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FACE COUNTING FOR TOPOLOGICAL HYPERPLANE
ARRANGEMENTS

HERY RANDRIAMARO

Abstract. Determining the number of pieces after cutting a cake is a classi-
cal problem. Roberts provided an exact solution by computing the number of
chambers contained in a plane cut by lines. About 88 years later, Zaslavsky even
computed the f-polynomial of a hyperplane arrangement, and consequently de-
duced the number of chambers of that latter. Recently, Forge and Zaslavsky
introduced the more general structure of topological hyperplane arrangements.
This article computes the f-polynomial of such arrangements when they are
transsective, and therefore deduces their number of chambers.
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1. INTRODUCTION

A classical basic problem was to determine the number of pieces obtained by
cutting a cake d times. Deeper study of that problem has probably its origin
in the article of Steiner [10] who computed the maximal number of chambers
contained in a plane cut by several sets of parallel lines pointing in different
directions. Roberts [9] fixed that problem by showing that

AN " N s §
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is the number of chambers contained in a plane cut by d lines, where ny
is the number of k-fold intersection points for k& > 3, and p is the num-
ber of families of parallel lines containing respectively [1,...,l, lines with
[; > 2. As mentioned in the book of Dimca [4] for instance, Schléfli ex-
tended that problem to the Euclidean space R™, and published in 1901 that
the number of chambers in R™ partitioned by d hyperplanes is smaller that
Yoo (f) That extended problem was, that time, solved by Zaslavsky [11].
He precisely expressed the f-polynomial of a hyperplane arrangement A by
means of its Mobius polynomial, and deduced that its number of chambers is

ZXGL(A)(—l)r"kau(R”, X), where L(.A) is the flat set of A and p the M&bius
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function. In an independent work, Alexanderson and Wetzel |1] obtained the
f-polynomial of a plane arrangement in a space. More recently, Pakula [g]
computed the number of chambers of pseudosphere arrangements. Note that
pseudosphere arrangements are topologically equivalent to pseudohyperplane
arrangements as one can read in the article of Deshpande [3| for example.

This article considers the more general case of topological hyperplane ar-
rangements, or topoplane arrangements, introduced by Forge and Zaslavsky
[7]. Transsective topoplane arrangements are even generalizations for pseudo-
hyperplane arrangements that are known to be topological models for oriented
matroids, like stated in the book of Bjorner et al. [2]. This article determines
the f-polynomial of a transsective topoplane arrangement <7 in a topological
ball T, and deduces that ZXGL(%)(—l)ranqu(T,X) is its number of cham-
bers, where L(</) is the flat set of <7 .

In neighboring contexts, Dumitrescu and Mandal [5] established that the
number of nonisomorphic simple arrangements of n pseudolines is bigger that
gen*=O(nlnn) for some constant ¢ > 0.2083, while Felsner and Scheucher [6]
studied the circularizability of pseudocircle arrangements.

Recall that in the Euclidean space R™, an n-ball of radius r» and center x
is the set of all points of distance less than r from x, a topological n-ball is
any subset which is homeomorphic to an n-ball, and an n-manifold is a subset
with the property that each point has a neighborhood that is homeomorphic
to an n-ball. Topological n-balls are important as building blocks of CW-
complexes. However, they are not flexible enough to investigate topological
properties of topoplane arrangements. More abstract objects, named deformed
n-balls, must consequently be introduced in Section

The study of topoplane arrangements really begins in Section[3] We namely
fix the conjecture of Forge and Zaslavsky [7], mentioned in the introduction
of their article, stating that solidity can be proved from the definition of a
topoplane arrangement. Then, we prove that every chamber of a transsective
topoplane arrangement is a deformed ball. These results allow us to compute
the f-polynomial of a transsective topoplane arrangement in Section [ and
to deduce its number of chambers.

2. DEFORMED BALLS

This article uses the notations [k] := {1,2,...,k} for a positive integer k,
and Ny for the set of nonnegative integers. Deformed balls, deformed ball
complexes, as well as the Euler characteristic of a deformed ball complex are
defined in this section.

DEFINITION 2.1. Let n be a nonnegative integer. A deformed n-ball is a
path connected n-manifold X in R™ such that the homotopy group (X, x)
is trivial for each positive integer k£ and a distinguished point xy of X.
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DEFINITION 2.2. Let X be a deformed n-ball, and Y a deformed m-ball
such that n > m and X NY = &. The sets X and Y can be glued together if
the boundary 0X of X contains Y. The set obtained from gluing Y onto X
is the path connected space X LY.

