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ON SOME TRANSCENDENTAL CONTINUED FRACTIONS
OVER A FINITE FIELD

AWATEF AZAZA and SAMIR ELKADRI

Abstract. The aim of the present paper is to present some families of tran-
scendental continued fractions in positive characteristic with bounded and un-
bounded degrees through some specific irregularities of their partial quotients.
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1. INTRODUCTION

The question of how rationals can approximate algebraic numbers is a fun-
damental problem in Diophantine approximation theory. The behavior of the
continued fraction expansion of these algebraic numbers is closely related to
this subject. In particular, it is widely believed that the continued fraction
expansion of any irrational algebraic number either is eventually periodic or
contains arbitrarily large partial quotients. Khinchin [9] appears to have ad-
dressed this question initially, and a proof appears to be still far off. Examples
of transcendental continued fractions are given as a first step towards solving
this question. Liouville [12] created transcendental real numbers with a rapidly
increasing sequence of partial quotients, which is where the first result of this
kind originated. Other classes of transcendental continued fractions were sub-
sequently constructed by different authors using deeper transcendence criteria
from the Diophantine approximation. The work of Maillet |[14], which has been
continued by Baker [6], is particularly remarkable because he was the first to
provide explicit examples of transcendental continued fractions with bounded
partial quotients. More precisely, Baker proved that if o = [By, By, B, .. .]
where B,, is a block of k, consecutive partial quotients such that

B, =Bpt1=...= BnJr)\(n)fla

for infinitely many positive integers n where A\(n) is a sequence of integers
verifying certain increasing properties, then « is transcendental. The proof
of this result is based on combining the result of Liouville [12] and Roth’s
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theorem. After this, several extensions and generalizations of Roth’s theorem
were then obtained. Schmidt has, in particular, proved in [19] a remarkable
result, established in terms of simultaneous approximation of linear forms in
logarithms with algebraic coefficients and known as the subspace theorem.
It’s a very profound result which has given rise to many interesting applica-
tions. Several new criteria of transcendence for continued fractions was given
by Adamczewski and Bugeaud [1]. In 2004, Mkaouar |16] gave a similar result
to Baker [6], concerning the transcendence of formal power series over a finite
field. In [8], Hbaib et al. proved the following result which allows the con-
struction of a family of transcendent continued fractions over F,((T~!)) from
an algebraic formal power series of degree more than 2.

THEOREM 1.1. Let 8 be an algebraic formal power series such that deg(f) >
0 and o = [B1, Ba,...| where B; are finite blocks of partial quotients whose
the first n;-terms are those of the continued fraction expansion of 5. Let d;
denote the sum of degrees of B; and d; the sum of degrees of the first n;-terms

s—1 g
liminf == =0,
s—00 O

then « is transcendental or quadratic.

Many explicit continued fractions are known for algebraic and non quadratic
elements, with bounded and unbounded partial quotients, see for example
[3,/44/7.[20].

Recently, Ammous et al. [2] improved Theorem by giving a new tran-
scendental criterion depending on the length of the specific blocks appearing
in the sequence of partial quotients. In the same way, the purpose behind this
work is also to improve Theorem by exposing new families of transcen-
dental continued fraction over F,(T), in an interesting way starting from the
continued fraction expansion of some algebraic power series of degree greater
than 2. However, we provide a slight refinement of their criteria.

This article is organized as follows: In Section [2, we define the field of
formal series and the continued fraction expansions over this field. In Sec-
tion 3] we recall some technical lemmas that allow us to prove our results.
Section [ is devoted to exposing our main results. Theorem and The-
orem provide some transcendental continued fractions with unbounded
degrees, whereas Theorem [4.4] illustrates a transcendental continued fraction
with bounded degree. Section [5| contains the proofs of our main results.

2. FIELD OF FORMAL SERIES

Let p be a prime and ¢ be a power of p. We denote by F, the finite field of
q elements, Fy[T] the ring of polynomials over Fy, F,(7T') the field of rational
function and F,((T~!)) the field formal power series over F,.
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For a € Fy((T71)) and a # 0 we have

o= E an, T ",
nz=ng

where ng € Z, a, € Fy and a,, # 0. We define the degree of «, by dega = ng
and deg0 = —oco. Then we define the absolute value on F,((7T1)) by

o] = qdeg>  for a # 0,
0 for a = 0.

