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SOME REMARKS ON GENERALIZATIONS
OF THE REVERSE ORDER LAW IN A %-RING
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Abstract. We show that if (1 — afa)b is left *-cancelable, then the reverse
order laws (ab)’ = bTal and (ab)" = (abbTatab)! are equivalent. By investi-
gating the reverse order law (abb'a’a)? = b(abb’atab)t in rings with involution,
we will show that under certain circumstances the inclusion (abb'a’a){5} C
b(abbtaTab){1,3,4} is always an equality.
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1. INTRODUCTION AND PRELIMINARIES
Let us start by recalling some definitions.

DEFINITION 1.1 ([4]). By an involution on an unital ring R, we mean a
function a — a* from R to itself such that

(@) =a, (a+b)*=a"4+0b", (ab)*=b"a" (a,b€R).
If a € R satisfies a* = a, then a is called self-adjoint (or Hermitian) and if

a € R satisfies a*a = aa®, then a is called normal.

Throughout this paper, we will assume R is an associative ring with an
involution. We also consider two kinds of generalized inverses in R, i.e. group
inverses and Moore-Penrose inverses. Their formal definitions are given below.

DEFINITION 1.2 ([1,2]). An element a € R is called

(a) group invertible if there exists b € R such that
aba = a, bab = b and ab = ba.

This b is uniquely determined by the above identities and it is called
the group inverse of a. The group inverse of a is denoted by af. We
also denote by R? the set of all group invertible elements of R.
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(b) Moore-Penrose invertible (or MP-invertible) if there is b € R such that
following equations hold:

aba = a, bab=0>b, (ab)* =ab, (ba)* = ba.

If such an element b exists, then it is unique and it is denoted by af.
The set of all Moore-Penrose invertible elements of ring R is denoted
by R'.
Note that if @ is invertible, then af = a! = @', where ¢! is the ordinary
inverse of a. Therefore, the above definition provides two generalizations of
invertibility.

NoTATION 1.3. Consider the following equations
1) aba =a, 2)bab=>b, 3) (ab)* =ab, 4) (ba)* =ba, 5) ab= ba.

If Ac{1,2,3,4,5} and a,b satisfy all equations of set A, then we say b is an
A-inverse of a. The set of all A-inverses of a is denoted by a{A}. With this
notation, a{1,2,5} = {a*} and a{1,2,3,4} = {a'}.

DEFINITION 1.4 ([4]). Let @ € R. Then we say that an element a € R is
left *-cancelable, if a*ax = a*ay implies ax = ay and we say that it is right
*_cancelable if xaa* = yaa™ implies za = ya. An element a € R is called
*_cancelable if a is both left and right *-cancelable. The commutator of u and
v is defined by [u, v] = uv — vu.

If @ and b are invertible in R, then (ab)~! = b~'a~!, which is known as the
reverse order law. Note that this rule cannot be extended to other generalized
inverses [7H9]. Some mathematicians have tried to obtain conditions under
which the reverse order law holds for generalized inverses. In particular, we
have the following:

THEOREM 1.5 (|7, Theorem 3]). Let a,b € Rtand (1 — afa)b be left *-can-
celable. Then the following conditions are equivalent:

(i) ab is Moore-Penrose invertible and (ab)t = blaf;
(ii) [ata,bb*] =0 and [bb,a*a] = 0.

D. Mosi¢ and D. S. Djordjevié¢ proved the following equivalent statements
for the reverse order law (a'abb’)t = bbfala.

THEOREM 1.6 (|7, Theorem 1.1]). Let a,b € RT and (1—a'a)b be left *-can-

celable. Then the following statements are equivalent:

(i) abblalab = ab;

(ii) bfatabbial = bial;
(iii) a'abb’ = bbfata;
(iv) atabblis an idempotent;

v) bblata is an idempotent;

(vi) afabbl € R and bl (afabbh)Tal = blal;
(vii) a'abb’ € Rt and (atabb®)t = bbala.
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The reverse order law (ab)* = b'(a’abb")Ta’ in rings with involution were
studied in [7] and the authors obtained the following.