Recursive Construction of a System of Deformed Balls

We begin with a system (Xl, {Xl}), where X is a deformed n-ball.

e Let X5 be a deformed m-ball such that Xo can be glued onto Xi, if
n > m, or X can be glued onto Xs, if n < m. We get the extended
system (X1 U Xo, {X1, X2}).

e Suppose that we have a positive integer k, and a system (X, {Xi}ie[k})7
where X = I—lie[k} X,; was obtained by gluing together the deformed
balls X1, ..., X;. This system can be extended with another deformed
ball Xjq if

- XNXgp1 =9,
— there exists i € [k] such that X; and X1 can be glued together,
— if I is the subset of [k] such that X; and Xj,; can be glued
together for each i € I, then | |,.; X; is path connected.
We obtain a new system (X U Xgt1, {Xi}ie[k+l]) of deformed balls.

DEFINITION 2.3. A topological space X is a deformed ball complez if there
exist a positive integer k, and a set {X;};cy of deformed balls such that

X =iy Xi and (X, {Xi}ticp) is a system of deformed balls.

For a CW complex X, the Euler characteristic x(X) is the alternating sum
> neng (—1)"¢n, where ¢, is the number of topological n-balls of X. We need
to generalize the definition of deformed ball complexes.

DEFINITION 2.4. Let k be a positive integer, and (X, {Xi}ie[k]) a system
of deformed balls. The Fuler characteristic of the deformed ball complex X is

X(X) =) (1) e,
n€Ng
where ¢, is the number of deformed n-balls in {X;};cx-
EXAMPLE 2.5. In the left part of Figure(l] we have a deformed ball complex

composed by the deformed 0-ball, 1-ball, and 3-ball represented in the right
part of Figure [I] Its Euler characteristic is (—1)° 4 (—1)! + (=1)? = 1.

3. TOPOPLANE ARRANGEMENTS

This section is devoted to topoplane arrangements introduced by Forge and
Zaslavsky [7]. Transsective topoplane arrangements are particularly of interest
to us.
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Fig. 1 — A complex formed by three deformed balls.

We fix in Proposition the conjecture mentioned in the introduction
of the article of Forge and Zaslavsky [7], stating that every restriction of a
transsective topoplane arrangement is a transsective topoplane arrangement.
Afterwards, we prove in Proposition that every face of a transsective
topoplane arrangement is a deformed ball.

DEFINITION 3.1. Let n be a positive integer, and T" a topological n-ball. A
topoplane in T is a topological (n — 1)-ball H C T that divides T' into two
connected topological subspaces.

DEFINITION 3.2. Let & be a finite set of topoplanes in a topological n-ball
T. A flat of &/ is a nonempty intersection of topoplanes in /. Denote by
L(47) the set composed by the flats of <.

ExaMPLE 3.3. The flat set generated by both topoplanes in the yellow open
disk of Figure [2]is composed of the yellow disk, both topoplanes, and the four
intersection points.

DEFINITION 3.4. Let &7 be a finite set of topoplanes in a topological ball
T. It is a topoplane arrangement if
(a) every flat in L(</) is a topological ball,
(b) for every topoplane H € &/ and each flat X € L(/), either X C H or
HNX =9 or HNX is a topoplane in X.

ExAMPLE 3.5. The flat set of the topoplane arrangement in Figure |3 is
composed of R3, both topoplanes, and the intersection point.
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Fig. 2 - Two topoplanes in an open disk.

PROPOSITION 3.6 ([7, Prop. 1]). Let & be a topoplane arrangement in a
topological ball T, and consider a flat X € L(<7). The induced set of topological
subspaces in X defined by

X ={XNH|HecA X¢H, XNH# 2}

s a topoplane arrangement in X.

Fig. 3 — A topoplane arrangement in R3.
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DEFINITION 3.7. Let <7 be a topoplane arrangement in a topological ball
T, and consider a flat X € L(/). The topoplane arrangement

X ={XNH|He«,X¢H XNH# 2}
in X is called the restriction of &/ on X.

DEFINITION 3.8. Let &7 be a finite set of topoplanes in a topological ball T'.
A pair of distinct topoplanes (H, K) € & x & forms a transsection if H \ K
is composed by two components which lie on opposite sides of K.

