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TCHEBYSHEV-TYPE INEQUALITIES
WITH THREE FUNCTIONS

BOUHARKET BENAISSA and NOUREDDINE AZZOUZ

Abstract. In this paper, Tchebyshev-type fractional integral inequalities with
three functions are generalized by involving the k-weighted fractional integral of
a function with respect to another function 1.
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1. INTRODUCTION

In [2], for the Tchebyshev functional

b b b
T(f, 9)@) = 5= [ f@e)de— 2 [ p@deg o [ gl da,

Tchebyshev’s inequality is given as follows:

T(f, g)(z) >0,

where f and g are two integrable functions synchronous on [a, b].

Belarbi and Dahmani [1] developed the following result about Tchebyshev’s
inequality using Riemann-Liouville fractional integral operators. Let f and g
be two synchronous functions on [0, 400[. Then, for all z > 0, a > 0,

I'a+1)
xOé

1°(f 9)(x) = I f(x) I%g ().
In |10], Sulaiman proved the following result:

P ¢

mla(fgh)(x) + mlﬁ(fgf)(x)

>1°f(2)1%(gh)(z) + 1P f(z) 1%(g h)(z) + 1%g(x) I°(f h)(x)
+17%g(2) 1°(f h)(z) — 1%h(z) 1P (f g)(x) — 17 h(z)1%(f g)().
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On the other hand, the weighted fractional integrals are defined for an
integrable function f on the interval [a,b] and for a differentiable function u
such that p/(t) # 0 for all ¢ € [a, b], as follows:

o | W) ) s, > a

where w is a weighted function (a positive measurable function)[4].

a‘*‘Igf(:L‘) =

2. k-WEIGHTED FRACTIONAL OPERATOR

In this section, we present a definition of the k-weighted fractional integrals
of a function f with respect to the function 1 and we prove that they are
bounded in a specified space. Let [a,b] C [0, +00), where a < b.

DEFINITION 2.1. Let a > 0, k£ > 0 and v be a positive, strictly increasing
differentiable function such that ¢/(s) # 0 for all s € [a,b]. The left and
right-sided k-weighted fractional integrals of a function f with respect to the
function 1 on [a, b] are defined respectively as follows:

1) I PEIe) = s [ O v o0,

where a < x < b.

b
@) IR = s [ 00 — ) E o,

where a < x < b, w is a weighted non-decreasing function and the k-gamma
function is defined by

0o k
T(8) = / t8-1e= % dt.
0

The space LZV [a,b] of all real-valued Lebesgue measurable functions f on
[a, b] with norm conditions:

b L
7= (/ ) P W(sc)dx) <oo, 1<p< oo

is known as weighted Lebesgue space, where W is a weight function (measur-
able and positive).

(a) Taking W = 1, the space L;fv la, b] reduces to the classical space Ly|a, b].
(b) If we choose W (z) = wP(x)'(x) and p = 1, we get

Ex ot = {1211 = [ @@ | 9@ar < oo}

In the next theorem, we show that the k-weighted fractional operators are
bounded.
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THEOREM 2.2. The fractional integrals , are defined for functions
fe LXw,[a, b, existing almost everywhere and

) @) € Ly abl, 100 @) € Ly, fo.b)

Moreover

@ |eriir@|, <ol@ix,. eI, <o i@,
where

() — vla)f
C="TNa+h

Proof. Let f € Lx,[a,b], By applying Fubini’s Theorem, we get

a""J

/rw ) T ) | () o
0 / | 1009876 wla) — (6 E ) ds

B mm)/ v/t </ (9la) = () o ) '(5) s
b
— i [ I G0~ ) v ()

($(b) — P(a)® [ ,
<« L [ wtre)v (o) as
=C|fly, -

Similarly

’ o / (1 (b) — P(a))®
[ 1@ 3gire) [o'ee < LR

This gives us our desired formulas and . O

The k-weighted fractional operators depend on the functions w and ¢ and
produce particular types of k-weighted fractional integrals.

(a) Taking w(r) = 1, the k-weighted fractional reduces to the k-Hilfer
operator of order o > 0 or generalized k-fractional integrals.

o TE @) = s [ W) = e s @ >

T () = Mi(a) [ @) - st s, @<t
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(b) Taking (1) = 7, the k-weighted fractional is simplified to the k-
weighted Riemann-Liouville fractional operator of order o > 0

ot RELwf @) = 'lU(l')k'le(Oé) /am(x —s)t w(s) f(s)ds, x> a,

b
b RLE ,f(x) = w(:v)k:lf‘k(oz)/w (s — )% tw(s)f(s)ds, =z <b.

