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ON SOME TRANSCENDENTAL CONTINUED FRACTIONS
OVER A FINITE FIELD
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Abstract. The aim of the present paper is to present some families of tran-
scendental continued fractions in positive characteristic with bounded and un-
bounded degrees through some specific irregularities of their partial quotients.
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1. INTRODUCTION

The question of how rationals can approximate algebraic numbers is a fun-
damental problem in Diophantine approximation theory. The behavior of the
continued fraction expansion of these algebraic numbers is closely related to
this subject. In particular, it is widely believed that the continued fraction
expansion of any irrational algebraic number either is eventually periodic or
contains arbitrarily large partial quotients. Khinchin [9] appears to have ad-
dressed this question initially, and a proof appears to be still far off. Examples
of transcendental continued fractions are given as a first step towards solving
this question. Liouville [12] created transcendental real numbers with a rapidly
increasing sequence of partial quotients, which is where the first result of this
kind originated. Other classes of transcendental continued fractions were sub-
sequently constructed by different authors using deeper transcendence criteria
from the Diophantine approximation. The work of Maillet [14], which has been
continued by Baker [6], is particularly remarkable because he was the first to
provide explicit examples of transcendental continued fractions with bounded
partial quotients. More precisely, Baker proved that if α = [B0, B1, B2, . . .]
where Bn is a block of kn consecutive partial quotients such that

Bn = Bn+1 = . . . = Bn+λ(n)−1,

for infinitely many positive integers n where λ(n) is a sequence of integers
verifying certain increasing properties, then α is transcendental. The proof
of this result is based on combining the result of Liouville [12] and Roth’s

The authors thank the referee for his helpful comments and suggestions.
Corresponding author: Awatef Azaza.

DOI: 10.24193/mathcluj.2024.2.03



2 On some transcendental continued fractions over a finite field 189

theorem. After this, several extensions and generalizations of Roth’s theorem
were then obtained. Schmidt has, in particular, proved in [19] a remarkable
result, established in terms of simultaneous approximation of linear forms in
logarithms with algebraic coefficients and known as the subspace theorem.
It’s a very profound result which has given rise to many interesting applica-
tions. Several new criteria of transcendence for continued fractions was given
by Adamczewski and Bugeaud [1]. In 2004, Mkaouar [16] gave a similar result
to Baker [6], concerning the transcendence of formal power series over a finite
field. In [8], Hbaib et al. proved the following result which allows the con-
struction of a family of transcendent continued fractions over Fq((T

−1)) from
an algebraic formal power series of degree more than 2.

Theorem 1.1. Let β be an algebraic formal power series such that deg(β) >
0 and α = [B1, B2, . . .] where Bi are finite blocks of partial quotients whose
the first ni-terms are those of the continued fraction expansion of β. Let di
denote the sum of degrees of Bi and δi the sum of degrees of the first ni-terms
of Bi. If

lim inf
s−→∞

∑s−1
j=1 dj

δs
= 0,

then α is transcendental or quadratic.

Many explicit continued fractions are known for algebraic and non quadratic
elements, with bounded and unbounded partial quotients, see for example
[3, 4, 7, 20].

Recently, Ammous et al. [2] improved Theorem 1.1 by giving a new tran-
scendental criterion depending on the length of the specific blocks appearing
in the sequence of partial quotients. In the same way, the purpose behind this
work is also to improve Theorem 1.1, by exposing new families of transcen-
dental continued fraction over Fq(T ), in an interesting way starting from the
continued fraction expansion of some algebraic power series of degree greater
than 2. However, we provide a slight refinement of their criteria.

This article is organized as follows: In Section 2, we define the field of
formal series and the continued fraction expansions over this field. In Sec-
tion 3, we recall some technical lemmas that allow us to prove our results.
Section 4 is devoted to exposing our main results. Theorem 4.1 and The-
orem 4.3 provide some transcendental continued fractions with unbounded
degrees, whereas Theorem 4.4 illustrates a transcendental continued fraction
with bounded degree. Section 5 contains the proofs of our main results.

2. FIELD OF FORMAL SERIES

Let p be a prime and q be a power of p. We denote by Fq the finite field of
q elements, Fq[T ] the ring of polynomials over Fq, Fq(T ) the field of rational
function and Fq((T

−1)) the field formal power series over Fq.
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For α ∈ Fq((T
−1)) and α ̸= 0 we have

α =
∑
n⩾n0

anT
−n,

where n0 ∈ Z, an ∈ Fq and an0 ̸= 0. We define the degree of α, by degα = n0

and deg 0 = −∞. Then we define the absolute value on Fq((T
−1)) by

|α| =

{
qdegα for α ̸= 0,

0 for α = 0.

Contrary to the usual absolute value on Q, this non-Archimedean absolute
value verifies

|α+ β| ≤ max{|α|, |β|}
for every α, β ∈ Fq((T

−1)) and, in particular, |α+ β| = max{|α|, |β|} as soon
as |α| ≠ |β|.

Define the polynomial part of α, denoted by [α], as follows:

[α] =

{
a0 + a−1T + · · ·+ an0T

−n0 if n0 ≤ 0,

0 else.

The fractional part of α, denoted by {α}, is defined as follows: {α} = α− [α].
Then

∣∣[α]∣∣ ≥ 1 and
∣∣{α}∣∣ < 1 for α ̸= 0.

As in classical continued fraction theory of real numbers, if α ∈ Fq((T
−1)),

then we can write

α = a1 +
1

a2 +
1

a3 +
1

. . .