DEFINITION 3.9. Let &/ be a topoplane arrangement in a topological ball
T. Tt is said to be transsective if, for each pair of distinct topoplanes (H, K) €
o/ x of , either HN K = @ or (H, K) forms a transsection.

PRrOPOSITION 3.10. Let &7 be a topoplane arrangement in a topological ball
T, and X a flat in L(&/). If A is transsective, then </~ is a transsective
topoplane arrangement in X.

Proof. Consider two distinct topoplanes in X, namely having the forms
XNH and XNK with H, K € <. Suppose that (XNH)N(XNK) # @. Since
XNH Q XNK and o7 is a topoplane arrangement as seen in Proposition
then (XNH)N(XNK) = XNHNK is a topoplane in XNH. Hence XNHNK
divides X N H into two connected topological subspaces (X N H N K)! and
(X N HNK)~! Besides, the topoplane X N K divides X into two connected
topological subspaces (X N K)! and (X N K)~!, and we have

e either ( XNHNK)'C(XNK)'and XNHNK) ' C(XNK)™!,
eor XNHNK)'C(XnK)land ( XNHNK)! C(XNnK)™L
In both cases, (XNH)\ (XNK) is composed by two components in X which lie
on opposite sides of X N K. The topoplane arrangement .7~ is consequently
transsective. O

DEFINITION 3.11. Let o7 be a transsective topoplane arrangement in a topo-
logical ball T. Denote by H~! and H' both connected components obtained
after division of 7' by a topoplane H € /. Moreover, set H® = H. The sign
map of H is the function

-1 ifve H !,
og:T—{-1,0,1}, v—=<0 ifve HO,
1 ifveH.

The sign map of &7 is the function o, : T — {—1, 0, 1}, v (or(v))
And the sign set of o7 is the set

0 (T) = {0 (v) ‘ veT}.

DEeFINITION 3.12. Let &/ be a transsective topoplane arrangement in a
topological ball T. A face of &7 is a subset F' of T' such that

Jwecoy(T), F={veT ‘ o (v) =z}

Hed'®
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A chamber of & is a face F such that o, (F) € {—1, 1}*. Denote by F()
and C(«) the sets composed by the faces and the chambers of o7, respectively.

PROPOSITION 3.13. Let & be a transsective topoplane arrangement in a
topological ball T'. Then, every face of < is a deformed ball.

Proof. Assume T is a topological n-ball, and begin by considering a chamber
CeCH):

e Let z € C, and d = min {dist(z, H) || H € </ }, where dist is a distance
function on T'. Then, the n-ball of radius d/2 and center z is included
in C. The chamber C' is consequently an n-manifold.

e Let z,y € C. The fact that &/ is transsective and o (z) = 0, (y)
imply the path connectivity of x and y.

e The chamber C' can naturally not contain holes, meaning that 7, (C, )
is trivial for each positive integer k£ and distinguished point xg of C.

The chamber C' is then a deformed ball. Consider a face F' € F(</) \ C(</),

and the flat
X= () H
Heo
o (F)=0
We know from Proposition that o7 is a transsective topoplane arrange-
ment in X. As F is a chamber of &%, it is therefore a deformed ball. O

PROPOSITION 3.14. Let & be a transsective topoplane arrangement in a
topological ball T'. Then,

FeF()

Proof. On one side, if T is a topological 1-ball, then & is set of points
dividing T into #.47 + 1 deformed 1-balls. Hence,

D X(F) =#(-1)" + (F +1)(-1)! = =1 = x(T).
FeF(o/)
On the other side, if T' is a topological n-ball, with n > 2, and # = 1, then
S (F) = ((1)" b 2(= 1) = (-1 = (),
FEF()

Suppose now that T is a topological n-ball and #.4 = m, with n > 2 and
m > 2. We proceed by induction, and assume that Proposition [3.14]is true for
any transsective arrangement of r topoplanes in a topological s-ball if s < n,
or s=nandr <m. Let H € &, o' = o/ \ {H}, and consider the following
subsets of F'(</’):

(1) F'={FeF(«') | FNH+o,F{ H},
(2) F2={FeF(«') | FNH = &},
(3) and F3 ={F e F(«&") | FC H}.
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The set F(a7H) is composed by the elements of F* and the faces Fy of
/™ in one-to-one correspondence to the faces F in F! such that, if F is a
deformed k-ball, Fyy is a deformed (k — 1)-ball dividing F' into two deformed
k-balls F} and F5. We deduce

