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FACE COUNTING FOR TOPOLOGICAL HYPERPLANE
ARRANGEMENTS

HERY RANDRIAMARO

Abstract. Determining the number of pieces after cutting a cake is a classi-
cal problem. Roberts provided an exact solution by computing the number of
chambers contained in a plane cut by lines. About 88 years later, Zaslavsky even
computed the f -polynomial of a hyperplane arrangement, and consequently de-
duced the number of chambers of that latter. Recently, Forge and Zaslavsky
introduced the more general structure of topological hyperplane arrangements.
This article computes the f -polynomial of such arrangements when they are
transsective, and therefore deduces their number of chambers.
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1. INTRODUCTION

A classical basic problem was to determine the number of pieces obtained by
cutting a cake d times. Deeper study of that problem has probably its origin
in the article of Steiner [10] who computed the maximal number of chambers
contained in a plane cut by several sets of parallel lines pointing in different
directions. Roberts [9] fixed that problem by showing that
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is the number of chambers contained in a plane cut by d lines, where nk

is the number of k-fold intersection points for k ≥ 3, and p is the num-
ber of families of parallel lines containing respectively l1, . . . , lp lines with
lj ≥ 2. As mentioned in the book of Dimca [4] for instance, Schläfli ex-
tended that problem to the Euclidean space Rn, and published in 1901 that
the number of chambers in Rn partitioned by d hyperplanes is smaller that∑n
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)
. That extended problem was, that time, solved by Zaslavsky [11].

He precisely expressed the f -polynomial of a hyperplane arrangement A by
means of its Möbius polynomial, and deduced that its number of chambers is∑

X∈L(A)(−1)rankXµ(Rn, X), where L(A) is the flat set of A and µ the Möbius
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function. In an independent work, Alexanderson and Wetzel [1] obtained the
f -polynomial of a plane arrangement in a space. More recently, Pakula [8]
computed the number of chambers of pseudosphere arrangements. Note that
pseudosphere arrangements are topologically equivalent to pseudohyperplane
arrangements as one can read in the article of Deshpande [3] for example.

This article considers the more general case of topological hyperplane ar-
rangements, or topoplane arrangements, introduced by Forge and Zaslavsky
[7]. Transsective topoplane arrangements are even generalizations for pseudo-
hyperplane arrangements that are known to be topological models for oriented
matroids, like stated in the book of Björner et al. [2]. This article determines
the f -polynomial of a transsective topoplane arrangement A in a topological
ball T , and deduces that

∑
X∈L(A )(−1)rankXµ(T,X) is its number of cham-

bers, where L(A ) is the flat set of A .
In neighboring contexts, Dumitrescu and Mandal [5] established that the

number of nonisomorphic simple arrangements of n pseudolines is bigger that

2cn
2−O(n lnn) for some constant c > 0.2083, while Felsner and Scheucher [6]

studied the circularizability of pseudocircle arrangements.
Recall that in the Euclidean space Rn, an n-ball of radius r and center x

is the set of all points of distance less than r from x, a topological n-ball is
any subset which is homeomorphic to an n-ball, and an n-manifold is a subset
with the property that each point has a neighborhood that is homeomorphic
to an n-ball. Topological n-balls are important as building blocks of CW-
complexes. However, they are not flexible enough to investigate topological
properties of topoplane arrangements. More abstract objects, named deformed
n-balls, must consequently be introduced in Section 2.

The study of topoplane arrangements really begins in Section 3. We namely
fix the conjecture of Forge and Zaslavsky [7], mentioned in the introduction
of their article, stating that solidity can be proved from the definition of a
topoplane arrangement. Then, we prove that every chamber of a transsective
topoplane arrangement is a deformed ball. These results allow us to compute
the f -polynomial of a transsective topoplane arrangement in Section 4, and
to deduce its number of chambers.

2. DEFORMED BALLS

This article uses the notations [k] := {1, 2, . . . , k} for a positive integer k,
and N0 for the set of nonnegative integers. Deformed balls, deformed ball
complexes, as well as the Euler characteristic of a deformed ball complex are
defined in this section.

Definition 2.1. Let n be a nonnegative integer. A deformed n-ball is a
path connected n-manifold X in Rn such that the homotopy group πk(X,x0)
is trivial for each positive integer k and a distinguished point x0 of X.
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Definition 2.2. Let X be a deformed n-ball, and Y a deformed m-ball
such that n > m and X ∩ Y = ∅. The sets X and Y can be glued together if
the boundary ∂X of X contains Y . The set obtained from gluing Y onto X
is the path connected space X ⊔ Y .

Recursive Construction of a System of Deformed Balls

We begin with a system
(
X1, {X1}

)
, where X1 is a deformed n-ball.

