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SOME REMARKS ON GENERALIZATIONS
OF THE REVERSE ORDER LAW IN A ∗-RING

HAMIDEH RAHMANI and ALIREZA KAMEL MIRMOSTAFAEE

Abstract. We show that if (1 − a†a)b is left *-cancelable, then the reverse
order laws (ab)† = b†a† and (ab)† = (abb†a†ab)† are equivalent. By investi-
gating the reverse order law (abb†a†a)♯ = b(abb†a†ab)† in rings with involution,
we will show that under certain circumstances the inclusion (abb†a†a){5} ⊆
b(abb†a†ab){1, 3, 4} is always an equality.
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1. INTRODUCTION AND PRELIMINARIES

Let us start by recalling some definitions.

Definition 1.1 ([4]). By an involution on an unital ring R, we mean a
function a 7→ a∗ from R to itself such that

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ (a, b ∈ R).

If a ∈ R satisfies a∗ = a, then a is called self-adjoint (or Hermitian) and if
a ∈ R satisfies a∗a = aa∗, then a is called normal.

Throughout this paper, we will assume R is an associative ring with an
involution. We also consider two kinds of generalized inverses in R, i.e. group
inverses and Moore-Penrose inverses. Their formal definitions are given below.

Definition 1.2 ([1, 2]). An element a ∈ R is called

(a) group invertible if there exists b ∈ R such that

aba = a, bab = b and ab = ba.

This b is uniquely determined by the above identities and it is called
the group inverse of a. The group inverse of a is denoted by a♯. We
also denote by R♯ the set of all group invertible elements of R.
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(b) Moore-Penrose invertible (or MP-invertible) if there is b ∈ R such that
following equations hold:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

If such an element b exists, then it is unique and it is denoted by a†.
The set of all Moore-Penrose invertible elements of ring R is denoted
by R†.

Note that if a is invertible, then a♯ = a† = a−1, where a−1 is the ordinary
inverse of a. Therefore, the above definition provides two generalizations of
invertibility.

Notation 1.3. Consider the following equations

1) aba = a, 2) bab = b, 3) (ab)∗ = ab, 4) (ba)∗ = ba, 5) ab = ba.

If A ⊂ {1, 2, 3, 4, 5} and a, b satisfy all equations of set A, then we say b is an
A-inverse of a. The set of all A-inverses of a is denoted by a{A}. With this
notation, a{1, 2, 5} = {a♯} and a{1, 2, 3, 4} = {a†}.

Definition 1.4 ([4]). Let a ∈ R. Then we say that an element a ∈ R is
left *-cancelable, if a∗ax = a∗ay implies ax = ay and we say that it is right
*-cancelable if xaa∗ = yaa∗ implies xa = ya. An element a ∈ R is called
*-cancelable if a is both left and right *-cancelable. The commutator of u and
v is defined by [u, v] = uv − vu.

If a and b are invertible in R, then (ab)−1 = b−1a−1, which is known as the
reverse order law. Note that this rule cannot be extended to other generalized
inverses [7–9]. Some mathematicians have tried to obtain conditions under
which the reverse order law holds for generalized inverses. In particular, we
have the following:

Theorem 1.5 ([7, Theorem 3]). Let a, b ∈ R†and (1 − a†a)b be left *-can-
celable. Then the following conditions are equivalent:

(i) ab is Moore-Penrose invertible and (ab)† = b†a†;
(ii) [a†a, bb∗] = 0 and [bb†, a∗a] = 0.

D. Mosić and D. S. Djordjević proved the following equivalent statements
for the reverse order law (a†abb†)† = bb†a†a.

Theorem 1.6 ([7, Theorem 1.1]). Let a, b ∈ R† and (1−a†a)b be left *-can-
celable. Then the following statements are equivalent:

(i) abb†a†ab = ab;
(ii) b†a†abb†a† = b†a†;
(iii) a†abb† = bb†a†a;
(iv) a†abb†is an idempotent;
(v) bb†a†a is an idempotent;
(vi) a†abb† ∈ R† and b†(a†abb†)†a† = b†a†;
(vii) a†abb† ∈ R† and (a†abb†)† = bb†a†a.
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The reverse order law (ab)♯ = b†(a†abb†)†a† in rings with involution were
studied in [7] and the authors obtained the following.