> x()

FeF ()

= > (F) X))+ D> x(F)+ > x(F)

FeFl(4") FeF2(4") FeF(aH)

= > (x(F)+x(F) + x(Fu)) + XF)+ > x(F)
FeF (") FEF2(a/'") FEF3 (o)

= X(F)+ > x(F)+ Y. x(F)

FeF (o) FEFQ(d’) FeF3(d')

= X(F)

FeF (")

= x(T). O

4. THE f-POLYNOMIAL OF A TOPOPLANE ARRANGEMENT

We finally get the f-polynomial of a transsective topoplane arrangement .o
in a topological ball T" in Theorem of this section. Besides, investigating
the constant of that polynomial gives that ZXeL(W)(—l)rankX,u(T, X) is the
number of chambers of 7.

DEFINITION 4.1. Let &/ be a transsective topoplane arrangement in a topo-
logical ball. Define the dimension dim X of a flat X of & which is topological
n-ball, as well as the dimension dim F' of a face F' of o/ which is a deformed
n-ball, to be n. Call such flat and face of & n-flat and n-face, respectively.

DEFINITION 4.2. Consider a transsective topoplane arrangement </ in a
topological n-ball. Let f;(<7) be the number of i-faces of &7, and z a variable.
The f-polynomial of o7 is

DEFINITION 4.3. Let &/ be a transsective topoplane arrangement in a topo-
logical n-ball. Define the rank of a flat X € L(</) to be rank X :=n—dim X,
and that of the topoplane arrangement & to be

rank & := max {rank X € Ny | X € L(#)}.
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Recall that the Mobius function p : L(«/) x L(</) — Z of a meet semilattice
L(<) is recursively defined, for X,Y € L(<7), by

1 X =Y,

w(X,Y) =0 = zerw) MX, Z) = = Y zepwy M(Z,Y) i X <Y,
X<Z<Y X<Z<Y

0 otherwise.

DEFINITION 4.4. Let o/ be a transsective topoplane arrangement in a topo-
logical ball, and z,y variables. The Mdbius polynomial of < is

M%(IL‘ y) — Z /L(X Y) xrankX yrank(;zf—rankY

b * ) .
X, YeL(«)

We can now state the main result of this article.

THEOREM 4.5. Let &/ be a transsective topoplane arrangement in a topo-
logical ball. The f-polynomial of <7 is

forl@) = (1) My (—z, —1).

Proof. We know from Proposition and Proposition that the pair
(X , F(aX )) forms a system of deformed balls. Thus, using Proposition

dim X . .
X(X> _ Z (*1)1f1(,,<2fX) _ (71)d1mX.

i=0
Every i-face F' € F(a/X) is a chamber of a unique i-flat
(| HeL(o¥).

HeaX
on(F)=0
Then
Y
ey = 3 #e((@)"),
YeL(o/X)
dim Y =1
and

Z (—]_)dimy#0<(£{X)Y> _ (_1)dimX'
YeL(«#X)
We have L(#/X) = {Y € L(«/) | Y > X}, and, for every Y € L(&/*), also
C((ﬂX)Y) = C(«/Y). Hence,

Z (_1)dimY#C('Q{Y) — (_1)dimX'
YeL(«)
Y>X
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Using the Mo6bius inversion formula, we obtain

Y (NI NXY) = (~)I RO ).

YeL(d)
Y>X
Besides,
(_1)rank;zfj\4£{(_x7 _1) _ Z (_1)dimY—dimX'u(X7 Y) wrankX.

X,YeL()

n—i

Therefore, for every 0 < ¢ < n, the coefficient \,_; of x in the polynomial

(=)l Moy (—a, —1) is

n ;= Z dle dim X (X Y Z #C dX) _ fz(d)
XEL(;Z%) YeL QKX) XeL(«)
dim X=1 dim X=1

O

EXAMPLE 4.6. Consider the arrangement %, formed by nine topoplanes
in R? represented in Figure As its Mobius polynomial is My, (x,y) =
522 +y? +9zy— 11z —9y+6, its f-polynomial is then f,, (7) = 522 +20x+16.

\—”’

| /7 N\

Fig. 4 — The topoplane arrangement “ex.
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