FACE COUNTING FOR TOPOLOGICAL HYPERPLANE ARRANGEMENTS

HERY RANDRIAMARO

Abstract. Determining the number of pieces after cutting a cake is a classical problem. Roberts provided an exact solution by computing the number of chambers contained in a plane cut by lines. About 88 years later, Zaslavsky even computed the f-polynomial of a hyperplane arrangement, and consequently deduced the number of chambers of that latter. Recently, Forge and Zaslavsky introduced the more general structure of topological hyperplane arrangements. This article computes the f-polynomial of such arrangements when they are transsective, and therefore deduces their number of chambers.

MSC 2020. 05A15, 06A07.

Key words. Topological hyperplane, arrangement, Möbius polynomial.

1. INTRODUCTION

A classical basic problem was to determine the number of pieces obtained by cutting a cake d times. Deeper study of that problem has probably its origin in the article of Steiner [\[10\]](#page-10-0) who computed the maximal number of chambers contained in a plane cut by several sets of parallel lines pointing in different directions. Roberts [\[9\]](#page-10-1) fixed that problem by showing that

$$
1 + d + \binom{d}{2} + \sum_{i=1}^{k} n_k \binom{k-1}{2} - \sum_{j=1}^{p} \binom{l_j}{2}
$$

is the number of chambers contained in a plane cut by d lines, where n_k is the number of k-fold intersection points for $k \geq 3$, and p is the number of families of parallel lines containing respectively l_1, \ldots, l_p lines with $l_i \geq 2$. As mentioned in the book of Dimca [\[4\]](#page-10-2) for instance, Schläfli extended that problem to the Euclidean space \mathbb{R}^n , and published in 1901 that the number of chambers in \mathbb{R}^n partitioned by d hyperplanes is smaller that $\sum_{i=0}^{n} {d \choose i}$ $\binom{d}{i}$. That extended problem was, that time, solved by Zaslavsky [\[11\]](#page-10-3). He precisely expressed the f-polynomial of a hyperplane arrangement \overline{A} by means of its Möbius polynomial, and deduced that its number of chambers is $\sum_{X \in L(\mathcal{A})} (-1)^{\text{rank } X} \mu(\mathbb{R}^n, X)$, where $L(\mathcal{A})$ is the flat set of $\mathcal A$ and μ the Möbius

The author was supported by the Alexander von Humboldt Foundation.

DOI: 10.24193/mathcluj.2024.2.10

function. In an independent work, Alexanderson and Wetzel [\[1\]](#page-9-0) obtained the f-polynomial of a plane arrangement in a space. More recently, Pakula [\[8\]](#page-10-4) computed the number of chambers of pseudosphere arrangements. Note that pseudosphere arrangements are topologically equivalent to pseudohyperplane arrangements as one can read in the article of Deshpande [\[3\]](#page-10-5) for example.

This article considers the more general case of topological hyperplane arrangements, or topoplane arrangements, introduced by Forge and Zaslavsky [\[7\]](#page-10-6). Transsective topoplane arrangements are even generalizations for pseudohyperplane arrangements that are known to be topological models for oriented matroids, like stated in the book of Björner et al. [\[2\]](#page-9-1). This article determines the f-polynomial of a transsective topoplane arrangement $\mathscr A$ in a topological ball T, and deduces that $\sum_{X \in L(\mathscr{A})} (-1)^{\text{rank } X} \mu(T, X)$ is its number of chambers, where $L(\mathscr{A})$ is the flat set of \mathscr{A} .

In neighboring contexts, Dumitrescu and Mandal [\[5\]](#page-10-7) established that the number of nonisomorphic simple arrangements of n pseudolines is bigger that $2^{cn^2 - O(n \ln n)}$ for some constant $c > 0.2083$, while Felsner and Scheucher [\[6\]](#page-10-8) studied the circularizability of pseudocircle arrangements.

