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HELMHOLTZ EQUATIONS FOR THE LAPLACE OPERATOR
AND ITS POWERS

MOHAMED BEN CHROUDA

Abstract. We show that a tempered distribution u on Rd is a solution of
(−∆)su = u if and only if −∆u = u. This result holds for any s ∈ (0,∞)
and any dimension d ≥ 1. Our proof uses Fourier analysis.
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1. INTRODUCTION AND MAIN RESULTS

The solutions in the sense of distributions of the classical Helmholtz equa-
tion −uxx = u in R are of the form u(x) = a cosx+ b sinx. In higher dimen-
sions, solutions of

(1) −∆u = u in Rd

are functions which are bounded, infinitely differentiable and vanishing at
∞. They are explicitly expressed in terms of Bessel functions and spherical
harmonics, see [1]. Now consider the fractional Helmholtz equation

(2) (−∆)su = u in Rd,

where (−∆)s, 0 < s < 1, is the fractional power of the Laplace operator
which is defined in Section 2. In dimension one, Fall and Weth [3] proved
that bounded solutions of the fractional equation (2) are in the form u(x) =
a cosx + b sinx. In higher dimensions, Guan, Murugan and Wei [5] proved
that functions which are bounded and vanishing at ∞ are solutions of the
fractional Helmholtz equation (2) if and only if they are solutions of the clas-
sical Helmholtz equation (1). The authors extend this result for 1 < s ≤ 2 and
s ∈ N∗ when solutions are assumed to be bounded an infinitely differentiable
functions on Rd.

The following result complement the ones of [5] and [3]. Let S′(Rd) denote
the space of tempered distributions on Rd.

Theorem 1.1. Let d ≥ 1 and s > 0. For u ∈ S′(Rd), we have (−∆)su = u
if and only if −∆u = u.
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Taking into account that solutions of equation (1) are necessarily bounded
functions on Rd and that functions of polynomial growth at infinity are in
S′(Rd), we immediately conclude from Theorem 1.1 that:

Corollary 1.2. The fractional Helmholtz equation (2) has no unbounded
solutions of polynomial growth at infinity.

Since solutions of equation (1) in higher dimensions are functions which are
bounded, infinitely differentiable and vanishing at ∞, it follows from Theorem
1.1 that:

Corollary 1.3. Let d ≥ 2 and s ∈ (0,∞). All solutions in S′(Rd) of
(−∆)su = u are functions which are bounded, infinitely differentiable and
vanishing at ∞.

Next, we investigate solutions of the modified Helmholtz equation

(3) − (−∆)su = u in Rd.

Theorem 1.4. Let d ≥ 1 and s ∈ (0,∞). If u ∈ S′(Rd) is a solution of
equation (3) then u = 0.

Since continuous functions on Rd with slow growth are tempered distribu-
tions, it follows from Theorem 1.4 that

Corollary 1.5. Let u ∈ C(Rd) be a solution of equation (3). If

|u(x)| ≤ C (1 + |x|)m ∀x ∈ Rd

with some C > 0 and a nonnegative integer m, then u = 0.

Finally, we establish mean value properties of solutions of the fractional
Helmholtz equation (2). Denote by

ηr(x) =

{
C(d,s)r2s

|x|d(|x|2−r2)s
, if |x| > r

0, if |x| ≤ r.

The constant C(d, s) is chosen so that∫
Rd

ηr(x) dx = 1,

and therefore

C(d, s) =
Γ(d/2) sin(πs)

π1+d/2
.

For a continuous function u on Rd such that

(4)

∫
Rd

|u(x)|
(1 + |x|)d+2s

dx <∞,

we define

M(u, x, r) :=

∫
Rd

u(x+ y)ηr(y)dy.
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A continuous function u on Rd satisfying (4) is a solution of (−∆)su = 0
in the sense of distributions if and only if u satisfies the mean value property
M(u, x, r) = u(x) for every x ∈ Rd and every r > 0, see for instance [7].