(c) Using ¢(7) = InT, the k-weighted fractional reduces to the k-weighted
Hadamard fractional operator of order a > 0

at Higw [ (%) = W / (1n f)%_lw(s)f(s)g z>a>1,

S S

b S\ %~ S
bH?,wf(ﬂc):W/x (ln5> 1w(s)f(s)%, l<z<b.

(d) Putting ¥(7) = ;,:11 where p > 0, the k-weighted fractional makes it
similar to the k-weighted Katugampola fractional operators of order

a >0, or (k,s) weighted fractional [7].

1-% z o
K f ) = P [ - o ) e (9, 1> a

b= K f () = W /: (1 — 2Pt () f(s)sPds, @ < b.

(e) Setting ¥ (1) = % (Y(1) = —@) respectively where 6 > 0, the
left sided (right sided) k-weighted fractional respectively is reduced to
the k-weighted fractional conformable operator of order a > 0 [6]:

01— % r -1 w(s) f(s
atCrypf(z) = W/a ((95 —a)’ = (s— a)9> (8(_);;5_)9@7

for x > a; and

Tk ’ -1 w(s) f(s
Gt = s [ (- - 0-s7) T

for x < b.
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3. TCHEBYSHEV-TYPE INEQUALITIES VIA k-WEIGHTED FRACTIONAL
OPERATOR

We present some basic notations that we utilize in this study as well as a
significant remark.

e A non-decreasing function on [a, b] is an increasing or constant function
on [a,b].

e Let a,b € R where b > a. Two functions f and g are said to be
synchronous on [a, b], if for all z,y € [a, ]

(f(z) = f(y)(g(x) — g(y)) > 0.

REMARK 3.1. Since w is non-decreasing on [a, b], by applying the notion of
the k-weighted fractional integral , we get

AL = s [ 90 — v E () ds

B S o () (Wh(x) = 9(s)) M w(b) ds
< w(a)szk(a)/a e =) e
= O ) — b(s)E ds
- w(a)krk(a)/a v
therefore
5 w(d) V(@) = Y(@)F | T 00 (1) ().

w(a) Tr(a + k)

THEOREM 3.2. Let f, g and h be three monotonic functions on [a,b] and ¢
be an increasing and positive function on [a,b], having a continuous derivative
' on [a,b] and also x > a, a, B, k > 0. If for all z,y € [a,b]

(6) (f(@) = f(W)(9(x) — g(y))(h(z) = h(y)) = 0.
Then the following inequalities hold:

w(b) (Y(x) —p(a)) »

wa) Talat k)« Ikl 9P)@)

~w(b) (@) —p(a)F
w(a) (o + k)

=@

AIPL(fgh) (@)

> IV @) T h) (@) — o 2T () o T (g h) (@)

+ I (@) I PR (@) = o I3V g(@) o IO (f h) (2)
+ et TPV R(@) o T (f 9) (@) — o TV h(@) 1 T8 (f 9)(2).
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Proof. Given the hypothesis (6]), for all ¢, s € [a, b], we have

then

o fah(t)— fgh(s) >f(s)g(t
—g(t)f(s)h(s) + h(s)f(t)g(t) — h(t)f(s)g(s).
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and integrating with respect to t over (a, ), we get
SR gh)@) = (Fgh) () I Tn (1) (@)
eI (g h) (@) = g(s)h(s) o+ I o f (@)

® > f(s)
+g<>a+J V() (@) = F(s)h(s) o+ T lg (@)
Hh(s) o+ T 0 (f 9) (@) — F()9(s) o+ T i h(z).

Now, multiplying the above inequality by

W(5) (W(x) — (s)F " w(s)
w(@)kT4(B)

and integrating with respect to s over (a,x), we get

IR W(@) o+ TRV (Fgh) (@) = o+ T b (W) (@) o+ I 70 (F g B) (@)
Dgh)(@) o+ T o f(2)
)(@) g+ g ()
(@) o+ ().

@ 2 el @ eI @) = I g
+ ot I eg(@) gt TR0 (FR)(x) — (e TR0 (f B
+ ot I (@) I (f 9) (@) — ot TN (f g

Combining inequality @ and inequality yields inequality @
REMARK 3.3. We present some special cases of the above Theorem [3.2]
(a) Taking w =1, ¥(z) =1 and k = 1, we get Theorem 2.2 in [10].