Recall that in the Euclidean space \mathbb{R}^n , an n-ball of radius r and center x is the set of all points of distance less than r from x , a topological n -ball is any subset which is homeomorphic to an n -ball, and an n -manifold is a subset with the property that each point has a neighborhood that is homeomorphic to an *n*-ball. Topological *n*-balls are important as building blocks of CWcomplexes. However, they are not flexible enough to investigate topological properties of topoplane arrangements. More abstract objects, named deformed n-balls, must consequently be introduced in Section [2.](#page-1-0)

The study of topoplane arrangements really begins in Section [3.](#page-2-0) We namely fix the conjecture of Forge and Zaslavsky [\[7\]](#page-10-6), mentioned in the introduction of their article, stating that solidity can be proved from the definition of a topoplane arrangement. Then, we prove that every chamber of a transsective topoplane arrangement is a deformed ball. These results allow us to compute the f-polynomial of a transsective topoplane arrangement in Section [4,](#page-7-0) and to deduce its number of chambers.

2. DEFORMED BALLS

This article uses the notations $[k] := \{1, 2, \ldots, k\}$ for a positive integer k, and \mathbb{N}_0 for the set of nonnegative integers. Deformed balls, deformed ball complexes, as well as the Euler characteristic of a deformed ball complex are defined in this section.

DEFINITION 2.1. Let n be a nonnegative integer. A *deformed* n-ball is a path connected *n*-manifold X in \mathbb{R}^n such that the homotopy group $\pi_k(X, x_0)$ is trivial for each positive integer k and a distinguished point x_0 of X.

DEFINITION 2.2. Let X be a deformed n-ball, and Y a deformed m-ball such that $n > m$ and $X \cap Y = \emptyset$. The sets X and Y can be glued together if the boundary ∂X of X contains Y. The set obtained from gluing Y onto X is the path connected space $X \sqcup Y$.

Recursive Construction of a System of Deformed Balls

We begin with a system $(X_1, \{X_1\})$, where X_1 is a deformed *n*-ball.

- Let X_2 be a deformed m-ball such that X_2 can be glued onto X_1 , if $n > m$, or X_1 can be glued onto X_2 , if $n < m$. We get the extended system $(X_1 \sqcup X_2, \{X_1, X_2\})$.
- Suppose that we have a positive integer k, and a system $(X, \{X_i\}_{i\in[k]})$, where $X = \bigsqcup_{i \in [k]} X_i$ was obtained by gluing together the deformed balls X_1, \ldots, X_k . This system can be extended with another deformed ball X_{k+1} if
	- $X \cap X_{k+1} = \varnothing,$
	- there exists $i \in [k]$ such that X_i and X_{k+1} can be glued together,
	- if I is the subset of [k] such that X_i and X_{k+1} can be glued together for each $i \in I$, then $\bigsqcup_{i \in I} X_i$ is path connected.

We obtain a new system $(X \sqcup X_{k+1}, \{X_i\}_{i \in [k+1]})$ of deformed balls.

DEFINITION 2.3. A topological space X is a *deformed ball complex* if there exist a positive integer k, and a set $\{X_i\}_{i\in[k]}$ of deformed balls such that $X = \bigsqcup_{i \in [k]} X_i$ and $(X, \{X_i\}_{i \in [k]})$ is a system of deformed balls.

 $\sum_{n\in\mathbb{N}_0}(-1)^nc_n$, where c_n is the number of topological n-balls of X. We need For a CW complex X, the Euler characteristic $\chi(X)$ is the alternating sum to generalize the definition of deformed ball complexes.

DEFINITION 2.4. Let k be a positive integer, and $(X, \{X_i\}_{i\in[k]})$ a system of deformed balls. The Euler characteristic of the deformed ball complex X is

$$
\chi(X) := \sum_{n \in \mathbb{N}_0} (-1)^n c_n,
$$

where c_n is the number of deformed *n*-balls in $\{X_i\}_{i\in[k]}$.

Example 2.5. In the left part of Figure [1,](#page-3-0) we have a deformed ball complex composed by the deformed 0-ball, 1-ball, and 3-ball represented in the right part of Figure [1.](#page-3-0) Its Euler characteristic is $(-1)^{0} + (-1)^{1} + (-1)^{2} = 1$.