Theorem 1.7 ([7, Theorem 2.1]). Let a, b, a†abb† ∈ R† and ab ∈ R♯. Then
the following statements are equivalent:

(i) (ab)♯ = b†(a†abb†)†a†;
(ii) b†(a†abb†)†a† ∈ ab{5};
(iii) (a†abb†)† = b(ab)♯a and abaa† = ab = b†bab.

Inspired by the papers [4, 6, 7], we show that in a ring with involution R if

a, b, ab ∈ R† and a†a = bb†, then (ab)† = b†a† if and only if [a†a, b∗
†
b†] = 0

and [bb†, a†a∗
†
] = 0. We also obtain the necessary and sufficient conditions for

establishing the reverse order law (ab)† = b†a†. Moreover, we show that if (1−
a†a)b is Moore-Penrose invertible, then [(1− a†a)b]† = b†(1− a†a). Using left
*- cancelability of (1−a†a)b, we prove some necessary and sufficient conditions
for the hybrid reverse order law (ab)♯ = (abb†a†ab)† in rings with involution.
Finally, we investigate necessary and sufficient conditions for the equations
(abb†a†ab)† = b†a†. Our results can be considered as an application of Theorem
1.6. Applying Theorem 1.7 will obtain several equivalent conditions for new
reverse order law (ab)♯ = (abb†a†ab)†.

D. Mosić and D. S. Djordjević, in [6] showed that under certain conditions
the inclusion (ab){1, 5} ⊆ b{1, 3, 4}a{1, 3, 4} becomes an equality:

Theorem 1.8 ([6]). Let R be a ring with involution, let a and b ∈ R†,and
let (1 − a†a)b be left *-cancelable. If ab ∈ R♯, then the inclusion (ab){1, 5} ⊆
b{1, 3, 4}a{1, 3, 4} is always an equality.

D. Mosić and D. S. Djordjević, in [7] presented several equivalent condi-
tions for the reverse order law (ab)♯ = b†(a†abb†)†a†. Also, they [7] obtained
conditions which guarantee the equality of the following inclusions

(ab){5} ⊆ b{1, 3, 4}a†abb†{1, 3, 4}a{1, 3, 4}

and

abb†{5} ⊆ a†abb†{1, 3, 4}a{1, 3, 4}.

Theorem 1.9 ([7]). Let R be a ring with involution, let a, b and a†abb† ∈ R†.
If ab ∈ R♯, then the inclusion (ab){5} ⊆ b{1, 3, 4}.a†abb†{1, 3, 4}a{1, 3, 4} is
an equality.

Theorem 1.10 ([7]). Let a, b, a†abb† ∈ R†, and abb† ∈ R♯. Then following
statements are equivalent:

(i) abb†{5} ⊆ a†abb†{1, 3, 4}a{1, 3, 4};
(ii) abb†{5} = a†abb†{1, 3, 4}a{1, 3, 4}.
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In this paper, for b(abb†a†ab)† ∈ (abb†a†a){1, 5}, we obtain an equivalent
condition. Also, we obtain conditions which guarantee the equality

(abb†a†a){5} = b(abb†a†ab)(1,3,4)

in rings with involution. Moreover, we will show that under certain circum-
stances the following inclusion is always an equality

(abb†a†a){5} ⊆ b(abb†a†ab){1, 3, 4}.

By using the Moore-Penrose invertibility property, we will find the inverse of
some special elements of a ring with involution.

2. RESULTS

We start this section with the following theorem which will be frequently
used furthermore.

Theorem 2.1 ([1]). For any a ∈ R†, the following are satisfied:

(i) (a†)† = a;
(ii) (a∗)† = (a†)∗;
(iii) (a∗a)† = a†(a†)∗;
(iv) (aa∗)† = (a†)∗a†;
(v) a∗ = a†aa∗ = a∗aa†;
(vi) a† = (a∗a)†a∗ = a∗(aa∗)†;
(vii) (a∗)† = a(a∗a)† = (aa∗)†a.

We also need the following results.

Lemma 2.2 ([7]). If a ∈ R†, then

(i) a.a{1, 3} = {aa†};
(ii) a{1, 4}.a = {a†a}.

Lemma 2.3 ([7]). Let a, b, and a†abb† ∈ R†. Then the following conditions
are satisfied:

(i) (a†abb†)† = (a†abb†)†a†a;
(ii) (a†abb†)† = bb†(a†abb†)†.

