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BLOW-UP OF SOLUTIONS FOR A VISCOELASTIC KIRCHHOFF
EQUATION WITH A SOURCE, DELAY AND
BALAKRISHNAN-TAYLOR DAMPING TERMS
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Abstract. A nonlinear viscoelastic Kirchhoff-type equation with a source, Ba-
lakrishnan-Taylor damping, dispersion and delay terms is studied. We prove the
blow-up of solutions under suitable hypotheses.
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1. INTRODUCTION

Let H = Ω× (0, τ)× (0,∞), in the present work, we consider the following
Kirchhoff equation

(1)



|ut|γutt −M(t)∆u(t) +

∫ t

0
h(t− ϱ)∆u(ϱ)dϱ−∆utt(t)

+β1|ut(t)|m−2ut(t) + β2|ut(t− τ)|m−2ut(t− τ) = ku|u|p−2.

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω

ut(x, t− τ) = f0(x, t− τ), in Ω× (0, τ)

u(x, t) = 0, in ∂Ω× (0,∞)

where

M(t) :=

(
ζ0 + ζ1∥∇u∥22 + σ(∇u(t),∇ut(t))L2(Ω)

)
,

and Ω ∈ Rn is a bounded domain with sufficiently smooth boundary ∂Ω.
p ≥ 2, ζ0, ζ1, σ, β1, k are positive constants and β2 is a real number. γ ≥ 0 for
n = 1, 2, and 0 ≤ γ ≤ 4

n−2 for n ≥ 3. m ≥ 2 for n = 1, 2, and 2 ≤ m ≤ n+2
n−2

for n ≥ 3. h is a positive function.
Physically, the relationship between the stress and strain history in the beam

is inspired by Boltzmann theory called viscoelastic damping term, where the
kernel of the term of memory is the function h. See [4, 7, 12–16,20].
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From a mathematical point of view, the effect on the movement of vertically
moving viscoelastic strings consisting of two different materials (such as elec-
tric wires) depends especially on the acceleration. This effect is represented
by |ut|γutt, where |ut|γ is the material density, varying the velocity.

In [2], Balakrishnan and Taylor proposed a new model of damping called
the Balakrishnan-Taylor damping, as it relates to the span problem and the
plate equation. For more depth, here are some papers that are focused on the
study of this damping [2, 3, 6, 7, 15,16,19,21].

The effect of the delay often appears in many applications and practical
problems and turns a lot of systems into different problems worth studying.
Recently, the stability and the asymptotic behavior of evolution systems with
time delay has been studied by many authors. See [5, 7, 8, 10,12,13,16,22].

The great importance of the source term in physics is that they appear
in several issues and theories. It is also used in many applications such, e.g.
optical applications. Many researchers also touched on this type of problem
in several different issues, where the global existence of solutions, stability
and explosion of solutions were studied. For more information, the reader is
referred to [1, 5, 9, 11,17,23,24].

We believe that based on all of the above, the combination of these terms
of damping (memory term, Balakrishnan-Taylor damping, source, dispersion
and the delay terms) in one particular problem with the addition of the delay
term (β2||ut(t− τ)|m−2ut(t− τ)), constitutes a new problem worthy of study
and research, a new problem different from the above, on which we will try to
shed light on.

Our paper is divided into several sections. In the next section we lay down
the hypotheses, concepts and lemmas we need. In Section 3, we state and
prove the blow up of solutions.

2. PRELIMINARIES

For studying our problem, in this section we will need some materials.
Firstly, we introduce the following hypothesis for β2 and h:

(A1) h : R+ → R+ are non-increasing C1 functions satisfying

h(t) > 0, ζ0 −
∫ ∞

0
h(ϱ)dϱ = l > 0.

(A2)

|β2| < β1.

Let us introduce

(h ◦ ψ)(t) :=
∫
Ω

∫ t

0
h(t− ϱ)|ψ(t)− ψ(ϱ)|2dϱdx.
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As in [22], we take the following new variables

y(x, ρ, t) = ut(x, t− τρ), (x, ρ, t) ∈ Ω× (0, 1)× R+,

which satisfy

(2)

{
τyt(x, ρ, t) + yρ(x, ρ, t) = 0,

y(x, 0, t) = ut(x, t).