Contrary to the usual absolute value on @Q, this non-Archimedean absolute
value verifies

la + ] < max{|al, |8]}
for every o, 3 € Fy((T™1)) and, in particular, |a + 3| = max{|«a/, |8]} as soon

as |af # |B].
Define the polynomial part of «, denoted by [a], as follows:

o] ap+a 1T+ -+ ap, T~ ™ if ng <0,
ol =
0 else.

The fractional part of «, denoted by {a}, is defined as follows: {a} = a —[a].
Then |[a]| > 1 and |{a}| <1 for a # 0.
As in classical continued fraction theory of real numbers, if o € F,((T71)),

then we can write
1
a=aj+ —1: [a1, a2, a3, ...],
ag + —
2 1
as + —

where a; = [a], a; € Fy[T], with deg(a;) > 1 for any ¢ > 1. The sequence
(a;)i>1 is called the partial quotients of a and we denote by a,, = [an, ant1, - - -]

the n'™™ complete quotient of a. We define two sequences of polynomials P,
and @, by

P =ay, Q1 =1, P, =ajaz + 1, Q2 = a

and
P, =anPy 1+ P2, Qn = anQn-1+ Qn_2, for any n > 2.
We can write g—" = a1, a2,...,ay] for n > 1 and we refer to (ﬁ) N as the
n "/ ne

convergent sequence of a. It is easy to see that deg Q,,+1 = deg a1 +deg Qn,
thus deg Q,, = 2?22 dega;. Moreover we have for n > 1 the equality:

Pnan—H + P
Qnan—‘rl + Qn-1
where a1 = [an41, Gnto, .. .] is called a complete quotient of a.

(1) a=lai,az,... 4, pt1] =
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We say that a formal power series has bounded partial quotients if the
polynomial (an)n>1 are bounded in degrees.

We recall that o belonging to F,((T!)) is algebraic of degree d if there
exists a polynomial A € Fy[T][Y] irreducible of degree d such that A(«) = 0.
We say that « is quadratic if it is algebraic of degree d = 2. We recall that an
element in Fy((71)) is quadratic if and only if its sequence of partial quotients
is ultimately periodic, see [15].

In the classical theory of Diophantine approximation, we are concerned with
how well an irrational number can be approximated by rational numbers. In
order to measure the quality of approximation (the irrationality measure) of
an irrational power series «, we define

v(a) = —limsuplog(la — P/Q[)/log(|Q]).

|Ql—o00

We call v(a) the approximation exponent of a. By Roth’s theorem, the irra-
tionality measure of an irrational algebraic real number is 2. For power series
over a finite field there is no analogue of Roth’s theorem. However, according
to Mahler’s theorem [13], we have v(«) € [2,n] if « is algebraic of degree n > 1
over [Fo(T).

For a general account of continued fractions in power series fields and dio-
phantine approximation, and also for more references on this matter, the
reader can consult [10,[2021].

Now, let a be an algebraic formal power series of minimal polynomial
P(Y)= A Y™ + Ap Y™ L+ ...+ Ap, where A; are pairwise coprime over
Fy[T). H(c) is defined as the maximal of absolute values of the coefficients of
P(Y).

Throughout the paper we are dealing with finite sequences (or words),
consequently we recall the following notation on sequences in F,[T]. Let
B = aj,aq,...,a, be such a finite sequence, then we set |B| = n for the
length of the word B and ¢(B,) = maxj<;<p(dega;). If we have two words
B; and Bs, then By, By denotes the word obtained by concatenation.

3. PRELIMINARY LEMMAS

We have to introduce some lemmas in order to prove the main results.

LEMMA 3.1 ([17]). Let o and 8 be two distinct numbers of degree, respec-
tively, m and n over Fy(T). Then we have

la = f] = H(a) "H(B)™™.
LEMMA 3.2 (|18]). Let = [a1,a2,...] and B = [b1,ba,...] be two formal
series having the same first n + 1 partial quotients. Then

1
|Qul*

la — B] <
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LEMMA 3.3 ([8]). Let « be an algebraic formal power series of degree d such
that a = [ay,ag, ..., at, 8] where a1,...,a; € Fy[T], B € F,(T7Y)). If |a| > 1
and |B| > 1, then B is algebraic of degree d and
d—2

LEMMA 3.4 ([3]). Let B € F,((T~1Y)) be the irrational solution of strictly
positive degree of the equation

Br— AT +1=0,
where r > 2 is a power of p. Then
B=1by,  ,bn, ]
where by = A and for alln > 1:
bont1 = (—1)"A4,
by, — { —1_41_117’,; z:fn z:s odd;
A7 if nois even.
Furthermore, B is of degree r.