(b) If we choose w =1 and ¥ (x) = Inx, we obtain Theorem 5 in [3].
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THEOREM 3.4. Let f and g be two synchronous functions on |a,b], h be a
positive function and 1 be an increasing and positive function on |a,b], having
a continuous derivative ¥’ on [a,b] and also x > a, a,B, k > 0, then the
following inequalities hold:

@

w(b) (Y (x) —(a)) i
W) Tra 1 k) o kel 90)@)

w(b) ((z) — ¥(a))*
w(a) Mg(a+ k)

+

I (f gh)(x)
(10)
> TPV F@) ot TRl h) (@) + o T30V () 1 T 10 (g h) ()

+ ot TPV g(@) et TP () () + o T3 g(@) o T 0 (f h) ()
— e IOR(E) TN ) (@) — o TV R(x) o+ I (f 9)(2).
and
T (f gh)()
ay > OBOED L) e @)

w(b) (1) — ¢(a))*
ot I0V9(@) 0 TN @) = 00 I PVRE) 0 T ) (@)

Proof. Since f and g are synchronous functions on [a, b], then for all ¢,s €
[a, b], we have

(f(t) = f(5)(g(t) = g(s))(h(t) + h(s)) = 0,
then
Fah(t)+fgh(s) = [f(s)g(®)h(t) + F()g(s)h(s) + g(s)f(t)h(t)
+9()f(s)h(s) — h(s) f(t)g(t) — h(t)f(s)g(s),

The rest of the proof of inequality is similar to that in Theorem
We get the acquired inequality by putting 5 = « through the inequality
(L0). O

REMARK 3.5. We present some special cases of the above Theorem
(a) Taking w =1, ¢(z) =1 and k = 1, we get Theorem 2.1 in [10].
(b) Choose w = 1, ¥(z) = Inz, we obtain Theorem 4 in [3].

Taking h(x) = % in the above Theorem (3.4, we get the following corollary.
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COROLLARY 3.6. Let f and g be two synchronous functions on [a,b] and ¢
be an increasing and positive function on |a,b], having a continuous derivative
' on [a,b] and also x > a, a, B, k > 0, then the following inequalities hold:

=@

wlb) (6(a) — ¥(@) o w(®) (@)~ H@)E s
w(a) Fk(a—l-k) a+Jk,w(fg)($)+ w(a)Fk(oz—i—k:) a+Jk’w(fg)(x)

> o IV (@) o I g (@) + ot TPV () o g ().

and
w(a) Ty (o + k)
w(b) (P(x) — P(a))®

I (f9)(@) > IV () g (),

REMARK 3.7. We present some special cases of the above Corollary

(a) Taking w =1, k =1, b = +00 and a = 0, we obtain Theorem 7 and
Theorem 6 in [8].

(b) Choose w =1 and 9 (z) = Inz, we obtain Theorem 3 in [3].

(c) Takingw =1, k=1,a=0 and ¥(r) = rgi?" , gives Theorem 2.2 and
Theorem 2.1 in [5)].

(d) Taking k=1, a =0 and ¢(7) = TTf) , yields Theorem 6 and Theorem
5 in [9).

THEOREM 3.8. Let f and g be two integrable functions on [a,b], h be a
positive function and 1 be an increasing and positive function on |a,b], having
a continuous derivative ¥’ on [a,b] and also x > a, a,(, k > 0, then the
following inequalities hold:

I (@) o+ I f2 (@) + I g (@) o d Fih? (@)

> 2 IV (FR) () ot T (g h) ().

2w

(12)

Proof. For all t, s € [a, b], we have

(f(H)h(s) = h(t)g(s))* = 0,
then
FAOR(s) + h2(t)g*(s) = 2 f(1) f(1)g(s)h(s).
The rest of the proof of inequality is similar to that in Theorem O

Putting h(z) = 1 through the Theorem (3.8, we get the following corollary.
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COROLLARY 3.9. Let f and g be two integrable functions on [a,b] and 1) be
an increasing and positive function on [a,b], having a continuous derivative
' on [a,b] and also x > a, a, B, k > 0, then the following inequalities hold:

w(b z) — (a))* o w(b z) —h(a))®
B i R
> 2 IV f(@) g+ b g ()
and for « = B and f = g, yields
w(a) Ty(a + k)
w(b) (Y(x) —(a))

a‘*’J 5:392(:5)

I () > 2 <a+JZ’wf(x)>2.

Elle)

REMARK 3.10. We present some special cases of the above Corollary [3.9]
(a) Taking w =1, ¥(z) =1 and k = 1, we get Theorem 2.3 in [10].
(b) Taking w =1 and ¢ (x) = Inx, we obtain Theorem 6 in [3].

4. CONCLUSION

This work gives a new result for Tchebyshev-type inequalities with three
functions using k-weighted fractional operators, as well as additional related
weight inequalities based on the functions w and .
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