So, problem (1) can be written as

(3)



|ut|γutt −M(t)∆u(t) +

∫ t

0
h(t− ϱ)∆u(ϱ)dϱ−∆utt(t)

+β1|ut(t)|m−2ut(t) + β2|y(x, 1, t)|m−2y(x, 1, t) = ku|u|p−2.

τyt(x, ρ, t) + yρ(x, ρ, t) = 0.

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω

y(x, ρ, 0) = f0(x,−τρ), in Ω× (0, 1)

u(x, t) = 0, in ∂Ω× (0,∞),

where

(x, ρ, t) ∈ Ω× (0, 1)× (0,∞).

Now, we give the energy functional.

Lemma 2.1. The energy functional E, defined by

E(t) =
1

γ + 2
∥ut∥γ+2

γ+2 +
1

2

(
ζ0 −

∫ t

0
h(ϱ)dϱ

)
∥∇u(t)∥22

+
1

2
∥∇ut(t)∥22 +

ζ1
4
∥∇u(t)∥42 +

1

2
(h ◦ ∇u)(t)− k

p
∥u(t)∥pp

+
ξ

m

∫ 1

0
∥y(x, ρ, t)∥mmdρ,

(4)

satisfies

E′ (t) ≤− C0

(
∥ut(t)∥mm + ∥y(x, 1, t)∥mm

)
+

1

2
(h′ ◦ ∇u)(t)

− 1

2
h(t)∥∇u(t)∥22 −

σ

4

(
d

dt

{
∥∇u(t)∥22

})2

≤ 0,

(5)

where ξ > 0 satisfies

τ(m− 1)|β2| ≤ ξ ≤ τ(mβ1 − |β2|).
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Proof. Taking the inner product of (3)1 with ut and then integrating over
Ω, we find

(|ut|γutt(t), ut(t))L2(Ω) − (M(t)∆u(t), ut(t))L2(Ω) − (∆utt(t), ut(t))L2(Ω)

+ (

∫ t

0
h(t− ϱ)∆u(ϱ)dϱ, ut(t))L2(Ω) + β1(|ut|m−2ut, ut)L2(Ω)

+ β2(|y(x, 1, t)|m−2y(x, 1, t), ut(t))L2(Ω) − (ku|u|p−2, ut(t))L2(Ω) = 0.

(6)

A direct calculation, gives

(|ut|γutt(t), ut(t))L2(Ω) =
1

γ + 2

d

dt

(
∥ut(t)∥γ+2

γ+2

)
,(7)

and

−(∆utt(t), ut(t))L2(Ω) =
1

2

d

dt

(
∥∇ut(t)∥22

)
.

Integrating by parts, we find

− (M(t)∆u(t), ut(t))L2(Ω)

= −(

(
ζ0 + ζ1∥∇u∥22 + σ(∇u(t),∇ut(t))L2(Ω)

)
∆u(t), ut(t))L2(Ω)

=

(
ζ0 + ζ1∥∇u∥22 + σ(∇u(t),∇ut(t))L2(Ω)

)∫
Ω
∇u(t).∇ut(t)dx

=

(
ζ0 + ζ1∥∇u∥22 + σ(∇u(t),∇ut(t))L2(Ω)

)
d

dt

{∫
Ω
|∇u(t)|2dx

}
=

d

dt

{
1

2

(
ζ0 +

ζ1
2
∥∇u∥22

)
∥∇u(t)∥22

}
+
σ

4

d

dt

{
∥∇u(t)∥22

}2

,

(8)

and we have (∫ t

0
h(t− ϱ)∆u(ϱ)dϱ, ut(t)

)
L2(Ω)

=

∫ t

0
h(t− ϱ)(∆u(ϱ), ut(t))L2(Ω)dϱ

= −
∫ t

0
h(t− ϱ)

[ ∫
Ω
∇u(x, ϱ)∇u(x, t)dx

]
dϱ,

and

−∇u(x, ϱ).∇u(x, t) = 1

2

d

dt

{
|∇u(x, ϱ)−∇u(x, t)(t)|2

}
− 1

2

d

dt

{
|∇u(x, t)|2

}
,
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then

−
∫ t

0
h(t− ϱ)(∇u(ϱ),∇ut(t))L2(Ω)dϱ

= −
∫ t

0
h(t− ϱ)

∫
Ω

[
1

2

d

dt

{
|∇u(x, ϱ)−∇u(x, t)|2

}]
dxds.