Define a finite sequence K,, whose terms consists of 4-tuples of elements in
Fo[T] by
K1 =10b1,b9,b3,b4 = A, —Arfl, —A, —ATZ*T*l,
and forn > 1
Ky = ban+1, bant2, bant3, banya.
Let Ko, be the infinite sequence defined by
Ko =K,Ko,....,Kp,....

Then we have

B = [Koo}
Set u,, = degby,, A = deg A. So we have for k > 1
Ugk+1 = A
and
_f (r=1)X if kis odd,;
U2k = rup — A if k is even.
So we have for even k, ugy = A(r! —r!=1 — ... —r — 1) when 2/7}||k.
For a given n, n = 2! with ¢ > 1. We have that
—2)rt 41
unZA(Tt—Tt_l—...—T—l):)\<<rr2T1+>.

Indeed, as announced we have v(3) = r, then § is algebraic of degree r over
Fo(T).
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LEMMA 3.5. Let t > 0 be an integer. Let 3 € F,((T~1)) satisfying
B =1[b1,by, ... by, b}, bbb BB
such that ged(degby,r) = 1. Then (3 is algebraic of degree r + 1.
Proof. An easy calculation ensures that 3 verifies the following
B =1[bi,...,be, 5]
Then, from , [ satisfies
QS — PB"+ Q1B — Py =0,

where - convergent sequence of 3. It remains to prove that 3 is algebraic
of degree r 4+ 1. We denote

Bt g gth

B ix’" n Qt—lx B
Q1 Q4 Qr
Then we have F(8) = 0. If there is a double root v of F(x), then F(v) =

F'(v) = 0. Since F'(z) = 2" + Q-1 e have the relation

F(l’) — xr+1

Qt
= Q-1
Qr
Applying to F(v) = 0 we have:
P Q-1 P
0 = A'(v— =)+ =
LA WA o)
Q-1 P Qi P,
— - _|_ —
o) T
_ QP B
Q Q¢ Qi

This implies that P,Q;—1 — Pr_1Q; = (—1)!"! = 0, a contradiction. Hence
F(z) is separable over F ((T71)).

Now we consider the Newton polygon of F'(x), which is denoted by N(F).
There are four points (0, degb; —degb1), (1,degb), (r, —degbr) and (r+1,0)
on the xy-plane, and hence N(F') consists of two line segments. The first one
has slope degb;, which is a shift of the Newton polygon of x — 8 and the
second one has slope —%. Suppose that F'(z) = (z — f)G(x) in Fy[T], then
the second line segment is a shift of the Newton polygon of G(x). Because
ged(deg by, ) = 1, by the theory of Newton polygons we see that G(x) is
irreducible over F,. Moreover F'(z) is irreducible over F, since § ¢ F,. So it
follows that 3 is algebraic of degree r + 1. O

LEMMA 3.6 (|11]). Let s,t > 1 be integers and we put q := p* and r = ¢,
where p is an odd prime number. Let X\ be in Fy such that X # 2 and put
wi=2—=A



194 A. Azaza and S. Elkadri 7

Define a finite sequence H,, of elements of Fy[T], for n > 1 by
H, =T, (\T, uT)I" =D/,
Let Hoo be the infinite sequence defined by
Hy, =Hi,Hsy,...,Hy,....
Let v € F,((T71)) such that

v = [Hx].
Then v satisfies the algebraic equation
(2) M) 2Py — ) TV 2Qp 09" + Py — Q1 =0,

where (Pn/Qn)n>0 is the convergent sequence of .

It has been proved that degy =7+ 1 (see [5, Corollary 3.2]).

4. MAIN RESULTS

THEOREM 4.1. Let = [b1, -+ ,bn, -] be as defined above. Let (t;)i>1
an increasing sequence of integers. Let n; = 241 for all i > 1. Let o €
F,((T7Y)) such that o = [Upy,y...,Uny,...] = la1,a9,...], where (Uy,)is1 is
a sequence of finite blocks of polynomials such that Uy, = biby...bap,. If

lim; 4 oo rti7t-1 = 400, then « is transcendental.