THEOREM 1.7 ([7, Theorem 2.1]). Let a,b,alabb’ € RY and ab € R*. Then
the following statements are equivalent:
(i) (ab)t = b (atabdh)al;
(ii) b (afabbh)Tal € ab{5};
(iii) (afabb")' = b(ab)fa and abaa’ = ab = bibab.

Inspired by the papers [41/6] 7], we show that in a ring with involution R if
a,b,ab € RY and ala = bb!, then (ab)’ = blal if and only if [ala, b*'bT] = 0
and [bb', aTa*T] = 0. We also obtain the necessary and sufficient conditions for
establishing the reverse order law (ab)" = bTa’. Moreover, we show that if (1 —
a'a)b is Moore-Penrose invertible, then [(1 — afa)b]t = b7(1 — a'a). Using left
*_ cancelability of (1—a'a)b, we prove some necessary and sufficient conditions
for the hybrid reverse order law (ab)* = (abb'alab) in rings with involution.
Finally, we investigate necessary and sufficient conditions for the equations
(abbTatab)T = bTal. Our results can be considered as an application of Theorem
Applying Theorem will obtain several equivalent conditions for new
reverse order law (ab)* = (abblalab)T.

D. Mosi¢ and D. S. Djordjevié¢, in [6] showed that under certain conditions
the inclusion (ab){1,5} C b{1,3,4}a{1, 3,4} becomes an equality:

THEOREM 1.8 ([6]). Let R be a ring with involution, let a and b € RY,and
let (1 —ata)b be left *-cancelable. If ab € RY, then the inclusion (ab){1,5} C
b{1,3,4}a{1,3,4} is always an equality.

D. Mosi¢ and D. S. Djordjevié, in [7] presented several equivalent condi-
tions for the reverse order law (ab)? = bf(afabbt)tal. Also, they [7] obtained
conditions which guarantee the equality of the following inclusions

(ab){5} C b{1,3,4}aTabb™{1,3,4}a{1,3,4}

and
abb' {5} C a'abb'{1,3,4}a{1,3,4}.

TuroreM 1.9 ([7]). Let R be a ring with involution, let a,b and atabb’ € RT.
If ab € RE, then the inclusion (ab){5} C b{1,3,4}.atabb{1,3,4}a{1,3,4} is
an equality.

THEOREM 1.10 ([7]). Let a,b,atabb’ € RT, and abbl € RE. Then following
statements are equivalent:

(i) abbT{5} C afabb'{1,3,4}a{1,3,4};
(ii) abb'{5} = a'abb’{1,3,4}a{1,3,4}.



4 Some remarks on the reverse order law 265

In this paper, for b(abbia’ab)’ € (abbfa’a){1,5}, we obtain an equivalent
condition. Also, we obtain conditions which guarantee the equality

(abbTata){5} = b(abblalab)3Y)

in rings with involution. Moreover, we will show that under certain circum-
stances the following inclusion is always an equality

(abb'ata){5} C b(abb'alab){1,3,4}.

By using the Moore-Penrose invertibility property, we will find the inverse of
some special elements of a ring with involution.

2. RESULTS

We start this section with the following theorem which will be frequently
used furthermore.

THEOREM 2.1 ([1]). For any a € R, the following are satisfied:

)
(i)
(iv) (aa*)" = (a")*al
(v) a* = a'aa* = a*aa’;
(Vl; af = (a*a)ta* = a*(aa*)T;

We also need the following results.

LemMa 2.2 ([7]). If a € RY, then

(i) a.a{1,3} = {aa'};
(ii) a{1,4}.a = {a'a}.

LemMA 2.3 ([7]). Let a,b, and atabb’ € RY. Then the following conditions
are satisfied:

(i) (afabb))T = (afabb?)ala;
(ii) (afabb®)t = bb' (atabb).

The following lemma gives two equalities that we will be used all over the
paper.

LEMMA 2.4. Let a,b,abbatab € RY. Then the following conditions are sat-
isfied:

(i) (abbfatab)t = (abblatab)iaal;
(ii) (abb'atab)t = bib(abbialab)T.