3. TOPOPLANE ARRANGEMENTS

This section is devoted to topoplane arrangements introduced by Forge and Zaslavsky [\[7\]](#page-10-6). Transsective topoplane arrangements are particularly of interest to us.

Fig. 1 – A complex formed by three deformed balls.

We fix in Proposition [3.10](#page-5-0) the conjecture mentioned in the introduction of the article of Forge and Zaslavsky [\[7\]](#page-10-6), stating that every restriction of a transsective topoplane arrangement is a transsective topoplane arrangement. Afterwards, we prove in Proposition [3.13](#page-6-0) that every face of a transsective topoplane arrangement is a deformed ball.

DEFINITION 3.1. Let n be a positive integer, and T a topological n -ball. A topoplane in T is a topological $(n-1)$ -ball $H \subseteq T$ that divides T into two connected topological subspaces.

DEFINITION 3.2. Let $\mathscr A$ be a finite set of topoplanes in a topological *n*-ball T. A flat of $\mathscr A$ is a nonempty intersection of topoplanes in $\mathscr A$. Denote by $L(\mathscr{A})$ the set composed by the flats of \mathscr{A} .

Example 3.3. The flat set generated by both topoplanes in the yellow open disk of Figure [2](#page-4-0) is composed of the yellow disk, both topoplanes, and the four intersection points.

DEFINITION 3.4. Let $\mathscr A$ be a finite set of topoplanes in a topological ball T. It is a topoplane arrangement if

- (a) every flat in $L(\mathscr{A})$ is a topological ball,
- (b) for every topoplane $H \in \mathscr{A}$ and each flat $X \in L(\mathscr{A})$, either $X \subseteq H$ or $H \cap X = \emptyset$ or $H \cap X$ is a topoplane in X.

Example 3.5. The flat set of the topoplane arrangement in Figure [3](#page-4-1) is composed of \mathbb{R}^3 , both topoplanes, and the intersection point.

Fig. 2 – Two topoplanes in an open disk.

PROPOSITION 3.6 ([\[7,](#page-10-6) Prop. 1]). Let $\mathscr A$ be a topoplane arrangement in a topological ball T, and consider a flat $X \in L(\mathscr{A})$. The induced set of topological subspaces in X defined by

 $\mathscr{A}^X := \{ X \cap H \mid H \in \mathcal{A}, X \nsubseteq H, X \cap H \neq \varnothing \}$

is a topoplane arrangement in X.

Fig. 3 – A topoplane arrangement in \mathbb{R}^3 .

DEFINITION 3.7. Let $\mathscr A$ be a topoplane arrangement in a topological ball T, and consider a flat $X \in L(\mathscr{A})$. The topoplane arrangement

 $\mathscr{A}^X := \{ X \cap H \mid H \in \mathscr{A}, X \nsubseteq H, X \cap H \neq \varnothing \}$

in X is called the *restriction* of $\mathscr A$ on X.

DEFINITION 3.8. Let $\mathscr A$ be a finite set of topoplanes in a topological ball T. A pair of distinct topoplanes $(H, K) \in \mathscr{A} \times \mathscr{A}$ forms a transsection if $H \setminus K$ is composed by two components which lie on opposite sides of K .

DEFINITION 3.9. Let $\mathscr A$ be a topoplane arrangement in a topological ball T. It is said to be *transsective* if, for each pair of distinct topoplanes $(H, K) \in$ $\mathscr{A} \times \mathscr{A}$, either $H \cap K = \varnothing$ or (H, K) forms a transsection.

PROPOSITION 3.10. Let $\mathscr A$ be a topoplane arrangement in a topological ball T, and X a flat in $L(\mathscr{A})$. If A is transsective, then \mathscr{A}^X is a transsective topoplane arrangement in X.