The following lemma gives two equalities that we will be used all over the
paper.

Lemma 2.4. Let a, b, abb†a†ab ∈ R†. Then the following conditions are sat-
isfied:

(i) (abb†a†ab)† = (abb†a†ab)†aa†;
(ii) (abb†a†ab)† = b†b(abb†a†ab)†.
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Proof. (i) follows from the following:

(abb†a†ab)†aa† = (abb†a†ab)†(abb†a†ab)(abb†a†ab)†aa†

= (abb†a†ab)†(aa†(abb†a†ab) (abb†a†ab)†)∗

= (abb†a†ab)†(abb†a†ab)(abb†a†ab)†

= (abb†a†ab)†.

Since

b†b(abb†a†ab)† = b†b(abb†a†ab)†(abb†a†ab)(abb†a†ab)†

= ((abb†a†ab)†(abb†a†ab)b†b)∗(abb†a†ab)†

= (abb†a†ab)†(abb†a†ab)(abb†a†ab)†

= (abb†a†ab)†,

(ii) follows immediately. □

Remark 2.5. Let R be a ring with involution and a and b ∈ R†. If a†a = bb†,
then (1− a†a)b = 0. So (1− a†a)b is left *-cancelable.

Therefore if a, b ∈ R† and a†a = bb†, the equivalent conditions (i) and (ii)
of Theorem 1.5 hold.

The following theorem gives another condition, equivalent to conditions (i)
and (ii) of Theorem 1.5.

Theorem 2.6. Let R be a ring with involution, a, b, ab ∈ R† and a†a = bb†.

Then (ab)† = b†a† if and only if [a†a, b∗
†
b†] = 0 and [bb†, a†a∗

†
] = 0.

Proof. Let (ab)† = b†a†. Then by our assumption and Theorem 2.1, we
have:

bb†a†a∗
†

= b(b†a†abb†a†)a∗
†

= a†abb†bb†a†a∗
†

= a†abb†a†a∗
†

= a†abb†a†a∗
†
a†a = a†(abb†a†)∗a∗

†
a†a

= a†a∗
†
bb†a∗a∗

†
a†a = a†a∗

†
bb†a†a = a†a∗

†
a†abb†

= a†a∗
†
bb†.

Therefore [bb†, a†a∗
†
] = 0. On the other hand

b∗
†
b†a†a = b∗

†
b†a†aa†a = b∗

†
b†a†abb†

= b∗
†
(b†a†ab)∗b† = b∗

†
b∗a†ab∗

†
b† = (bb†)∗a†ab∗

†
b†

= bb†a†ab∗
†
b† = a†abb†b∗

†
b† = a†ab∗

†
b†.

Hence [a†a, b∗
†
b†] = 0.

Let [a†a, b∗
†
b†] = 0 and [bb†, a†a∗

†
] = 0. We prove four conditions for Moore-

Penrose invertibility.

1) abb†a†ab = aa†abb†b = ab, (by assumption a†a = bb†.)
2) b†a†abb†a† = b†bb†a†aa† = b†a†, (by assumption a†a = bb†.)
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3) (abb†a†)∗ = a∗
†
bb†a∗ = aa†a∗

†
bb†a∗ = abb†a†a∗

†
a∗ = abb†a†, (by as-

sumption [bb†, a†a∗
†
] = 0 and Theorem 2.1.)

4) (b†a†ab)∗ = b∗a†ab∗
†
= b∗a†ab∗

†
b†b = b∗b∗

†
b†a†ab = b†a†ab, (by as-

sumption [a†a, b∗
†
b†] = 0 and Theorem 2.1.)

By 1), 2), 3) and 4) we have (ab)† = b†a†. □

Corollary 2.7. Let R be a ring with involution, let a, b, ab ∈ R† and
a†a = bb†. Then the following conditions are equivalent:

(i) [a†a, b∗
†
b†] = 0 and [bb†, a†a∗

†
] = 0;

(ii) [a†a, bb∗] = 0 and [bb†, a∗a] = 0.
(iii) (ab)† = b†a†;

The next result shows that under certain conditions (1 − a†a)b is Moore-
Penrose invertible.