• Let X2 be a deformed m-ball such that X2 can be glued onto X1, if
n > m, or X1 can be glued onto X2, if n < m. We get the extended
system

(
X1 ⊔X2, {X1, X2}

)
.

• Suppose that we have a positive integer k, and a system
(
X, {Xi}i∈[k]

)
,

where X =
⊔

i∈[k]Xi was obtained by gluing together the deformed

balls X1, . . . , Xk. This system can be extended with another deformed
ball Xk+1 if

– X ∩Xk+1 = ∅,
– there exists i ∈ [k] such that Xi and Xk+1 can be glued together,
– if I is the subset of [k] such that Xi and Xk+1 can be glued

together for each i ∈ I, then
⊔

i∈I Xi is path connected.

We obtain a new system
(
X ⊔Xk+1, {Xi}i∈[k+1]

)
of deformed balls.

Definition 2.3. A topological space X is a deformed ball complex if there
exist a positive integer k, and a set {Xi}i∈[k] of deformed balls such that

X =
⊔

i∈[k]Xi and
(
X, {Xi}i∈[k]

)
is a system of deformed balls.

For a CW complex X, the Euler characteristic χ(X) is the alternating sum∑
n∈N0

(−1)ncn, where cn is the number of topological n-balls of X. We need
to generalize the definition of deformed ball complexes.

Definition 2.4. Let k be a positive integer, and
(
X, {Xi}i∈[k]

)
a system

of deformed balls. The Euler characteristic of the deformed ball complex X is

χ(X) :=
∑
n∈N0

(−1)ncn,

where cn is the number of deformed n-balls in {Xi}i∈[k].

Example 2.5. In the left part of Figure 1, we have a deformed ball complex
composed by the deformed 0-ball, 1-ball, and 3-ball represented in the right
part of Figure 1. Its Euler characteristic is (−1)0 + (−1)1 + (−1)2 = 1.

3. TOPOPLANE ARRANGEMENTS

This section is devoted to topoplane arrangements introduced by Forge and
Zaslavsky [7]. Transsective topoplane arrangements are particularly of interest
to us.
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Fig. 1 – A complex formed by three deformed balls.

We fix in Proposition 3.10 the conjecture mentioned in the introduction
of the article of Forge and Zaslavsky [7], stating that every restriction of a
transsective topoplane arrangement is a transsective topoplane arrangement.
Afterwards, we prove in Proposition 3.13 that every face of a transsective
topoplane arrangement is a deformed ball.

Definition 3.1. Let n be a positive integer, and T a topological n-ball. A
topoplane in T is a topological (n − 1)-ball H ⊆ T that divides T into two
connected topological subspaces.

Definition 3.2. Let A be a finite set of topoplanes in a topological n-ball
T . A flat of A is a nonempty intersection of topoplanes in A . Denote by
L(A ) the set composed by the flats of A .

Example 3.3. The flat set generated by both topoplanes in the yellow open
disk of Figure 2 is composed of the yellow disk, both topoplanes, and the four
intersection points.

Definition 3.4. Let A be a finite set of topoplanes in a topological ball
T . It is a topoplane arrangement if

(a) every flat in L(A ) is a topological ball,
(b) for every topoplane H ∈ A and each flat X ∈ L(A ), either X ⊆ H or

H ∩X = ∅ or H ∩X is a topoplane in X.

Example 3.5. The flat set of the topoplane arrangement in Figure 3 is
composed of R3, both topoplanes, and the intersection point.
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Fig. 2 – Two topoplanes in an open disk.

Proposition 3.6 ([7, Prop. 1]). Let A be a topoplane arrangement in a
topological ball T , and consider a flat X ∈ L(A ). The induced set of topological
subspaces in X defined by

A X := {X ∩H | H ∈ A, X ⊈ H, X ∩H ̸= ∅}

is a topoplane arrangement in X.

Fig. 3 – A topoplane arrangement in R3.
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Definition 3.7. Let A be a topoplane arrangement in a topological ball
T , and consider a flat X ∈ L(A ). The topoplane arrangement

A X := {X ∩H | H ∈ A , X ⊈ H, X ∩H ̸= ∅}
in X is called the restriction of A on X.

Definition 3.8. Let A be a finite set of topoplanes in a topological ball T .
A pair of distinct topoplanes (H, K) ∈ A × A forms a transsection if H \K
is composed by two components which lie on opposite sides of K.

Definition 3.9. Let A be a topoplane arrangement in a topological ball
T . It is said to be transsective if, for each pair of distinct topoplanes (H, K) ∈
A × A , either H ∩K = ∅ or (H, K) forms a transsection.

Proposition 3.10. Let A be a topoplane arrangement in a topological ball
T , and X a flat in L(A ). If A is transsective, then A X is a transsective
topoplane arrangement in X.