Proof. Consider two distinct topoplanes in X , namely having the forms $X \cap H$ and $X \cap K$ with $H, K \in \mathscr{A}$. Suppose that $(X \cap H) \cap (X \cap K) \neq \emptyset$. Since $X \cap H \nsubseteq X \cap K$ and \mathscr{A}^X is a topoplane arrangement as seen in Proposition [3.6,](#page-4-2) then $(X \cap H) \cap (X \cap K) = X \cap H \cap K$ is a topoplane in $X \cap H$. Hence $X \cap H \cap K$ divides $X \cap H$ into two connected topological subspaces $(X \cap H \cap K)^{1}$ and $(X \cap H \cap K)^{-1}$. Besides, the topoplane $X \cap K$ divides X into two connected topological subspaces $(X \cap K)^1$ and $(X \cap K)^{-1}$, and we have

- either $(X \cap H \cap K)^1 \subseteq (X \cap K)^1$ and $(X \cap H \cap K)^{-1} \subseteq (X \cap K)^{-1}$,
- or $(X \cap H \cap K)^{-1} \subseteq (X \cap K)^{1}$ and $(X \cap H \cap K)^{1} \subseteq (X \cap K)^{-1}$.

In both cases, $(X \cap H) \setminus (X \cap K)$ is composed by two components in X which lie on opposite sides of $X \cap K$. The topoplane arrangement \mathscr{A}^X is consequently transsective. □

DEFINITION 3.11. Let $\mathscr A$ be a transsective topoplane arrangement in a topological ball T. Denote by H^{-1} and H^1 both connected components obtained after division of T by a topoplane $H \in \mathscr{A}$. Moreover, set $H^0 = H$. The sign map of H is the function

$$
\sigma_H: T \to \{-1, 0, 1\}, \quad v \mapsto \begin{cases} -1 & \text{if } v \in H^{-1}, \\ 0 & \text{if } v \in H^0, \\ 1 & \text{if } v \in H^1. \end{cases}
$$

The sign map of $\mathscr A$ is the function $\sigma_{\mathscr A}: T \to \{-1, 0, 1\}^{\mathscr A}, v \mapsto (\sigma_H(v))_{H \in \mathscr A}.$ And the *sign set* of $\mathscr A$ is the set

$$
\sigma_{\mathscr{A}}(T) := \big\{ \sigma_{\mathscr{A}}(v) \bigm| v \in T \big\}.
$$

DEFINITION 3.12. Let $\mathscr A$ be a transsective topoplane arrangement in a topological ball T. A face of $\mathscr A$ is a subset F of T such that

$$
\exists x \in \sigma_{\mathscr{A}}(T), \ F = \{ v \in T \mid \sigma_{\mathscr{A}}(v) = x \}.
$$

A *chamber* of $\mathscr A$ is a face F such that $\sigma_{\mathscr A}(F) \in \{-1, 1\}^{\mathscr A}$. Denote by $F(\mathscr A)$ and $C(\mathscr{A})$ the sets composed by the faces and the chambers of \mathscr{A} , respectively.

PROPOSITION 3.13. Let $\mathscr A$ be a transsective topoplane arrangement in a topological ball T. Then, every face of $\mathscr A$ is a deformed ball.

Proof. Assume T is a topological *n*-ball, and begin by considering a chamber $C \in C(\mathscr{A})$:

- Let $x \in C$, and $d = \min \{ \text{dist}(x, H) \mid H \in \mathscr{A} \}$, where dist is a distance function on T. Then, the *n*-ball of radius $d/2$ and center x is included in C . The chamber C is consequently an *n*-manifold.
- Let $x, y \in C$. The fact that $\mathscr A$ is transsective and $\sigma_{\mathscr A}(x) = \sigma_{\mathscr A}(y)$ imply the path connectivity of x and y .
- The chamber C can naturally not contain holes, meaning that $\pi_k(C, x_0)$ is trivial for each positive integer k and distinguished point x_0 of C.