Theorem 2.8. Let R be a ring with involution, let a and b ∈ R†. If a†abb† =
bb†a†a, b† = b∗ and a† = a∗, then (1− a†a)b is Moore-Penrose invertible with
Moore-Penrose inverse b†(1− a†a).

Proof. We prove the four conditions for Moore-Penrose invertibility.

Condition 1

(1− a†a)b[b†(1− a†a)](1− a†a)b = (1− a†a)bb†(1− a†a− a†a+ a†aa†a)b

= (1− a†a)bb†(1− a†a)b

= (1− a†a)(bb†b− bb†a†ab)

= (1− a†a)(b− bb†a†ab)

= (1− a†a)(b− a†abb†b)

= (1− a†a)(b− a†ab)

= b− a†ab− a†ab+ a†aa†ab

= (1− a†a)b.

Condition 2

b†(1− a†a)[(1− a†a)b]b†(1− a†a) = b†(1− a†a)bb†(1− a†a)

= b†(1− a†a)(bb† − bb†a†a)

= (b† − b†a†a)(bb† − bb†a†a)

= b† − b†a†a− b†a†abb† + b†a†abb†a†a

= b† − b†a†a− b†bb†a†a+ b†bb†a†aa†a

= b† − b†a†a− b†a†a+ b†a†a = b†(1− a†a).
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Condition 3

[(1− a†a)bb†(1− a†a)]∗ = [bb†(1− a†a)]∗(1− a†a)∗

= (1− a†a)∗(bb†)∗(1− a†a)∗

= (1− a†a)(bb†)(1− a†a).

Condition 4

[b†(1− a†a)(1− a†a)b]∗ = [b†(1− a†a)b]∗

= (b†b− b†a†ab)∗

= (b†b)∗ − (b†a†ab)∗

= (b†b)∗ − b∗(a†a)∗(b†)∗

= b†b− b†a†ab

= b†(1− a†a)(1− a†a)b. □

In order to state the next main result of this paper, we need the following
result.

Theorem 2.9 ([1]). Let R be a ring with involution and let a ∈ R. Then
the following conditions are equivalent:

(i) a is Moore-Penrose invertible;
(ii) a is left *-cancelable and a∗a is group invertible;
(iii) a is right *-cancelable and aa∗ is group invertible;
(iv) a is *-cancelable and both a∗a and aa∗ are group invertible.

By Theorems 2.8 and 2.9, we have the following.

Corollary 2.10. Let R be a ring with involution, let a and b ∈ R†. If
a†abb† = bb†a†a, b† = b∗ and a† = a∗, then (1− a†a)b is left *-cancelable.

The following theorem provides other equivalent conditions to the conditions
presented in Theorem 1.6.

Theorem 2.11. Let R be a ring with involution, let ab, a, b ∈ R†, b† = b∗,
a† = a∗ and a†abb† = bb†a†a. Then the following statements are equivalent:

(i) abb†a†ab = ab;
(ii) b†a†abb†a† = b†a†;
(iii) a†abb† is an idempotent;
(iv) bb†a†a is an idempotent;
(v) a†abb† ∈ R† and b†(a†abb†)†a† = b†a†;
(vi) a†abb† ∈ R† and (a†abb†)† = bb†a†a;
(vii) b(abb†a†ab)†a = bb†a†a;
(viii) (abb†a†ab)† = b†a†.
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Proof. By Theorem 1.6 and Corollary 2.10, (i)-(vi) are equivalent.

(vii)⇒(viii) Let b(abb†a†ab)†a = bb†a†a. Multiplying by b† from the left side
and multiplying by a† from the right side we get b†b(abb†a†ab)†aa† = b†a†. By
applying Lemma 2.4, we get (abb†a†ab)† = b†a†.

(viii)⇒(vii) Let (abb†a†ab)† = b†a† . Multiplying by b from the left side and
multiplying by a from the right side, we get b(abb†a†ab)†a = bb†a†a.

(viii)⇒(i) Let (viii) hold. By our assumption we have a†abb† = bb†a†a and
therefore by (viii) we have (ab)† = b†a†, hence abb†a†ab = ab.

(i)⇒(viii) Let (i) hold. Then the equivalent statements (i)-(vi) are satisfied.
We prove four conditions for Moore-Penrose invertibility:

1) (abb†a†ab)b†a†(abb†a†ab) = (abb†a†ab), (by (iv)).
2) b†a†(abb†a†ab)b†a† = b†a†abb†a†, (by (iii)).