Theorem 1.6. Let s ∈ (0, 1) and d ≥ 1. If u is a solution of the fractional
Helmholtz equation (2) then

M(u, x, r) =
Γ(d/2)

Γ(s)
G20

13

(
r2

4

∣∣∣∣ 1
s, 0, 1− d/2

)
u(x)

for every x ∈ Rd and every r > 0, where G denotes Meijer’s G-function.

2. PROOFS OF THEOREMS

Let C∞
c (Rd) denote the space of infinitely differentiable functions on Rd with

compact support. For s ∈ (0, 1), the fractional Laplacian (−∆)s is defined, for
φ ∈ C∞

c (Rd), by

(−∆)sφ(x) = Ad,sP.V

∫
Rd

φ(x)− φ(y)

|x− y|d+2s
dy

= Ad,s lim
ε→0

∫
{|x−y|≥ε}

φ(x)− φ(y)

|x− y|d+2s
dy,

where

Ad,s = 22sΓ(
d

2
+ s)/(πd/2|Γ(−s)|).

Let D be a bounded domain of Rd. Using the Taylor’s expansion of φ ∈
C∞
c (D), we obtain

(5) |(−∆)sφ(x)| ≤ C(D, s)

(1 + |x|)d+2s
max
|α|≤2

(
sup
x∈D

|∂αφ(x)|
)
,

see for instance [2, Lemma 3.5]. Therefore, (−∆)su defines a distribution for
u ∈ Ls(Rd) by the formula

⟨(−∆)su, φ⟩ =
∫
Rd

u(x)(−∆)sφ(x)dx,

where

Ls(Rd) =

{
u : Rd → R;

∫
Rd

|u(x)|
(1 + |x|)d+2s

dx <∞
}
.

However, it is not clear whether (−∆)su ∈ S′(Rd) the space of tempered
distribution since an analogue estimation of (5) for φ ∈ S(Rd) seems to be not
valid.

Let [s] denote the integer part of s > 0. For s ∈ (0,∞), a solution of
(−∆)su = u is understood to be a tempered distribution u such that

(−∆)s−[s](−∆)[s]u = u.
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Lemma 2.1. Let s > 0 and u ∈ S′(Rd). If (−∆)su ∈ S′(Rd) then

(6) ̂(−∆)su = |ξ|2sû

in S′(Rd), where û denotes the Fourier transform of u.

Proof. We first assume that s ∈ (0, 1). For φ ∈ S(Rd), we have

̂(−∆)sφ(ξ) = |ξ|2sφ̂(ξ), ξ ∈ Rd.

The proof of this identity can be found in many papers, see for instance [8].
Thus

⟨ ̂(−∆)su, φ⟩ = ⟨u, ̂(−∆)sφ⟩ = ⟨u, |ξ|2sφ̂⟩ = ⟨|ξ|2sû, φ⟩.

Hence (6) holds for s ∈ (0, 1). Now, for any s > 0, we obtain

̂(−∆)su = |ξ|2(s−[s]) ̂(−∆)[s]u = |ξ|2(s−[s])|ξ|2[s]û = |ξ|2sû.

This completes the proof. □

The following simple result is the key of our proofs.

Lemma 2.2. For s ∈ (0,∞), let ϕs be the function defined for ξ ∈ Rd by

ϕs(ξ) =
1− |ξ|2s

1− |ξ|2
.

Then

(i) The functions ϕs and 1/ϕs are C∞ on Rd.
(ii) The functions ϕs, 1/ϕs and their derivatives of arbitrary order have

polynomial growth at infinity.
(iii) The multiplication by ϕs is an automorphism on S(Rd).

Proof. It is clear that ϕs is C
∞ on Rd\{ξ; |ξ| = 1}. Let ε > 0 small enough.

For

ξ ∈ Ωε := {ξ; 1− ε < |ξ|2 < 1 + ε},
we write

ϕs(ξ) = fs(1− |ξ|2) with fs(r) =
1− (1− r)s

r
, r ∈ (−ε, ε).