The chamber C is then a deformed ball. Consider a face $F \in F(\mathscr{A}) \setminus C(\mathscr{A})$, and the flat

$$
X = \bigcap_{\substack{H \in \mathcal{A} \\ \sigma_H(F) = 0}} H.
$$

We know from Proposition [3.10](#page-5-0) that \mathscr{A}^X is a transsective topoplane arrangement in X. As F is a chamber of \mathscr{A}^{X} , it is therefore a deformed ball.

PROPOSITION 3.14. Let $\mathscr A$ be a transsective topoplane arrangement in a topological ball T. Then,

$$
\sum_{F \in F(\mathscr{A})} \chi(F) = \chi(T).
$$

Proof. On one side, if T is a topological 1-ball, then $\mathscr A$ is set of points dividing T into $\#\mathscr{A} + 1$ deformed 1-balls. Hence,

$$
\sum_{F \in F(\mathscr{A})} \chi(F) = \# \mathscr{A}(-1)^0 + (\# \mathscr{A} + 1)(-1)^1 = -1 = \chi(T).
$$

On the other side, if T is a topological n-ball, with $n \geq 2$, and $\#\mathscr{A} = 1$, then

$$
\sum_{F \in F(\mathscr{A})} \chi(F) = (-1)^{n-1} + 2(-1)^n = (-1)^n = \chi(T).
$$

Suppose now that T is a topological n-ball and $\#\mathscr{A} = m$, with $n \geq 2$ and $m \geq 2$. We proceed by induction, and assume that Proposition [3.14](#page-6-1) is true for any transsective arrangement of r topoplanes in a topological s-ball if $s < n$, or $s = n$ and $r < m$. Let $H \in \mathcal{A}, \mathcal{A}' = \mathcal{A} \setminus \{H\}$, and consider the following subsets of $F(\mathscr{A}')$:

- (1) $F^1 = \{ F \in F(\mathscr{A}') \mid F \cap H \neq \emptyset, F \nsubseteq H \},\$
- (2) $F^2 = \{ F \in F(\mathscr{A}') \mid F \cap H = \varnothing \},\$
- (3) and $F^3 = \{ F \in F(\mathscr{A}') \mid F \subseteq H \}.$

The set $F(\mathscr{A}^H)$ is composed by the elements of F^3 and the faces F_H of \mathscr{A}^H in one-to-one correspondence to the faces F in F^1 such that, if F is a deformed k-ball, F_H is a deformed $(k-1)$ -ball dividing F into two deformed k -balls F_1 and F_2 . We deduce

$$
\sum_{F \in F(\mathscr{A})} \chi(F)
$$
\n
$$
= \sum_{F \in F^{1}(\mathscr{A}')} (\chi(F_{1}) + \chi(F_{2})) + \sum_{F \in F^{2}(\mathscr{A}')} \chi(F) + \sum_{F \in F(\mathscr{A}^{H})} \chi(F)
$$
\n
$$
= \sum_{F \in F^{1}(\mathscr{A}')} (\chi(F_{1}) + \chi(F_{2}) + \chi(F_{H})) + \sum_{F \in F^{2}(\mathscr{A}')} \chi(F) + \sum_{F \in F^{3}(\mathscr{A}')} \chi(F)
$$
\n
$$
= \sum_{F \in F^{1}(\mathscr{A}')} \chi(F) + \sum_{F \in F^{2}(\mathscr{A}')} \chi(F) + \sum_{F \in F^{3}(\mathscr{A}')} \chi(F)
$$
\n
$$
= \sum_{F \in F(\mathscr{A}')} \chi(F)
$$
\n
$$
= \chi(T).
$$

4. THE f-POLYNOMIAL OF A TOPOPLANE ARRANGEMENT

We finally get the f-polynomial of a transsective topoplane arrangement $\mathscr A$ in a topological ball T in Theorem [4.5](#page-8-0) of this section. Besides, investigating the constant of that polynomial gives that $\sum_{X \in L(\mathscr{A})} (-1)^{\text{rank } X} \mu(T, X)$ is the number of chambers of $\mathscr A$.