3) ((abb†a†ab)b†a†)
∗
= a†

∗
bb†a†abb†a∗ = (abb†a†ab)b†a†.

4) (b†a†(abb†a†ab))
∗
= b∗a†abb†a†ab†

∗
= b†a†(abb†a†ab).

So (abb†a†ab)† = b†a†. Hence (viii) holds. □

The following corollary shows that the equivalent conditions of the previous
theorem are equivalent with the reverse order law (ab)† = b†a†.

Corollary 2.12. Let R be a ring with involution, let ab, a, b, abb†a†ab ∈ R†

and let b† = b∗, a† = a∗ and a†abb† = bb†a†a. Then (ab)† = b†a†.

Proof. By assumption, the equivalent statements of Theorem 2.11 are satis-
fied. By (i) we have (abb†a†ab)† = (ab)†. On the other hand by (viii) we have
(abb†a†ab)† = b†a†. So (ab)† = b†a†. □

The following theorem shows that conditions of the previous theorem can
be replaced by a†a = bb†.

Theorem 2.13. Let R be a ring with involution, let a, b ∈ R†, and a†a = bb†.
Then the conditions (i)-(viii) of the previous theorem hold.

Proof. (i)-(vi) are equivalent by Theorem 1.6 and Remark 2.5.

(vii)⇒(viii): Let b(abb†a†ab)†a = b†a†. Multiplying by b† from the left side
and multiplying by a† from the right side, we get b†b(abb†a†ab)†aa† = b†a†.
By applying Lemma 2.4 we get (abb†a†ab)† = b†a†.

(viii)⇒(vii): Let (abb†a†ab)† = b†a†. Multiplying by b from the left side and
multiplying by a from the right side, we get b(abb†a†ab)†a = bb†a†a .

(viii)⇒(ii): Let (viii) hold, then (abb†a†ab)† = b†a†. On the other hand, by
our assumption, we have a†a = bb†. Therefore (ab)† = b†a†. So b†a†abb†a† =
b†a†.

(ii)⇒(viii): Let (ii) hold, then (i)-(vi) are equivalent by Theorem 1.6 and
Remark 2.5. We show that (abb†a†ab)† = b†a†. To achieve this goal, we
investigate the four conditions for Moore-Penrose invertibility.



270 H. Rahmani and A. K. Mirmostafaee 9

1) (abb†a†ab)b†a†(abb†a†ab) = (abb†a†ab), (by (i)).

2) b†a†(abb†a†ab)b†a† = b†a†abb†a†, (by (ii)).

3)

((abb†a†ab)b†a†)∗ = ((abb†bb†b)b†a†)∗ = (abb†a†)∗

= (a†a)∗ = a†a = a†aa†a

= abb†a† = (abb†a†ab)b†a†,

by our assumptions and (i).

4)

(b†a†(abb†a†ab))∗ = (b†a†(aa†aa†ab))∗ = (b†a†ab)∗

= (b†b)∗ = b†b = b†bb†b
= b†a†ab = (b†a†abb†a†)ab,

by our assumptions and (ii). □

Corollary 2.14. Let R be a ring with involution, let ab, a, b, abb†a†ab ∈ R†.
If a†a = bb†, then (ab)† = b†a†.

The following theorem and Corollary 2.10 show that if (1 − a†a)b is left
*-cancelable, then two reverse order law (ab)† = b†a† and (ab)† = (abb†a†ab)†

are equivalent.

Theorem 2.15. Let a, b, ab, abb†a†ab ∈ R† and (1−a†a)b be left *-cancelable.
Then (ab)† = b†a† if and only if (ab)† = (abb†a†ab)†.

Proof. Let (ab)† = b†a†, then ab = abb†a†ab. So that (ab)† = (abb†a†ab)†.
Conversely, let (ab)† = (abb†a†ab)†, then ab = abb†a†ab. Therefore all of
the equivalent statements of Theorem 2.11 are satisfied. By (viii) we have
(abb†a†ab)† = b†a†. So by our assumption (ab)† = b†a†. □

In Theorem 1.7, the reverse order law (ab)♯ = b†(a†abb†)†a† is studied. In the
following theorem, we investigate the new reverse order law (ab)♯ = (abb†a†ab)†

in rings with involution.