266 H. Rahmani and A. K. Mirmostafaee 5

Proof. (i) follows from the following:
(abb'a’ab)Taa’ = (abba’ab)T(abb'a’ab)(abblalab) aa’
= (abbia'ab) (aal(abbTalab) (abba’ab)?)*
= (abbTalab)T(abbiatab) (abbiatab)t
= ( )

abblatab)t.
Since
bib(abbTalab)t = bib(abbTalab)t (abbiatab)(abbiatab)t
= ((abblalab)T(abb'a’ab)bTb)* (abblalab)t
= (abbla’ab) (abb'a’ab)(abbialab)T
= (abbla'ab)T,
(ii) follows immediately. O

REMARK 2.5. Let R be a ring with involution and a and b € R. If afa = bbf,
then (1 —afa)b = 0. So (1 — a'a)b is left *-cancelable.

Therefore if a,b € R' and afa = bb, the equivalent conditions (i) and (ii)
of Theorem [L.5] hold.

The following theorem gives another condition, equivalent to conditions (i)

and (ii) of Theorem

THEOREM 2.6. Let R be a ring with involution, a, b, ab € RIT and ata = bbT.
Then (ab)t = blal if and only if [ata, b*'b1] = 0 and b, ata*'] = 0.

Proof. Let (ab)! = bal. Then by our assumption and Theorem we
have:

bbiata*’ = I)(chﬂLCLbl)TaT)a*T = atabbibbTata*’
atabblata*' = alabblala*'ala = aT(abbTaT)*a*TaTa
= ala*'vblarar’ata = afa*'bblata = ata* ol abbt
ata*"bbT.
Therefore [bb, ata*'] = 0. On the other hand
b'blata = bv'blataata = b*"blalabbl
= v (latab)bt = b'bralab* bt = (bb1)*alab* bl
= blatab™st = alabbitof = afab* bl

Hence [a'a, b*'bf] = 0.
Let [afa,b*'b!] = 0 and [bb', ala*'] = 0. We prove four conditions for Moore-
Penrose invertibility.
1) abbfatab = aatabb’b = ab, (by assumption afa = bb.)
2) blafabblal = bTbbaTaa’ = bial, (by assumption afa = bbT.)
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3) (abbfal)* = a*'bbla* = aata*'bbla* = abblata*'a* = abblal, (by as-
sumption [bbf, aTa*T] = 0 and Theorem )
4) (btatab)* = b*atab*’ = b*alab*'b'b = b*b* blatab = blalab, (by as-
sumption [a'a, b*be] = 0 and Theorem )
By 1), 2), 3) and 4) we have (ab)" = bfal. O
COROLLARY 2.7. Let R be a ring with involution, let a,b,ab € R' and
ata = bb'. Then the following conditions are equivalent:

(i) [ata,b*'bt] = 0 and [pb', ata*'] = 0;
(i) [ata,bb*] =0 and [bb,a*a] = 0.

The next result shows that under certain conditions (1 — afa)b is Moore-
Penrose invertible.

THEOREM 2.8. Let R be a ring with involution, let a and b € R, If atabbl =
boiata, bt = b* and o' = a*, then (1 — ata)b is Moore-Penrose invertible with
Moore-Penrose inverse bt (1 — ata).

Proof. We prove the four conditions for Moore-Penrose invertibility.
Condition 1
(1 —ala)bp’ (1 —a’a)](1 —afa)b =

Condition 2
b'(1 —ala)[(1 —aa)b]b’(1 — a'a) = b7 (1 — ala)bb’ (1 — a'a)
=b'(1 - ala)(0b' — bblala)
= (" —bala)(bb’ — bbTala)
= bl —blala —blalabb’ + blalabba’a
=bl —blaTa —b'bblata + bibbTaTaa’a
=b' —blala —blaTa + blaTa = b1 (1 — ala).
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Condition 3
(1 —ala)bb’ (1 —ala)]* = b1 (1 —ala)]*(1 — a'a)*
= (1—d'a)*(bb")*(1 —ala)*
= (1 —a'a)(bb")(1 —a'a).

Condition 4

"(1—a'a)(1 - a'a)b. O

In order to state the next main result of this paper, we need the following
result.