DEFINITION 4.1. Let $\mathscr A$ be a transsective topoplane arrangement in a topological ball. Define the *dimension* dim X of a flat X of $\mathscr A$ which is topological *n*-ball, as well as the dimension dim F of a face F of $\mathscr A$ which is a deformed *n*-ball, to be *n*. Call such flat and face of $\mathscr A$ *n*-flat and *n*-face, respectively.

DEFINITION 4.2. Consider a transsective topoplane arrangement $\mathscr A$ in a topological *n*-ball. Let $f_i(\mathscr{A})$ be the number of *i*-faces of \mathscr{A} , and x a variable. The f-polynomial of $\mathscr A$ is

$$
f_{\mathscr{A}}(x) := \sum_{i=0}^{n} f_i(\mathscr{A}) x^{n-i}.
$$

DEFINITION 4.3. Let $\mathscr A$ be a transsective topoplane arrangement in a topological n-ball. Define the rank of a flat $X \in L(\mathscr{A})$ to be rank $X := n - \dim X$, and that of the topoplane arrangement $\mathscr A$ to be

$$
rank \mathscr{A} := \max \big\{ \text{rank } X \in \mathbb{N}_0 \mid X \in L(\mathscr{A}) \big\}.
$$

Recall that the Möbius function $\mu : L(\mathscr{A}) \times L(\mathscr{A}) \to \mathbb{Z}$ of a meet semilattice $L(\mathscr{A})$ is recursively defined, for $X, Y \in L(\mathscr{A})$, by

$$
\mu(X,Y) := \begin{cases}\n1 & \text{if } X = Y, \\
-\sum_{\substack{Z \in L(\mathscr{A}) \\ X \le Z < Y}} \mu(X,Z) = -\sum_{\substack{Z \in L(\mathscr{A}) \\ X < Z \le Y}} \mu(Z,Y) & \text{if } X < Y, \\
0 & \text{otherwise.}\n\end{cases}
$$

DEFINITION 4.4. Let $\mathscr A$ be a transsective topoplane arrangement in a topological ball, and x, y variables. The Möbius polynomial of $\mathscr A$ is

$$
M_{\mathscr{A}}(x,y) := \sum_{X,Y \in L(\mathscr{A})} \mu(X,Y) x^{\text{rank } X} y^{\text{rank } \mathscr{A} - \text{rank } Y}.
$$

We can now state the main result of this article.

THEOREM 4.5. Let $\mathscr A$ be a transsective topoplane arrangement in a topological ball. The f-polynomial of $\mathscr A$ is

$$
f_{\mathscr{A}}(x) = (-1)^{\text{rank } \mathscr{A}} M_{\mathscr{A}}(-x, -1).
$$

Proof. We know from Proposition [3.10](#page-5-0) and Proposition [3.13](#page-6-0) that the pair $(X, F(\mathscr{A}^X))$ forms a system of deformed balls. Thus, using Proposition [3.14,](#page-6-1)

$$
\chi(X) = \sum_{i=0}^{\dim X} (-1)^i f_i(\mathscr{A}^X) = (-1)^{\dim X}.
$$

Every *i*-face $F \in F(\mathscr{A}^X)$ is a chamber of a unique *i*-flat

$$
\bigcap_{\substack{H \in \mathscr{A}^X \\ \sigma_H(F) = 0}} H \in L(\mathscr{A}^X).
$$

Then

$$
f_i(\mathscr{A}^X) = \sum_{\substack{Y \in L(\mathscr{A}^X) \\ \dim Y = i}} \#C\left(\left(\mathscr{A}^X\right)^Y\right),
$$

and

$$
\sum_{Y \in L(\mathscr{A}^X)} (-1)^{\dim Y} \# C\Big((\mathscr{A}^X)^Y\Big) = (-1)^{\dim X}.
$$

We have $L(\mathscr{A}^X) = \{ Y \in L(\mathscr{A}) \mid Y \geq X \}$, and, for every $Y \in L(\mathscr{A}^X)$, also $C((\mathscr{A}^X)^Y) = C(\mathscr{A}^Y)$. Hence,

$$
\sum_{\substack{Y \in L(\mathscr{A}) \\ Y \ge X}} (-1)^{\dim Y} \# C(\mathscr{A}^Y) = (-1)^{\dim X}.
$$