Theorem 2.16. Let a, b, abb†a†ab ∈ R†, ab ∈ R♯, (1− a†a)b be left *-cance-
lable. Then following statements are equivalent:

(i) (ab)♯ = (abb†a†ab)†;
(ii) (abb†a†ab)† ∈ ab{1, 5};
(iii) (abb†a†ab)† = b†b(ab)♯aa† and abaa† = ab = b†bab.
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Proof. (i)⇒(ii) It is clear.

(ii)⇒(iii) Let (abb†a†ab)† ∈ ab{1, 5}, by our assumptions and Lemma 2.4
we have

abaa† = ab(abb†a†ab)†abaa†

= abab(abb†a†ab)†aa†

= abab(abb†a†ab)†

= ab(abb†a†ab)†ab

= ab.

Moreover,

b†bab = b†bab(abb†a†ab)†ab

= b†b(abb†a†ab)†abab

= (abb†a†ab)†abab

= ab(abb†a†ab)†ab

= ab.

By (ii), the equivalent statements of Theorem 1.6 are satisfied. Therefore
(abb†a†ab)† ∈ ab{1, 2, 5}, Hence (ab)♯ = (abb†a†ab)† and by Lemma 2.4, we
have

(abb†a†ab)† = b†b(abb†a†ab)†aa† = b†b(ab)♯aa†.

(iii)⇒(i) Let (abb†a†ab)† = b†b(ab)♯aa†, then

(abb†a†ab)† = b†b(ab)♯aa†

= b†bab(ab)♯
3
abaa†

= ab(ab)♯
3
ab

= (ab)♯ab(ab)♯.

= (ab)♯,

which proves the result. □

Example 2.17. Consider 2×2 block matrices A =

[
0 a
a 0

]
and B =

[
b 0
0 b

]
,

where a, b ∈ C \ {0}. It is clear that

A† =

[
0 1/a

1/a 0

]
, B† =

[
1/b 0
0 1/b

]
, AB =

[
0 ab
ab 0

]
.

Since the statements of Corollary 2.12 are satisfied, we obtain

(AB)† = B†A† =

[
0 1/ab

1/ab 0

]
.
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In [10], the elements whose Moore-Penrose inverses are idempotent in rings
with involution are investigated:

Lemma 2.18 ([10]). Let a ∈ R. Then the following statements are equiva-
lent:

(i) a ∈ R† and a† is idempotent;
(ii) a ∈ R† and a2 = aa∗a;
(iii) a ∈ R♯ and a2 = aa∗a.

Lemma 2.19. Let a, b, a† and b† be idempotent and a, b, abb∗a∗ab ∈ R†. Then
the following conditions are satisfied:

(i) (abb∗a∗ab)† = (abb∗a∗ab)†aa∗;
(ii) (abb∗a∗ab)† = b∗b(abb∗a∗ab)†.

Proof. (i):

(abb∗a∗ab)†aa∗ = (abb∗a∗ab)†(abb∗a∗ab)(abb∗a∗ab)†aa∗

= (abb∗a∗ab)†(aa∗(abb∗a∗ab) (abb∗a∗ab)†)∗

= (abb∗a∗ab)†((abb∗a∗ab) (abb∗a∗ab)†)∗

= (abb∗a∗ab)†(abb∗a∗ab)(abb∗a∗ab)†

= (abb∗a∗ab)†.

(ii):

b∗b(abb∗a∗ab)† = b∗b(abb∗a∗ab)†(abb∗a∗ab)(abb∗a∗ab)†

= ((abb∗a∗ab)†(abb∗a∗ab)b∗b)∗(abb∗a∗ab)†

= ((abb∗a∗ab)†(abb∗a∗ab))∗(abb∗a∗ab)†

= (abb∗a∗ab)†(abb∗a∗ab)(abb∗a∗ab)†

= (abb∗a∗ab)†. □

Theorem 2.20. Let a, b, abb†a†ab ∈ R†, a, b, a† and b† be idempotent and
(ab) ∈ R♯. Then following statements are equivalent:

(i) (ab)♯ = b(abb∗a∗ab)†a;

(ii) (abb∗a∗ab)† = b∗(ab)♯a∗ and aba∗a = ab = bb∗ab.