EXAMPLE 4.2. For r = 3, A = T and t; = 2 for all i > 1. Then the
continued fraction

T, 272, 27,275, T,2T2% 2T, 27°, T, T2, 2T, T, T, 7%, 2T, 7°, T, T2, 2T, T*',
Uny Ung
T,2T% 2T, 2T° T, .. ]

. . . 1_o9t—1
is transcendental since lim;_, 4~ 3227 = 4.

THEOREM 4.3. Let o € Fy((T71)) such that o = (U1, Va,...,Upny Vi, .| =
[a1,ag,...], where (Uy)n=1 and (Vp)n>1 are two sequences of finite blocks of

polynomials such that

: _ r r T rin—1 rin—1
(i) Ui = Uiy Uiy oy Wty WY 5y UG gy ey Up e ey WY ooy Uy, fOT any

i > 1, with uj; € Fy[T] of degree > 1 for all1 < j <t and
ged(deg ug 4, 7) = 1.

(i) (mi)i=o0 is an increasing sequence of positive integers.
(iii) (deg wji)i=0 i bounded for all 1 < j <mn.
(iv) (Vi) < o(Uy), for allm > 1.

(v) The sequence (|Vy|/|Un|)n>1 is bounded.
If o satisfies
prln—Mn-1

limsup ————
n—>oop (n - 1)7]71—1

then o is transcendental.

= +OO7
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THEOREM 4.4. Letp > 2, g = p* and r = ¢' where s > 1 and t > 1 are
integers. Let a € F ((T7Y)) such that a = [A1B1...ApBy.] = [a1, ..., an, .. ],
where (Ap)n>0 and (Bp)n>0 are two sequences of finite blocks of polynomials
such that

(i) Ap = HiHy... Hy»

(i) @(Bp) =1
(iii) |Bn| < |An| for alln > 1.

Then o is transcendental.

EXAMPLE 4.5. Let A be in F§\{1,2} and p = 2 — \. Let a € Fo((T™1))
such that

a = [T7 ()‘T? IU’T)[(gil)/Q} ’ T7 T> ()\T7 /’LT)[(9271)/2]7
T,T,T, AT, pT)O*~V/A 7 T T, ]

Then « is transcendental.

5. PROOFS OF THE MAIN RESULTS

Proof of Theorem[{.1. Clearly o has unbounded partial quotients so it is
not quadratic. We suppose that « is algebraic of degree d > 2. Let

i—1
k=1

Let oy, = [Un,, U, ..J. Then by Lemma (3.1 we have

Mit1 "

o, — Bl = Hlaw, ) "H(B)™,
and Lemma [3.3| gives that

n;

[[
k=1

Furthermore, o, and (8 have the same first partial quotients, hence by Lemma

(2—d)r

(3) o, =Bl = H(a)™" A7

[3:2] we get
(4) ‘a"lni —B’ < ‘blbg...bgni‘_2.
From the inequalities and we obtain
M
[b1ba . . ban, [* < H(a)" T larl“ 27| A
k=1
whence

Mn;
(r—2)rti +1 :
20| ——— | < H -2 .
A ( " rdeg(H (o)) +r(d )321 degay, + dA
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Hence
r—2)rti+1
5 A deg(H(a)) + dA o)
EZZZldegak }:Zzldegak
As
Mg,
Z degar = Z |b1ba . .. Doy, |
k=1
B Z \ (r—2)r + 1)
N = r—1
1
1 .
= A= =) 4 (0= Dt — 1),
we have
(r=2)rti+1
lim A=) = lim rtittiz
i— 400 )\( —yz((r = 2)(rti = rh) + (r = 1)(tic1 — 1)) oo
= +o0.
But the inequality gives that the above limit is finite. This is a contradic-
tion. g

Proof of Theorem[[.3. Tt is clear that « is not quadratic. Assume that «
is algebraic of degree d > 2. Set A\, = |Up|, 7 = |Vy| for all n > 1 and
kn = 277 (N + ), for all n > 1. We denote