−
∫ t

0
h(t− ϱ)

∫
Ω

[
1

2

d

dt

{
|∇u(x, t)|2

}]
dxdϱ

=
1

2

∫ t

0
h(t− ϱ)

[
d

dt

{∫
Ω
|∇u(x, t)−∇u(x, ϱ)|2dx

}]
dϱ

− 1

2

∫ t

0
h(t− ϱ)

[
d

dt

{
∥∇u(x, t)∥22

}]
dxdϱ.

(9)

We use (A1) and we obtain

1

2

∫ t

0
h(t− ϱ)

[
d

dt

{∫
Ω
|∇u(x, t)−∇u(x, ϱ)|2dx

}]
dϱ

=
1

2

d

dt

{∫ t

0
h(t− ϱ)

[ ∫
Ω
|∇u(x, t)−∇u(x, ϱ)|2dx

]}
dϱ

− 1

2

∫ t

0
h′(t− ϱ)

[ ∫
Ω
|∇u(x, t)−∇u(x, ϱ)|2dx

]
dϱ

=
1

2

d

dt
(h ◦ ∇u)(t)− 1

2
(h′ ◦ ∇u)(t),

(10)

and

− 1

2

∫ t

0
h(t− ϱ)

[
d

dt

{
∥∇u(t)∥22

}]
dxdϱ

= −1

2

(∫ t

0
h(t− ϱ)dϱ

)(
d

dt

{
∥∇u(t)∥22

})
dx

= −1

2

(∫ t

0
h(ϱ)dϱ

)(
d

dt

{
∥∇u(t)∥22

})
dx

= −1

2

d

dt

{(∫ t

0
h(ϱ)dϱ

)
∥∇u(t)∥22

}
+

1

2
h(t)∥∇u(t)∥22.

(11)

By substituting (10) and (11) into (9), we get(∫ t

0
h(t− ϱ)∆u(ϱ)dϱ, ut(t)

)
L2(Ω)

=
d

dt

{
1

2
(h ◦ ∇u)(t)− 1

2

(∫ t

0
h(ϱ)dϱ

)
∥∇u(t)∥22

}
− 1

2
(h′ ◦ ∇u)(t) + 1

2
h(t)∥∇u(t)∥22,

(12)
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and we have

−(ku|u|p−2, ut(t))L2(Ω) = − d

dt

{
k

p
∥u(t)∥pp

}
.(13)

Now, multiplying the equation (3)2 by −yξ, integrating over Ω × (0, 1), and
by using (2)2, we get

d

dt

ξ

m

∫
Ω

∫ 1

0
|y(x, ρ, t)|mdρdx

= −(
ξ

τ
)

∫
Ω

∫ 1

0
|y|m−1yρdρdx

= − ξ

mτ

∫
Ω

∫ 1

0

d

dρ
|y(x, ρ, s, t)|mdρdx

=
ξ

mτ

∫
Ω

(
|y(x, 0, t)|m − |y(x, 1, t)|m

)
dx

=
ξ

mτ

(∫
Ω
|ut(t)|mdx−

∫
Ω
|y (x, 1, t) |mdx

)
=

ξ

mτ

(
∥ut(t)∥mm − ∥y (x, 1, t) ∥mm

)
,

(14)

By Young’s inequality, we have

β2

(
|y(x, 1, t)|m−2y(x, 1, t), ut(t)

)
L2(Ω)

≤ |β2|
m

∥ut(t)∥mm +
(m− 1)|β2|

m
∥y (x, 1, t) ∥mm.

(15)

By replacing (7)-(8) and (12)-(15) into (6), we find (4) and (5). where C0 =

min
{
β1 − ξ

mτ − |β2|
m , ξ

mτ − (m−1)|β2|
m

}
. This completes of the proof. □

Theorem 2.2. Suppose that (A1)-(A2) are satisfied. Let{
2 < p < 2n−2

n−2 , n ≥ 3,

p ≥ 2, n = 1, 2.