Proof. (i)⇒(ii) We have

aba∗a = (ab)(ab)♯(ab)a∗a = (ab)2(ab)♯a∗a

= (ab)2b(abb∗a∗ab)†aa∗a = (ab)2b(abb∗a∗ab)†a = (ab)2(ab)♯

= (ab)(ab)♯(ab) = ab.
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Moreover,

bb∗ab = bb∗(ab)(ab)♯(ab) = bb∗(ab)♯(ab)2

= bb∗b(abb∗a∗ab)†a(ab)2 = b(abb∗a∗ab)†a(ab)2 = (ab)♯(ab)2

= (ab)(ab)♯(ab) = ab.

By Lemma 2.18,

b∗(ab)♯a∗ = b∗b(abb∗a∗ab)†aa∗ = (abb∗a∗ab)†.

(ii)⇒(i) We have

b(abb∗a∗ab)†a = bb∗(ab)♯a∗a

= bb∗ab((ab)♯)3(aba∗a)

= (ab)((ab)♯)3(ab)

= (ab)♯,

which proves the result. □

Now, we give an equivalent condition for b(abb†a†ab)† ∈ (abb†a†a){1, 5}.

Theorem 2.21. If a, b, abb†a†ab ∈ R†, then following statements are equiv-
alent:

(i) b(abb†a†ab)† ∈ (abb†a†a){1, 5};
(ii) b(abb†a†ab){1, 3, 4} ⊆ (abb†a†a){1, 5}.

Proof. (i)⇒(ii) Suppose that b(abb†a†ab)† ∈ (abb†a†a){1, 5}. For

(abb†a†ab){1,3,4} ∈ (abb†a†ab){1, 3, 4},
by Lemma 2.2 and (i) we obtain:

b(abb†a†ab){1,3,4}(abb†a†a) = b(abb†a†ab){1,3,4}(abb†a†a)[b(abb†a†ab)†](abb†a†a)

= b(abb†a†ab)†(abb†a†a)[b(abb†a†ab)†](abb†a†a)

= b(abb†a†ab)†(abb†a†a)(abb†a†a)[b(abb†a†ab)†]

= (abb†a†a)b(abb†a†ab)†(abb†a†a)[b(abb†a†ab)†]

= (abb†a†ab)(abb†a†ab)†

= (abb†a†ab)(abb†a†ab){1,3,4}

= (abb†a†a)b(abb†a†ab){1,3,4}.

Moreover, by Lemma 2.2 and (i) we have

abb†a†a = (abb†a†a)[b(abb†a†ab)†](abb†a†a)

= (abb†a†a)b(abb†a†ab){1,3,4}(abb†a†a).

(ii)⇒(i) is clear. □
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Corollary 2.22. If a, b, abb†a†ab ∈ R†, abb†a†a ∈ R♯ and

(abb†a†a)♯ = b(abb†a†ab)†,

then b(abb†a†ab){1, 3, 4} ⊆ (abb†a†a){1, 5}.

Proof. Suppose that (abb†a†a)♯ = b(abb†a†ab)†. Then

b(abb†a†ab)† ∈ (abb†a†a){1, 5}.
Then, by Theorem 2.21, we have b(abb†a†ab){1, 3, 4} ⊆ (abb†a†a){1, 5}. □

Lemma 2.23. Let a, b, abb†a†ab ∈ R†, and abb†a†a ∈ R♯. If

(abb†a†a){1, 5} ⊆ b(abb†a†ab){1, 3, 4},
then we have (abb†a†a)♯ = b(abb†a†ab)†.

Proof. Let (abb†a†a){1, 5} ⊆ b(abb†a†ab){1, 3, 4}. Then there is

(abb†a†ab){1,3,4} ∈ (abb†a†ab){1, 3, 4}
such that (abb†a†a)♯ = b(abb†a†ab)(1,3,4). By Lemma 2.2 and Lemma 2.4, we
have

b(abb†a†ab)† = b(abb†a†ab)†(abb†a†ab)(abb†a†ab)†

= b(abb†a†ab)(1,3,4)(abb†a†ab)(abb†a†ab)(1,3,4)

= (abb†a†a)♯(abb†a†a)(abb†a†a)♯

= (abb†a†a)♯,

which proves the result. □

Now, we prove that (abb†a†a){5} ⊆ b(abb†a†ab){1, 3, 4} is equivalent to

(abb†a†a){5} = b(abb†a†ab){1, 3, 4}.