B = [ty o Uty U U s e U U e Uy )
Then, from the previous lemma, 3, is algebraic of degree r + 1. Now, Let
ar, = [Un; Vi, Uns1, Vig1...] denote the ki complete quotient of a. From
Lemma [3.3] ay, is algebraic of degree d > 2 and
kn—1 d—2
H(ag,) < H(w) H a;
i=1

where (a;);>1 is the sequence of partial quotients of «.
On the other hand, according to Lemma, [3.1] we obtain

|, — Bul = H(ag,) "Bl

kn
[[a
i=1
Furthermore, ay, and 3, have the same first A\, partial quotients, hence by
Lemma [3.2) we get

(2—d)(r+1)

(6)
1B

—r—1

1 1,
(7) lak, — Bl < |uip ... Ut,nuin .. u?n {ntn .. uﬁ? | 2,
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From the inequalities @ and we obtain
(d—2)(r+1)

1B

T r rin—1 rin—1 9 r+1
(Ul U U gy e Uy ey, T < H (@)

kn
[
i=1

whence
t
rin —1
2Zdeguiyn < p— >
=1
kn t

< (r+1)log,(H(a)) + (d—2)(r +1) Zdeg a; + dZdegum.
i=1 i=1

This gives that
i
limsup —— < (d — 2)(r? — 1).
n—00 Zf;l deg a; ( ) )
Set H = supj<j<ti>1deg(uji). As ¢(Vi) < (U;) for all i > 1, we get
deg(a;) < r"—171H, for all 1 < i < k,. Therefore

rin

lim sup < (r?P=1)(d-2).

n—00 TnnflilHk:n

By hypothesis (v), there exists ¢ > 0 such that v; < ¢); for all @ > 1. Thus,
kn < (c+1)(n—1)A—1 = (c+ 1)(n — 1)tn,—1. Hence, we conclude that

T"Yn_nn—l
limsup ——— < o0,
n—00 (’/l - 1)"711—1
which contradicts the hypothesis. O

Proof of Theorem[[.4. Tt is clear that the length of the blocks A,, is increas-
ing, so « is not quadratic. Assume that « is algebraic of degree d > 2. Set
An = |An|, Y0 = |By| for all n > 1 and &, = 3."'(\i + %), for all n > 1. We
denote

Y= [Hl,HQ,...,Hn,...].

Now, let ay, = [A,BnAni1Bni1...] denote the k' complete quotient of c.
From Lemma ag, is algebraic of degree d > 2 and
kn—1 d—2
H(ar,) < H(@)| [ a
i=1

where (a;);>1 is the sequence of partial quotients of «.
On the other hand, according to Lemma [3.1] we obtain

(8) |, — B8] = H(ow,) " H(y)™
We have that ~ satisfies the equation , then

r+1
H(y) = |Pry1| = [T]08 Pt = |p|Zifidesas — |pprtt,
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So, the inequality becomes

(2—d)(r+1)
|T|—d(r+1)

kn—1

g

=1

(9) |, =] = H(a)™ ™

Furthermore, oy, and v have the same first A, partial quotients, hence by
Lemma [3:2) we get

(10) loag, — 8] < |HiHy ... Hp2| 2.
From the inequalities @ and we obtain

kn—1
|H1H2 .o Ho2 |2 < H(Q)T'H H |ai|(d—2)(7"+1) |T|(r+1)d
=1

whence

n2 n2 kn—1
23 i = o ( - 1) < (r-+1) deg(H(a)+(d-2)(r+1) 3 dega+(r-+1)d.

r—1 ,
i=1 =1
Then
n? 2
-1 d—2 -1
lim sup ]: — < ( G )
n—oo 3ty degay "

As p(4;) = ¢(B;) = 1 for all i > 1, we get dega; < 1, for all 1 < i < ky.
Therefore

n? _ 2 _
(11) limsupr ! < (- 1) 2).

n—00 kn_l r

As |B;| < |A;| for i > 1, then v; < \; for all i > 1. Thus, k, < 2377 \; <
2(n — 1)A\,—1. Hence, we have that

) -1 ) rn* 1
R T s L
On the other hand we have \,_1 = |[4,_1]| = 22211)2 rt = r(”(n:#) So
Pt 1 Pt — 1

lim su = limsu = 400
oo 20— DAao1 — 1 mee 2(n — 1)(r®-17 — 1)

which is a contradiction with . O
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