Proof. Consider two distinct topoplanes in X, namely having the forms
X∩H and X∩K with H,K ∈ A . Suppose that (X∩H)∩(X∩K) ̸= ∅. Since
X∩H ⊈ X∩K and A X is a topoplane arrangement as seen in Proposition 3.6,
then (X∩H)∩(X∩K) = X∩H∩K is a topoplane in X∩H. Hence X∩H∩K
divides X ∩ H into two connected topological subspaces (X ∩ H ∩ K)1 and
(X ∩H ∩K)−1. Besides, the topoplane X ∩K divides X into two connected
topological subspaces (X ∩K)1 and (X ∩K)−1, and we have

• either (X ∩H ∩K)1 ⊆ (X ∩K)1 and (X ∩H ∩K)−1 ⊆ (X ∩K)−1,
• or (X ∩H ∩K)−1 ⊆ (X ∩K)1 and (X ∩H ∩K)1 ⊆ (X ∩K)−1.

In both cases, (X∩H)\(X∩K) is composed by two components in X which lie
on opposite sides of X ∩K. The topoplane arrangement A X is consequently
transsective. □

Definition 3.11. Let A be a transsective topoplane arrangement in a topo-
logical ball T . Denote by H−1 and H1 both connected components obtained
after division of T by a topoplane H ∈ A . Moreover, set H0 = H. The sign
map of H is the function

σH : T → {−1, 0, 1}, v 7→


−1 if v ∈ H−1,

0 if v ∈ H0,

1 if v ∈ H1.

The sign map of A is the function σA : T → {−1, 0, 1}A , v 7→
(
σH(v)

)
H∈A

.
And the sign set of A is the set

σA (T ) :=
{
σA (v)

∣∣ v ∈ T
}
.

Definition 3.12. Let A be a transsective topoplane arrangement in a
topological ball T . A face of A is a subset F of T such that

∃x ∈ σA (T ), F =
{
v ∈ T

∣∣ σA (v) = x
}
.
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A chamber of A is a face F such that σA (F ) ∈ {−1, 1}A . Denote by F (A )
and C(A ) the sets composed by the faces and the chambers of A , respectively.

Proposition 3.13. Let A be a transsective topoplane arrangement in a
topological ball T . Then, every face of A is a deformed ball.

Proof. Assume T is a topological n-ball, and begin by considering a chamber
C ∈ C(A ):

• Let x ∈ C, and d = min
{
dist(x,H) ∥H ∈ A

}
, where dist is a distance

function on T . Then, the n-ball of radius d/2 and center x is included
in C. The chamber C is consequently an n-manifold.

• Let x, y ∈ C. The fact that A is transsective and σA (x) = σA (y)
imply the path connectivity of x and y.

• The chamber C can naturally not contain holes, meaning that πk(C, x0)
is trivial for each positive integer k and distinguished point x0 of C.

The chamber C is then a deformed ball. Consider a face F ∈ F (A ) \ C(A ),
and the flat

X =
⋂

H∈A
σH(F )=0

H.

We know from Proposition 3.10 that A X is a transsective topoplane arrange-
ment in X. As F is a chamber of A X , it is therefore a deformed ball. □

Proposition 3.14. Let A be a transsective topoplane arrangement in a
topological ball T . Then, ∑

F∈F (A )

χ(F ) = χ(T ).

Proof. On one side, if T is a topological 1-ball, then A is set of points
dividing T into #A + 1 deformed 1-balls. Hence,∑

F∈F (A )

χ(F ) = #A (−1)0 + (#A + 1)(−1)1 = −1 = χ(T ).

On the other side, if T is a topological n-ball, with n ≥ 2, and #A = 1, then∑
F∈F (A )

χ(F ) = (−1)n−1 + 2(−1)n = (−1)n = χ(T ).

Suppose now that T is a topological n-ball and #A = m, with n ≥ 2 and
m ≥ 2. We proceed by induction, and assume that Proposition 3.14 is true for
any transsective arrangement of r topoplanes in a topological s-ball if s < n,
or s = n and r < m. Let H ∈ A , A ′ = A \ {H}, and consider the following
subsets of F (A ′):

(1) F 1 =
{
F ∈ F (A ′)

∣∣ F ∩H ̸= ∅, F ⊈ H
}
,

(2) F 2 =
{
F ∈ F (A ′)

∣∣ F ∩H = ∅
}
,

(3) and F 3 =
{
F ∈ F (A ′)

∣∣ F ⊆ H
}
.
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The set F (A H) is composed by the elements of F 3 and the faces FH of
A H in one-to-one correspondence to the faces F in F 1 such that, if F is a
deformed k-ball, FH is a deformed (k − 1)-ball dividing F into two deformed
k-balls F1 and F2. We deduce∑

F∈F (A )

χ(F )