THEOREM 2.9 (|1]). Let R be a ring with involution and let a € R. Then
the following conditions are equivalent:

(i) a is Moore-Penrose invertible;
(i) a is left *-cancelable and a*a is group invertible;
(iii) a is right *-cancelable and aa™ is group invertible;
(iv) a is *-cancelable and both a*a and aa* are group invertible.

By Theorems [2.8] and we have the following.

COROLLARY 2.10. Let R be a ring with involution, let a and b € RY. If
atabbt = bblala, bt = b* and o = a*, then (1 — a'a)b is left *-cancelable.

The following theorem provides other equivalent conditions to the conditions

presented in Theorem

THEOREM 2.11. Let R be a ring with involution, let ab,a,b € R, bl = b*,
al = a* and atabb’ = bbTata. Then the following statements are equivalent:
(i) abbfatab = ab;
(ii) bfatabblal = blal;
(iii) atabdb! is an idempotent;
(iv) bblala is an idempotent;
(v) a'abb’ € RY and b'(a'abb’)Ta’ = bTal;
(vi) afabbl € RT and (a'abb?)T = bblala;
(vii) b(abblatab)fa = bbTata;
(viii) (abbialab)’ = blal.
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Proof. By Theorem |1.6{and Corollary (i)-(vi) are equivalent.
(vii)=(viii) Let b(abbla’ab)Ta = bbTata. Multiplying by b from the left side
and multiplying by a! from the right side we get b'b(abbfatab)faal = btal. By
applying Lemma we get (abbfatab)t = bial.
(viii)=(vii) Let (abbTatab)l = bal . Multiplying by b from the left side and
multiplying by a from the right side, we get b(abbia’ab)fa = bbfala.
(viii)=-(i) Let (viii) hold. By our assumption we have afabb! = bbfa’a and
therefore by (viii) we have (ab)’ = bfat, hence abblatab = ab.
(i)=(viii) Let (i) hold. Then the equivalent statements (i)-(vi) are satisfied.
We prove four conditions for Moore-Penrose invertibility:
1) (abb'atab)bial(abb’atab) = (abblalab), (by (iv)).
2) blal(abblalab)blal = blalabblal, (by (iii)).
3) ((abbfalab)bla®)” = at"bblalabbla* = (abbfalab)bial.
4) (btat(abblatab))” = b*atabblalad™ = blaf(abblalab).
So (abbTatab)l = bTal. Hence (viii) holds. O
The following corollary shows that the equivalent conditions of the previous
theorem are equivalent with the reverse order law (ab)" = bfal.

COROLLARY 2.12. Let R be a ring with involution, let ab, a, b, abbiatab € RT
and let bT = b*,a' = a* and a'abb’ = bbTata. Then (ab)l = blal.

Proof. By assumption, the equivalent statements of Theorem [2.11] are satis-
fied. By (i) we have (abbfatab)t = (ab)!. On the other hand by (viii) we have
(abbfatab)t = blal. So (ab)t = blal. O

The following theorem shows that conditions of the previous theorem can
be replaced by afa = bbt.

THEOREM 2.13. Let R be a ring with involution, let a,b € RY, and ata = bb'.
Then the conditions (i)-(viil) of the previous theorem hold.

Proof. (i)-(vi) are equivalent by Theorem and Remark

(vii)=(viii): Let b(abbTalab)Ta = bTal. Multiplying by b from the left side
and multiplying by a! from the right side, we get b'b(abb'alab)Taal = blaf.
By applying Lemma we get (abbTatab)t = blial.

(viii)=>(vii): Let (abba’ab)! = bfal. Multiplying by b from the left side and
multiplying by a from the right side, we get b(abbia’ab)Ta = bblala .

(viii)=-(ii): Let (viii) hold, then (abb'a’ab)! = bfa’. On the other hand, by
our assumption, we have a'a = bbl. Therefore (ab)! = bfal. So blalabbial =
bial.

(ii)=(viii): Let (ii) hold, then (i)-(vi) are equivalent by Theorem and
Remark We show that (abb'alab)’ = bfal. To achieve this goal, we
investigate the four conditions for Moore-Penrose invertibility.
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1) (abbtatab)bial(abbtatab) = (abbfatab), (by (i)).
2) blal(abblalab)bial = blatabbiat, (by (ii)).

