≥ 6, its DPPS is (2x2, 2x2)<n−4>, (2x2, x2 + x)<2>, (x2 +

x, x2)<2>.
(4) If G is a complete bipartite graph, Kr,s where r ≥ s, then its DPPS is

(rxs, sxr)<rs>.

Proof. Is clear. □

The following theorem give a necessary condition for the graphic realizabil-
ity of a sequence of polynomial pairs.

Theorem 4.6. Let q = (q1, . . . , qm) is a finite non-increasing (with respect
to <polp) sequence of polynomial pairs qi = (ai, bi), 1 ≤ i ≤ m and let p(q) =
(p1, . . . , pk). If q is graphic realizable (is the DPPS of a graph), then

(1) ai ≥pol bi, for every 1 ≤ i ≤ m,

(2)
rj(q)+2sj(q)

sc(pj)
is an integer, for every 1 ≤ j ≤ k,

(3) the sequence

p
<

r1(q)+2s1(q)
sc(p1)

>

1 , . . . , p
<

rk(q)+2sk(q)

sc(pk)
>

k

of polynomials is graphic realizable (is the DPS of a graph).

Proof. By the definition of DPPS, (1) is clear.
Let the graph G is a realization of the sequence q. By Theorem 4.1 and its

proof, the DPS of G is

p
<

r1(q)+2s1(q)
sc(p1)

>

1 , . . . , p
<

rk(q)+2sk(q)

sc(pk)
>

k .

Thus
rj(q)+2sj(q)

sc(pj)
is an integer, for every 1 ≤ j ≤ k, and the sequence

p
<

r1(q)+2s1(q)
sc(p1)

>

1 , . . . , p
<

rk(q)+2sk(q)

sc(pk)
>

k
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of polynomials is realized by the graph G. Therefore (2) and (3) hold. □

5. SOME OPEN PROBLEMS

The following open problems can be raised:
(1) The characterization of all graphic realizable sequences of polynomial

pairs.
(2) The characterization of all sequences of polynomial pairs which realize

uniquely.
(3) The characterization of all realizable sequences of polynomial pairs which

have at least one connected realization.
(4) The characterization of all realizable sequences of polynomial pairs

whose all realizations are connected.
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