Then, for any u0, u1 ∈ H1
0 (Ω) ∩ L2(Ω), and f0 ∈ L2(Ω, (0, 1)), there exists a

weak solution u of problem (3) such that

u ∈ C(]0, T [, H1
0 (Ω)) ∩ C1(]0, T [, L2(Ω)),

ut ∈ C(]0, T [, H1
0 (Ω)) ∩ L2(]0, T [, L2(Ω, (0, 1))).

Lemma 2.3 ([18]). There exists a positive constant c(Ω) > 0, such that(∫
Ω
|u|pdx

) s
p

≤ c

(∫
Ω
|u|pdx+ ∥∇u∥22

)
,

for any 2 ≤ s ≤ p.



7 Blow-up of solutions 255

Corollary 2.4 ([18]). There exists a positive constant c(Ω) > 0, such that

∥u∥22 ≤ c

[(∫
Ω
|u|pdx

) 2
p

+ ∥∇u∥
4
p

2

]
.

3. BLOW UP RESULT

In this section, we prove the blow up result of the solution of problem (3).
First, we define the functional

H(t) = −E(t) = − 1

γ + 2
∥ut∥γ+2

γ+2 −
1

2

(
ζ0 −

∫ t

0
h(ϱ)dϱ

)
∥∇u(t)∥22

−1

2
∥∇ut(t)∥22 −

ζ1
4
∥∇u(t)∥42 −

1

2
(h ◦ ∇u)(t)(16)

+
k

p
∥u(t)∥pp −

ξ

m

∫ 1

0
∥y(x, ρ, t)∥mmdρ.

Theorem 3.1. Assume (A1)-(A2) hold, and suppose that E(0) < 0, Then,
the solution of problem (3) blows up in finite time.

Proof. From (5), we have

E(t) ≤ E(0) ≤ 0.

Therefore

H′(t) = −E′(t) ≥ C0

(
∥ut(t)∥mm + ∥y(x, 1, t)∥mm

)
,

hence

H′(t) ≥ C0∥ut(t)∥mm ≥ 0

H′(t) ≥ C0∥y(x, 1, t)∥mm ≥ 0.
(17)

By (16), we have

0 ≤ H(0) ≤ H(t) ≤ k

p
∥u|pp.(18)

We set

K(t) = H1−α +
ε

γ + 1

∫
Ω
u|ut|γutdx+ ε

∫
Ω
∇u∇utdx+ ε

σ

4
∥∇u∥42,(19)

where ε > 0 will be assigned later and

2(p− 1)

p2
< α <

p− 2

2p
< 1.(20)
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By multiplying (3)1 by u and with a derivative of (19), we get

K′(t) = (1− α)H−αH′(t) +
ε

γ + 1
∥ut∥γ+2

γ+2 + ε∥∇ut∥22 + εk

∫
Ω
∥u∥pp

− εζ0∥∇u∥22 − εζ1∥∇u∥42 + ε

∫
Ω
∇u

∫ t

0
h(t− ϱ)∇u(ϱ)dϱdx︸ ︷︷ ︸

J1

− εβ1

∫
Ω
u.ut.|ut|m−2dx︸ ︷︷ ︸

J2

− εβ2

∫
Ω
u.y(x, 1, t).|y(x, 1, t)|m−2dx︸ ︷︷ ︸

J3

.

(21)

We have

J1 = ε

∫ t

0
h(t− ϱ)dϱ

∫
Ω
∇u.(∇u(ϱ)−∇u(t))dxdϱ+ ε

∫ t

0
h(ϱ)dϱ∥∇u∥22

≥ ε

2

(∫ t

0
h(ϱ)dϱ

)
∥∇u∥22 −

ε

2
(h ◦ ∇u),

and, for δ1, δ2 > 0

J2 ≥ −εδ1∥u∥22 − ε
c1
4δ1

∥u∥mm,

J3 ≥ −εδ2∥u∥22 − ε
c2
4δ2

∥y(x, 1, t)∥mm.

From (21), we find

K′(t) ≥ (1− α)H−αH′(t) +
ε

γ + 1
∥ut∥γ+2

γ+2 + ε∥∇ut∥22 + εk∥u∥pp

− εζ1∥∇u∥42 − ε

[(
ζ0 −

1

2

∫ t

0
h(ϱ)dϱ

)
∥∇u∥22 −

ε

2
(h ◦ ∇u)

− ε(δ1 + δ2)∥u∥22 − ε
c1
4δ1

∥u∥mm − ε
c2
4δ2

∥y(x, 1, t)∥mm.