3)
((abbtatab)bial)* = ((abbibbTb)bTal)* = (abbial)*
= (dfa)* =dla =alaa’a
= abblal = (abbiatab)blal,

by our assumptions and (i).

4)
(bial(abbTatab))* = (b'al(aataa’ab))* = (blalab)*
= (bTb)* =b'b = bTbblb
= biatab = (blatabbtal)ab,
by our assumptions and (ii). O

COROLLARY 2.14. Let R be a ring with involution, let ab, a, b, abb'a’ab € RY.
If ata = bbT, then (ab)’ = blal.

The following theorem and Corollary show that if (1 — afa)b is left
*_cancelable, then two reverse order law (ab)" = bfal and (ab)! = (abbialab)T
are equivalent.

THEOREM 2.15. Let a,b, ab, abb'atab € Rt and (1—ata)b be left *-cancelable.
Then (ab)t = bfa' if and only if (ab)T = (abbalab).

Proof. Let (ab)t = bfal, then ab = abblalab. So that (ab)t = (abblalab)f.
Conversely, let (ab)l = (abbla’ab)!, then ab = abbfatab. Therefore all of
the equivalent statements of Theorem are satisfied. By (viil) we have
(abbTatab)t = bfal. So by our assumption (ab)t = bfat. O

In Theorem|1.7} the reverse order law (ab)! = bf (atabb?)Tat is studied. In the
following theorem, we investigate the new reverse order law (ab)* = (abb'alab)f
in rings with involution.

THEOREM 2.16. Let a,b,abblalab € RT,ab € R¥, (1 — afa)b be left *-cance-
lable. Then following statements are equivalent:

(i) (ab)* = (abblalab)f;

(ii) (abblalab)t € ab{1,5};
(iii) (abbia’ab)’ = bTb(ab)*aa’ and abaa’ = ab = bTbab.
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Proof. (1)=-(ii) It is clear.

(ii)=(iii) Let (abbla’ab)? € ab{1,5}, by our assumptions and Lemma
we have

abaa’ = ab(abb'a'ab) abaal
= abab(abb'a'ab)Taa’
= abab(abb'a’ab)T
= ab(abb’aTab)ab
= ab.

Moreover,

bTbab = b bab(abblalab) ab
= b'b(abb'a’ab) abab
= (abb'a'ab)Tabab
= ab(abb'a’ab) ab
= ab.

By (ii), the equivalent statements of Theorem are satisfied. Therefore
(abbfatab)t € ab{1,2,5}, Hence (ab)! = (abblalab)’ and by Lemma we
have

(abbiatab)t = bib(abbiatab)Taal = bib(ab)faa.

(iii)=(i) Let (abbfa’ab)! = bib(ab)*aal, then

(abb'a’ab)t = bTb(ab)taal
= bTbab(ab)ﬁgabaaT
= ab(ab)ﬁgab
= (ab)*ab(ab)®.
= (ab)f,

which proves the result. O

EXAMPLE 2.17. Consider 2 x 2 block matrices A = [2 a] and B = {b O] ,

0 0 b
where a,b € C\ {0}. It is clear that
0 1/a 1/b 0 0 ab
T = T = =
a=ln ) w0 am=ln 0]
Since the statements of Corollary are satisfied, we obtain

(AB)! = BT AT = [1/0(15 1/Oab} |
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In |10], the elements whose Moore-Penrose inverses are idempotent in rings
with involution are investigated:

LEMMA 2.18 ([|10]). Let a € R. Then the following statements are equiva-
lent:

(i) a € R" and a' is idempotent;
(ii) a € R and a® = aa*a;
(iii) @ € R* and a® = aa*a.

LEMMA 2.19. Let a,b,a’ and b be idempotent and a,b, abb*a*ab € RY. Then
the following conditions are satisfied:

(i) (abb*a*ab)t = (abb*a*ab)iaa*;
(ii) (abb*a*ab)l = b*b(abb*a*ab)T.