Theorem 2.24. Let a, b, abb†a†ab ∈ R†, and abb†a†a ∈ R♯. Then following
statements are equivalent:

(i) (abb†a†a){5} ⊆ b(abb†a†ab){1, 3, 4}.
(ii) (abb†a†a){5} = b(abb†a†ab){1, 3, 4}.

Proof. (i)⇒(ii) Suppose that (abb†a†a){5} ⊆ b(abb†a†ab){1, 3, 4}, then
(abb†a†a){1, 5} ⊆ b(abb†a†ab){1, 3, 4}.

By the previous lemma, (abb†a†a)♯ = b(abb†a†ab)†. Therefore, by Corollary
2.22, we have

b(abb†a†ab){1, 3, 4} ⊆ (abb†a†a){1, 5}.
Hence b(abb†a†ab){1, 3, 4} ⊆ (abb†a†a){5}. It follows that

(abb†a†a){5} = b(abb†a†ab){1, 3, 4}.
Therefore (ii) holds.

(ii)⇒(i) is clear. □
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In [3], M. M. Karizaki et al. investigated the invertibility of Moore-Penrose
invertible elements of operators on a Hilbert C∗-module. We are going to find
the inverse of some special elements via Moore-Penrose inverses. In order to
achieve this goal, we need the following.

Definition 2.25. Let R be a ring with involution. An element a ∈ R is
said to be EP if a† = a♯ and a ∈ R† ∩R♯.

Lemma 2.26 ([5]). Let R be a ring with involution and let a ∈ R†. Then a
is an EP if and only if aa† = a†a.

Lemma 2.27. Let R be a ring with involution and a ∈ R†. If a is a normal
element, then a is an EP element.

Proof. Let a be normal. By Theorem 2.1 we have:

aa† = aa∗(aa∗)† = a∗a(a∗a)†

= a∗aa†(a∗)† = a∗(a∗)† = a∗(aa∗)†a

= a∗(a∗)†a†a = a∗(aa∗)†a = a†a. □

Theorem 2.28. Let a be an EP element. Then 1−aa†−a† and 1−a−aa†,
are invertible.

Proof. We have

(1− aa† − a†)(1− a− aa†)

= 1− a− aa† − aa† + aa†a+ aa†aa† − a† + a†a+ a†aa†

= 1− a− aa† − aa† + aa†a+ aa† − a† + a†a+ a† = 1.

Moreover,

(1− a− aa†)(1− aa† − a†)

= 1− aa† − a† − a+ aaa† + aa† − aa† + aa†aa† + aa†a†

= 1− aa† − a† − a+ a+ aa† − aa† + aa† + a† = 1.

Therefore 1− aa† − a† and 1− a− aa† are invertible. □

Corollary 2.29. Let a be an EP element. Then

1− aa† − a∗†a† and 1− aa∗ − aa†

are invertible.

Proof. Since a∗a is normal, then a∗a is EP. Now we replace a by aa∗, and
hence, by the previous theorem, we have

1− aa† − a† = 1− (aa∗)(aa∗)† − (aa∗)†

= 1− aa∗(a∗)†a† − (a∗)†a†

= 1− aa† − a∗†a†.
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We also have

1− a− aa† = 1− (aa∗)− (aa∗)(aa∗)†

= 1− aa∗ − aa∗(a∗)†a†

= 1− aa∗ − aa†.

Furthermore the result follows from Theorem 2.28. □

Finally, we give an example to illustrate our results.

Example 2.30. Consider 2× 2 block matrices

A =

[
0 a
a 0

]
and B =

[
b 0
0 b

]
,

where a, b ∈ C \ {0}.
It is clear that

A† =

[
0 1/a

1/a 0

]
, B† =

[
1/b 0
0 1/b

]
, AB =

[
0 ab
ab 0

]
.

A, B and AB are EP elements. It is clear that statements of previous
theorem are satisfied. Therefore

(1−AA† −A∗†A†)−1 = 1−AA∗ −AA†,

(1−BB† −B∗†B†)−1 = 1−BB∗ −BB†

and

(1− (AB)(AB)† − (AB)∗†(AB)†)−1 = 1− (AB)(AB)∗ − (AB)(AB)†.
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