(22)

At this point, by setting δ1, δ1 so that, for large κ (which will be specified
later)

c1
4C0δ1

=
κH−α(t)

2
,

c2
4C0δ2

=
κH−α(t)

2
,

by (17) and substituting in (22), we get

K′(t) ≥ [(1− α)− εκ]H−αH′(t) +
ε

γ + 1
∥ut∥γ+2

γ+2 + ε∥∇ut∥22

− ε

2
(h ◦ ∇u)− εζ1∥∇u∥42 − ε

(
ζ0 −

1

2

∫ t

0
h(ϱ)dϱ

)
∥∇u∥22

− ε

(
c3Hα(t)

2C0κ

)
∥u∥22 + εk∥u∥pp,

(23)
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where c3 = c1 + c2. Now, for 0 < a < 1, from (16)

εk∥u∥pp = εak∥u∥pp +
εp(1− a)

γ + 2
∥ut∥γ+2

γ+2 + εp(1− a)H(t)

+ε
p(1− a)

2

(
ζ0 −

∫ t

0
h(ϱ)dϱ

)
∥∇u∥22 + ε

p(1− a)

2
∥∇ut∥22

+ε
ζ1p(1− a)

2
∥∇u∥42 − ε

p(1− a)

2
(h ◦ ∇u)

+
εp(1− a)ξ

m

∫ 1

0
∥y(x, ρ, t)∥mmdρ.

Substituting in (23), we get

K′(t) ≥
{
(1− α)− εκ

}
H−αH′(t) + εak∥u∥pp

+ ε

{
p(1− a)

γ + 2
+

1

γ + 1

}
∥ut∥γ+2

γ+2 + ε

{
1 +

p(1− a)

2

}
∥∇ut∥22

+ ε

{
p(1− a)

2

(
ζ0 −

∫ t

0
h(ϱ)dϱ

)
−
(
ζ0 −

1

2

∫ t

0
h(ϱ)dϱ

)}
∥∇u∥22

+ εζ1

{
p(1− a)

2
− 1

}
∥∇u∥42 + ε

{
p(1− a)

2
− 1

2

}
(h ◦ ∇u)

− ε

(
c3Hα(t)

2C0κ

)
∥u∥22 + εp(1− a)H(t)

+
εp(1− a)ξ

m

∫ 1

0
∥y(x, ρ, t)∥mmdρ.

(24)

According to (18), Corollary 2.4 and Young’s inequality, we get

Hα(t)∥u∥22 ≤
(
k

p

∫
Ω
|u|pdx

)α

∥u∥22

≤ c

[(∫
Ω
|u|pdx

)α+ 2
p

+

(∫
Ω
|u|pdx

)α

∥∇u∥
4
p

2

]

≤ c

[(∫
Ω
|u|pdx

) (αp+2)
p

+

(∫
Ω
|u|pdx

) αp
(p−2)

+ ∥∇u∥22
]
.

By (20), yields

2 < αp+ 2 ≤ p and 2 <
αp2

p− 2
≤ p.

Hence, Lemma 2.3 gives

Hα(t)∥u∥22 ≤ c

(
∥u∥pp + ∥∇u∥22

)
.(25)
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Combining (24) and (25), we get

K′(t)

≥
{
(1− α)− εκ

}
H−αH′(t) + ε

(
ak − c4

2C0κ

)
∥u∥pp

+ε

{
p(1− a)

γ + 2
+

1

γ + 1

}
∥ut∥γ+2

γ+2 + ε

{
1 +

p(1− a)

2

}
∥∇ut∥22

+ε

{
p(1− a)

2

(
ζ0 −

∫ t

0
h(ϱ)dϱ

)
−
(
ζ0 −

1

2

∫ t

0
h(ϱ)dϱ

)
− c4

2C0κ

}
∥∇u∥22

+εζ1

{
p(1− a)

2
− 1

}
∥∇u∥42 + ε

{
p(1− a)

2
− 1

2

}
(h ◦ ∇u)

+εp(1− a)H(t) +
εp(1− a)ξ

m

∫ 1

0
∥y(x, ρ, t)∥mmdρ.