The functions r → 1 − (1 − r)s and r → r are analytic on (−ε, ε). Since fs
is continuous at 0, this implies that fs is C∞ on (−ε, ε) as quotient of two
analytic functions. Thus ϕs is C∞ on Ωε. Consequently, ϕs is C∞ on the
whole of Rd. It is easily seen that the functions ξ → 1− |ξ|2s and ξ → 1− |ξ|2
and their derivatives have polynomial growth at infinity, and hence so does ϕs.
Similar arguments show that 1/ϕs is C∞ on Rd and 1/ϕs and its derivatives
have polynomial growth at infinity. We omit the proof to avoid repetition.
The multiplication operator φ → ϕsφ is an automorphism on S(Rd) follows
immediately from the first and the second statements. □
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Proof of Theorem 1.1. Let d ≥ 1 and s > 0. Let u ∈ S′(Rd) be a solution
of equation (2). By applying the Fourier transform on both sides of (2), we
obtain using (6) that

(1− |ξ|2s)û = 0 in S′(Rd).

By Lemma 2.2, the multiplication by ϕs is an automorphism on S(Rd). This
implies that

0 = ⟨û, (1− |ξ|2s)φ⟩ = ⟨û, (1− |ξ|2)ψ⟩, ψ ∈ S(Rd),

which means that |ξ|2û = û in S′(Rd). Applying the inverse of the Fourier
transform, we conclude that u is a solution of equation (1). The same steps
show that any solution u ∈ S′(Rd) of equation (1) is a solution of equation
(2). This completes the proof of the theorem. □

Proof of Theorem 1.4. Let s ∈ (0,∞) and u ∈ S′(Rd) a solution of equation
(3). As in the proof of Theorem 1.1, by applying the Fourier transform in both
sides of (3), we obtain

−|ξ|2sû = û in S′(Rd).

This means that (1 + |ξ|2s)û = 0 which implies that û = 0, and hence u = 0
since the Fourier transform is injective on S′(Rd). This completes the proof
of the theorem. □

Proof of Theorem 1.6. Let u ∈ C(Rd)∩Ls(Rd) be a solution of the Helmholtz
equation (2). By Theorem 1.1, u is a solution of the classical Helmholtz equa-
tion (1). Kuznetsov [6] proved that solutions of (1) satisfy the mean value
properties over spheres

(7) M◦(u, x, r) = jd/2−1(r)u(x)

for every x ∈ Rd and every r > 0, where

M◦(u, x, r) :=
1

|∂Br|

∫
∂Br

u(x+ y)σ(dy)

and jd/2−1 is the normalized Bessel function defined on R by

jd/2−1(r) := Γ(d/2)

∞∑
n=0

(−1)n

n!Γ(n+ d/2)

(r
2

)2n
.

Here, Br denotes the ball of radius r centered at the origin of Rd and σ(dy)
is the surface area measure on the sphere ∂Br. By spherical coordinates, we
have

M(u, x, r) =

∫
Rd

u(x+ y)ηr(y)dy

=
2

Γ(s)Γ(1− s)

∫ ∞

r

r2s

t(t2 − r2)s
M◦(u, x, t) dt.
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Thus, it follows from (7) that

M(u, x, r) =
2 r2s

Γ(s)Γ(1− s)

∫ ∞

r

jd/2−1(t)

t(t2 − r2)s
dt u(x)

=
1

Γ(s)Γ(1− s)

∫ ∞

1

jd/2−1(r
√
t)

t(t− 1)s
dt u(x)

=
Γ(d/2)

Γ(s)

r2

4
G20

13

(
r2

4

∣∣∣∣ 0
s− 1, −1, −d/2

)
u(x).

The last equality follows from 6.592 (3) in [4]. The fact that

r2

4
G20

13

(
r2

4

∣∣∣∣ 0
s− 1, −1, −d/2

)
= G20

13

(
r2

4

∣∣∣∣ 1
s, 0, 1− d/2

)
completes the proof. □
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