Proof. (i):

( VI (abb*a*ab)(abb*a*ab) aa*
= (abb*a*ab)' (aa*(abb*a*ab) (abb*a*ab)’)*
= (abb*a*ab)' ((abb*a*ab) (abb*a*ab)’)*

( Y (abb*a*ab)(abb*a*ab)’

( )

b*b(abb*a*ab)t = b*b(abb*a*ab)'(abb*a*ab)(abb*a*ab)’
= ((abb*a*ab)t(abb*a*ab)b*b)* (abb*a*ab)’
= ((abb*a*ab)t(abb*a*ab))* (abb*a*ab)
= (abb*a*ab)' (abb*a*ab)(abb*a*ab)T
= (abb*a*ab)T. O

THEOREM 2.20. Let a,b,abbialab € RY, a,b,a’ and b' be idempotent and
(ab) € RE. Then following statements are equivalent:

(i) (ab)* = b(abb*a*ab)ta;
(ii) (abb*a*ab)l = b*(ab)ia* and aba*a = ab = bb*ab.
Proof. (i)=(ii) We have
aba*a = (ab)(ab)t(ab)a*a = (ab)?(ab)fa*a

(ab)?b(abb*a*ab)faa*a = (ab)?b(abb*a*ab)fa = (ab)?(ab)!
= (ab)(ab)*(ab) = ab.



12 Some remarks on the reverse order law 273

Moreover,
bb*ab = bb*(ab)(ab)!(ab) = bb* (ab)?(ab)?
= bb*b(abb*a*ab)ta(ab)® = blabb*a*ab)fa(ab)? = (ab)*(ab)?
= (ab)(ab)!(ab) = ab.
By Lemma [2.1§

b* (ab)a* = b*b(abb*a*ab)taa® = (abb*a*ab)’.

(ii)=(i) We have
b(abb*a*ab)a = bb*(ab)fa*a
= bb*ab((ab)?)?(aba*a)
= (ab)((ab)*)*(ab)
= (ab)’,
which proves the result. ]
Now, we give an equivalent condition for b(abblatab)l € (abbla’a){1,5}.

THEOREM 2.21. If a,b,abbiafab € R, then following statements are equiv-
alent:

(i) b(abbTalab)’ € (abblala){1,5};
(ii) b(abblatab){1,3,4} C (abblala){1,5}.

Proof. (i)=(ii) Suppose that b(abbia’ab)! € (abbtata){1,5}. For
(abbTatab)34} e (abblatab){1, 3,4},
by Lemma and (i) we obtain:
b(abbiatab) 34 (abbfata) = blabblatab) 34 (abbTala)[b(abblalab) ] (abblala)
= b(abb'alab) (abbla’a)[b(abb'a’ab)!](abb'ala)
= b(abbTa’ab) (abbla'a)(abbiata)[b(abbTa’ab)T]
= (abbTala)b(abb’alab)T (abbiata)[b(abb’a’ab)T]
= (abbla'ab)(abbTalab)’
= (abblatab) (abblalab) {34
= (abbala)b(abblalab){t34.
Moreover, by Lemma [2.2{ and (i) we have
abblata = (abbTa’a)[b(abb'atab)'](abblala)
= (abblata)b(abbTalab) 34 (abbiata).

— —

(ii)=(i) is clear. O
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COROLLARY 2.22. If a,b,abbtalab € RY, abbtala € R and
(abb'a’a)® = b(abb'alab)T,
then b(abblatab){1,3,4} C (abbla’a){1,5}.
Proof. Suppose that (abbfa’a)? = b(abbfatab)!. Then
b(abb'atab)' € (abb'a’a){1,5}.
Then, by Theorem we have b(abbTatab){1,3,4} C (abblata){1,5}. O
LEMMA 2.23. Let a,b, abbfatab € RT, and abbia’a € RE. If
(abb'ata){1,5} C b(abblalab){1,3,4},
then we have (abbfata)® = b(abblalab)t.
Proof. Let (abb'aa){1,5} C b(abbia’ab){1,3,4}. Then there is
(abbfalab)134} e (abbTatab){1,3, 4}

such that (abbfa’a)! = blabblatab)34. By Lemma and Lemma we
have

blabbTalab)" = blabbTalab)' (abb'aTab)(abb'a’ab)t
= b(abbtatab) 3 (abbtalab) (abblalab) 39
= (abbla’a)*(abbia’a)(abblala)?
= (abb'ala)f,
which proves the result. O

Now, we prove that (abbfata){5} C b(abblalab){1,3,4} is equivalent to
(abbtata){5} = b(abblatab){1,3,4}.