In this stage, we take a > 0 small enough so that

λ1 =
p(1− a)

2
− 1 > 0,

and we assume ∫ ∞

0
h(ϱ)dϱ <

p(1−a)
2 − 1

p(1−a)
2 − 1

2

=
2λ1

2λ1 + 1
,

which gives

λ2 =

{(
p(1− a)

2
− 1

)
−
(∫ t

0
h(ϱ)dϱ

)(
p(1− a)

2
− 1

2

)}
> 0.

Then we choose κ so large that

λ3 = ak − c4
2C0κ

> 0, λ4 = λ2 −
c4

2C0κ
> 0.

Finally, we fixed κ, a, and we appoint ε small enough so that

λ5 = (1− α)− εκ > 0, and K(0) > 0.

Thus, for some η > 0 , estimate (24) becomes

K′(t) ≥ η

{
H(t) + ∥ut∥γ+2

γ+2 + ∥∇ut∥22 + ∥∇u∥22 + (h ◦ ∇u) + ∥u∥pp

+ ∥∇u∥42 +
∫ 1

0
∥y(x, ρ, t)∥mmdρ

}
.

(26)

Next, by using Holder’s and Young’s inequalities, we obtain∣∣∣∣ ∫
Ω
u|ut|γutdx

∣∣∣∣ 1
1−α

≤ c

[
∥u∥

θ
1−α
γ + ∥ut∥

µ
1−α

γ+2

]
,(27)

where 1
µ + 1

θ = 1.
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We take µ = (γ + 2)(1− α), to get

θ

1− α
=

γ + 2

(1− α)(γ + 2)− 1
≤ p.

Further, for s = γ+2
(1−α)(γ+2)−1 , estimate (27) gives∣∣∣∣ ∫

Ω
u|ut|γutdx

∣∣∣∣ 1
1−α

≤ c

[
∥u∥sp + ∥ut∥γ+2

γ+2

]
.

Then, Lemma 2.3 yields∣∣∣∣ ∫
Ω
u|ut|γutdx

∣∣∣∣ 1
1−α

≤ c

[
∥u∥pp + ∥ut∥γ+2

γ+2 + ∥∇u∥22
]
.

Similarly, we have∣∣∣∣ ∫
Ω
∇u∇utdx

∣∣∣∣ 1
1−α

≤ c

[
∥∇u∥

θ
1−α

2 + ∥∇ut∥
µ

1−α

2

]
,

where 1
µ + 1

θ = 1.

We take θ = 4(1− α), to get

µ

1− α
=

4

4(1− α)− 1
≤ 2

and ∣∣∣∣ ∫
Ω
∇u∇utdx

∣∣∣∣ 1
1−α

≤ c

{
∥∇u∥42 + ∥∇ut∥22

}
.

Hence,

K
1

1−α (t)

=

(
H1−α +

ε

γ + 1

∫
Ω
u|ut|γutdx+ ε

∫
Ω
∇u∇utdx+ ε

σ

4
∥∇u∥42

) 1
1−α

≤ c

(
H(t) +

∣∣∣∣∫
Ω
u|ut|γutdx

∣∣∣∣ 1
1−α

+

∣∣∣∣∫
Ω
∇u∇utdx

∣∣∣∣ 1
1−α

+ ∥∇u∥
4

1−α

2

)
≤ c

(
H(t) + ∥u∥pp + ∥ut∥γ+2

γ+2 + ∥∇u∥22 + ∥∇u∥42 + ∥∇ut∥22
)

≤ c

(
H(t) + ∥u∥pp + ∥ut∥γ+2

γ+2 + ∥∇u∥22 + ∥∇u∥42 + ∥∇ut∥22

+ (h ◦ ∇u) +
∫ 1

0
∥y(x, ρ, t)∥mmdρ

)
.

(28)

From (26) and (28), we obtain

(29) K′(t) ≥ ΓK
1

1−α (t),
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where Γ > 0, depends only on η and c. By integration of (29), we obtain

K
α

1−α (t) ≥ 1

K
−α
1−α (0)− Γ α

(1−α) t
.

Hence, K(t) blows up in time

T ≤ T ∗ =
1− α

ΓαKα/(1−α)(0)
.

Then, the proof is completed. □
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