Using the Möbius inversion formula, we obtain

$$
\sum_{\substack{Y \in L(\mathscr{A}) \\ Y \geq X}} (-1)^{\dim Y} \mu(X, Y) = (-1)^{\dim X} \# C(\mathscr{A}^X).
$$

Besides,

$$
(-1)^{\operatorname{rank}\mathscr{A}}M_{\mathscr{A}}(-x,-1) = \sum_{X,Y \in L(\mathscr{A})} (-1)^{\dim Y - \dim X} \mu(X,Y) x^{\operatorname{rank}X}.
$$

Therefore, for every $0 \leq i \leq n$, the coefficient λ_{n-i} of x^{n-i} in the polynomial $(-1)^{\text{rank }\mathscr{A}} M_{\mathscr{A}}(-x,-1)$ is

$$
\lambda_{n-i} = \sum_{\substack{X \in L(\mathscr{A}) \\ \dim X = i}} \sum_{Y \in L(\mathscr{A}^X)} (-1)^{\dim Y - \dim X} \mu(X, Y) = \sum_{\substack{X \in L(\mathscr{A}) \\ \dim X = i}} \#C(\mathscr{A}^X) = f_i(\mathscr{A}).
$$

EXAMPLE 4.6. Consider the arrangement $\mathcal{A}_{\rm ex}$ formed by nine topoplanes in \mathbb{R}^2 represented in Figure [4.](#page-9-2) As its Möbius polynomial is $M_{\mathscr{A}_{ex}}(x,y)$ $5x^2 + y^2 + 9xy - 11x - 9y + 6$, its f-polynomial is then $f_{\mathscr{A}_{ex}}(x) = 5x^2 + 20x + 16$.

Fig. 4 – The topoplane arrangement \mathscr{A}_{ex} .

REFERENCES

- [1] G. L. Alexanderson and J. E. Wetzel, *Arrangements of planes in space*, Discrete Math., 34 (1981), 219–240.
- [2] A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented matroids, 2nd edition, Encyclopedia Math. Appl., Vol. 46, Cambridge University Press, Cambridge, 1999.
- [3] P. Deshpande, On arrangements of pseudohyperplanes, Proc. Indian Acad. Sci., Math. Sci. , 126 (2016), 399–420.
- [4] A. Dimca, Hyperplane arrangements. An introduction, Universitext, Springer, Cham, 2017.
- [5] A. Dumitrescu and R. Mandal, New lower bounds for the number of pseudoline arrangements, in Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms (SODA 2019), San Diego, CA, USA, January 6–9, 2019; Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019, 410–425.
- [6] S. Felsner and M. Scheucher, Arrangements of pseudocircles: on circularizability, Discrete Comput. Geom., 64 (2020), 776–813.
- [7] D. Forge and T. Zaslavsky, On the division of space by topological hyperplanes, European J. Combin., 30 (2009), 1835–1845.
- [8] L. Pakula, Pseudosphere Arrangements with Simple Complements, Rocky Mountain J. Math., 33 (2003), 1465–1477.
- [9] S. Roberts, On the figures formed by the intercepts of a system of straight lines in a plane, and on analogous relations in space of three dimensions, Proc. Lond. Math. Soc. (1), 19 (1887), 405–422.
- [10] J. Steiner, Einige Gesetze über die Theilung der Ebene und des Raums, J. Reine Angew. Math., 1 (1826), 349–364.
- [11] T. Zaslavsky, Facing up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes, Mem. Amer. Math. Soc., 1 (1975), 1–95.

Received July 2, 2023 Accepted August 25, 2024

Universität Kassel Institut für Mathematik Kassel, Germany E-mail: hery.randriamaro@mathematik.uni-kassel.de <https://orcid.org/0000-0003-4514-7076>