=
∑

F∈F 1(A ′)

(
χ(F1) + χ(F2)

)
+

∑
F∈F 2(A ′)

χ(F ) +
∑

F∈F (A H)

χ(F )

=
∑

F∈F 1(A ′)

(
χ(F1) + χ(F2) + χ(FH)

)
+

∑
F∈F 2(A ′)

χ(F ) +
∑

F∈F 3(A ′)

χ(F )

=
∑

F∈F 1(A ′)

χ(F ) +
∑

F∈F 2(A ′)

χ(F ) +
∑

F∈F 3(A ′)

χ(F )

=
∑

F∈F (A ′)

χ(F )

= χ(T ). □

4. THE f -POLYNOMIAL OF A TOPOPLANE ARRANGEMENT

We finally get the f -polynomial of a transsective topoplane arrangement A
in a topological ball T in Theorem 4.5 of this section. Besides, investigating
the constant of that polynomial gives that

∑
X∈L(A )(−1)rankXµ(T,X) is the

number of chambers of A .

Definition 4.1. Let A be a transsective topoplane arrangement in a topo-
logical ball. Define the dimension dimX of a flat X of A which is topological
n-ball, as well as the dimension dimF of a face F of A which is a deformed
n-ball, to be n. Call such flat and face of A n-flat and n-face, respectively.

Definition 4.2. Consider a transsective topoplane arrangement A in a
topological n-ball. Let fi(A ) be the number of i-faces of A , and x a variable.
The f -polynomial of A is

fA (x) :=

n∑
i=0

fi(A )xn−i.

Definition 4.3. Let A be a transsective topoplane arrangement in a topo-
logical n-ball. Define the rank of a flat X ∈ L(A ) to be rankX := n−dimX,
and that of the topoplane arrangement A to be

rankA := max
{
rankX ∈ N0

∣∣ X ∈ L(A )
}
.
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Recall that the Möbius function µ : L(A )×L(A ) → Z of a meet semilattice
L(A ) is recursively defined, for X,Y ∈ L(A ), by

µ(X,Y ) :=


1 if X = Y,

−
∑

Z∈L(A )
X≤Z<Y

µ(X,Z) = −
∑

Z∈L(A )
X<Z≤Y

µ(Z, Y ) if X < Y,

0 otherwise.

Definition 4.4. Let A be a transsective topoplane arrangement in a topo-
logical ball, and x, y variables. The Möbius polynomial of A is

MA (x, y) :=
∑

X,Y ∈L(A )

µ(X,Y )xrankX yrankA −rankY .

We can now state the main result of this article.

Theorem 4.5. Let A be a transsective topoplane arrangement in a topo-
logical ball. The f -polynomial of A is

fA (x) = (−1)rankA MA (−x,−1).

Proof. We know from Proposition 3.10 and Proposition 3.13 that the pair(
X, F (A X)

)
forms a system of deformed balls. Thus, using Proposition 3.14,

χ(X) =

dimX∑
i=0

(−1)ifi(A
X) = (−1)dimX .

Every i-face F ∈ F (A X) is a chamber of a unique i-flat⋂
H∈A X

σH(F )=0

H ∈ L(A X).

Then

fi(A
X) =

∑
Y ∈L(A X)
dimY=i

#C
(
(A X)

Y
)
,

and ∑
Y ∈L(A X)

(−1)dimY #C
(
(A X)

Y
)
= (−1)dimX .

We have L(A X) =
{
Y ∈ L(A )

∣∣ Y ≥ X
}
, and, for every Y ∈ L(A X), also

C
(
(A X)

Y
)
= C(A Y ). Hence,∑

Y ∈L(A )
Y≥X

(−1)dimY #C(A Y ) = (−1)dimX .
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Using the Möbius inversion formula, we obtain∑
Y ∈L(A )
Y≥X

(−1)dimY µ(X,Y ) = (−1)dimX#C(A X).

Besides,

(−1)rankA MA (−x,−1) =
∑

X,Y ∈L(A )

(−1)dimY−dimXµ(X,Y )xrankX .

Therefore, for every 0 ≤ i ≤ n, the coefficient λn−i of x
n−i in the polynomial

(−1)rankA MA (−x,−1) is

λn−i =
∑

X∈L(A )
dimX=i

∑
Y ∈L(A X)

(−1)dimY−dimXµ(X,Y ) =
∑

X∈L(A )
dimX=i

#C(A X) = fi(A ).

□

Example 4.6. Consider the arrangement Aex formed by nine topoplanes
in R2 represented in Figure 4. As its Möbius polynomial is MAex(x, y) =
5x2+y2+9xy−11x−9y+6, its f -polynomial is then fAex(x) = 5x2+20x+16.

Fig. 4 – The topoplane arrangement Aex.
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