THEOREM 2.24. Let a,b,abbia’ab € R, and abb’a’a € RE. Then following
statements are equivalent:

(i) (abbfata){5} C blabbialab){1,3,4}.
(ii) (abblata){5} = b(abbia’ab){1,3,4}.
Proof. (i)=(ii) Suppose that (abbfa’a){5} C b(abb'alab){1,3,4}, then
(abbla’a){1,5} C b(abblaab){1,3,4}.
By the previous lemma, (abbfafa)? = b(abb'atab)f. Therefore, by Corollary
2.22] we have
b(abb'a'ab){1,3,4} C (abblala){1,5}.
Hence b(abbia’ab){1,3,4} C (abbla’a){5}. It follows that
(abbTa’a){5} = b(abbTa’ab){1,3,4}.
Therefore (ii) holds.
(ii)=(i) is clear. O
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In 3], M. M. Karizaki et al. investigated the invertibility of Moore-Penrose
invertible elements of operators on a Hilbert C*-module. We are going to find
the inverse of some special elements via Moore-Penrose inverses. In order to
achieve this goal, we need the following.

DEFINITION 2.25. Let R be a ring with involution. An element a € R is
said to be EP if a = a* and a € RT N R!.

LEMMA 2.26 ([5]). Let R be a ring with involution and let a € RT. Then a
is an EP if and only if aa' = a'a.

LEMMA 2.27. Let R be a ring with involution and a € RY. If a is a normal
element, then a is an EP element.

Proof. Let a be normal. By Theorem [2.1] we have:

aal = aa*(aa*)t =a*a(a*a)l
= a*aaf(a®) = a*(a*)f = a*(aa*)a
= a*(a)ldfa = a*(aa*)fa =dla. O

THEOREM 2.28. Let a be an EP element. Then 1—aa' —a’ and 1—a—aaf,
are invertible.

Proof. We have
(1—aa’ —a")(1 —a— aal)
=1-a—ad" —aad" +aa’a+ aa'aa’ — a' + a'a + a'aal
=1—a—aa' —aa’ +aa’a+aa’ —a' +afa+a" =1.

Moreover,
(1—a—aa")(1—aa’ —a)
=1-aa' —a' —a+aad" + aa’ — aa’ + aa'aa’ + aa’al
=l-aa —a'—a+a+aa' —ad +aa’ +a" =1.

Therefore 1 — aa’ — af and 1 — a — aa’ are invertible. 0

COROLLARY 2.29. Let a be an EP element. Then
1—aat —a*fal  and 1-aa* —aal

are invertible.

Proof. Since a*a is normal, then a*a is EP. Now we replace a by aa®, and
hence, by the previous theorem, we have

1—aa' —a" =1— (aa*)(aa*)" — (aa®)T
=1—aa*(a*)al — (a*)Tal

—1—aa" —afal.
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We also have
1—a—aa =1—(aa*) — (aa*)(aa*)!
=1—aa* —aa*(a*)al
=1—aa* —aa.
Furthermore the result follows from Theorem 0
Finally, we give an example to illustrate our results.

ExAMPLE 2.30. Consider 2 x 2 block matrices

0 a b 0
A—[a 0] and B—[O b]’

where a,b € C\ {0}.
It is clear that

R A I (A AT O

A, B and AB are EP elements. It is clear that statements of previous
theorem are satisfied. Therefore

(1—AAT — ATAN = =1 - A4* — AAT,
(1-BB'— B*'B"~' =1 - BB* — BBf
and

(1 — (AB)(AB)! — (AB)*(AB)") ™' =1 — (AB)(AB)* — (AB)(AB)'.
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