= [a1, a2, a3, . . .],

where a1 = [α], ai ∈ Fq[T ], with deg(ai) ⩾ 1 for any i ⩾ 1. The sequence
(ai)i⩾1 is called the partial quotients of α and we denote by αn = [an, an+1, . . .]
the nth complete quotient of α. We define two sequences of polynomials Pn

and Qn by

P1 = a1, Q1 = 1, P2 = a1a2 + 1, Q2 = a2

and

Pn = anPn−1 + Pn−2, Qn = anQn−1 +Qn−2, for any n ⩾ 2.

We can write Pn
Qn

= [a1, a2, . . . , an] for n ⩾ 1 and we refer to
(

Pn
Qn

)
n∈N

as the

convergent sequence of α. It is easy to see that degQn+1 = deg an+1+degQn,
thus degQn =

∑n
j=2 deg aj . Moreover we have for n ≥ 1 the equality:

α = [a1, a2, . . . , an, αn+1] =
Pnαn+1 + Pn−1

Qnαn+1 +Qn−1
(1)

where αn+1 = [an+1, an+2, . . .] is called a complete quotient of α.
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We say that a formal power series has bounded partial quotients if the
polynomial (an)n≥1 are bounded in degrees.

We recall that α belonging to Fq((T
−1)) is algebraic of degree d if there

exists a polynomial Λ ∈ Fq[T ][Y ] irreducible of degree d such that Λ(α) = 0.
We say that α is quadratic if it is algebraic of degree d = 2. We recall that an
element in Fq((T

−1)) is quadratic if and only if its sequence of partial quotients
is ultimately periodic, see [15].

In the classical theory of Diophantine approximation, we are concerned with
how well an irrational number can be approximated by rational numbers. In
order to measure the quality of approximation (the irrationality measure) of
an irrational power series α, we define

ν(α) = − lim sup
|Q|→∞

log(|α− P/Q|)/ log(|Q|).

We call ν(α) the approximation exponent of α. By Roth’s theorem, the irra-
tionality measure of an irrational algebraic real number is 2. For power series
over a finite field there is no analogue of Roth’s theorem. However, according
to Mahler’s theorem [13], we have ν(α) ∈ [2, n] if α is algebraic of degree n > 1
over Fq(T ).

For a general account of continued fractions in power series fields and dio-
phantine approximation, and also for more references on this matter, the
reader can consult [10,20,21].

Now, let α be an algebraic formal power series of minimal polynomial
P (Y ) = AmY m +Am−1Y

m−1 + . . .+A0, where Ai are pairwise coprime over
Fq[T ]. H(α) is defined as the maximal of absolute values of the coefficients of
P (Y ).

Throughout the paper we are dealing with finite sequences (or words),
consequently we recall the following notation on sequences in Fq[T ]. Let
B = a1, a2, . . . , an be such a finite sequence, then we set |B| = n for the
length of the word B and φ(Bn) = max1⩽i⩽n(deg ai). If we have two words
B1 and B2, then B1, B2 denotes the word obtained by concatenation.

3. PRELIMINARY LEMMAS

We have to introduce some lemmas in order to prove the main results.

Lemma 3.1 ([17]). Let α and β be two distinct numbers of degree, respec-
tively, m and n over Fq(T ). Then we have

|α− β| ≥ H(α)−nH(β)−m.

Lemma 3.2 ([18]). Let α = [a1, a2, ...] and β = [b1, b2, ...] be two formal
series having the same first n+ 1 partial quotients. Then

|α− β| ⩽ 1

|Qn|2
.
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Lemma 3.3 ([8]). Let α be an algebraic formal power series of degree d such
that α = [a1, a2, . . . , at, β] where a1, . . . , at ∈ Fq[T ], β ∈ Fq((T

−1)). If |α| ⩾ 1
and |β| > 1, then β is algebraic of degree d and

H(β) ⩽ H(α)

∣∣∣∣ t∏
i=1

ai

∣∣∣∣d−2

.

Lemma 3.4 ([3]). Let β ∈ Fq((T
−1)) be the irrational solution of strictly

positive degree of the equation

βr −Aβr−1 + 1 = 0,

where r > 2 is a power of p. Then

β = [b1, · · · , bn, · · · ]
where b1 = A and for all n ≥ 1:

b2n+1 = (−1)nA,

b2n =

{
−A−1brn if n is odd;
A−1brn if n is even.

Furthermore, β is of degree r.

Define a finite sequence Kn whose terms consists of 4-tuples of elements in
Fq[T ] by

K1 = b1, b2, b3, b4 = A,−Ar−1,−A,−Ar2−r−1,

and for n ≥ 1
Kn = b4n+1, b4n+2, b4n+3, b4n+4.

Let K∞ be the infinite sequence defined by

K∞ = K1,K2, . . . ,Kn, . . . .

Then we have
β = [K∞].

Set um = deg bm, λ = degA. So we have for k ≥ 1

u2k+1 = λ

and

u2k =

{
(r − 1)λ if k is odd;
ruk − λ if k is even.

So we have for even k, u2k = λ(rl − rl−1 − . . .− r − 1) when 2l−1∥k.
For a given n, n = 2t with t > 1. We have that

un = λ(rt − rt−1 − . . .− r − 1) = λ

(
(r − 2)rt + 1

r − 1

)
.

Indeed, as announced we have ν(β) = r, then β is algebraic of degree r over
Fq(T ).
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Lemma 3.5. Let t > 0 be an integer. Let β ∈ Fq((T
−1)) satisfying

β = [b1, b2, . . . , bt, b
r
1, b

r
2, . . . , b

r
t , b

r2

1 , br
2

2 , . . . , br
2

t , . . .]

such that gcd(deg bt, r) = 1. Then β is algebraic of degree r + 1.

Proof. An easy calculation ensures that β verifies the following

β = [b1, . . . , bt, β
r].

Then, from (1), β satisfies

Qtβ
r+1 − Ptβ

r +Qt−1β − Pt−1 = 0,

where Pt
Qt

is tth convergent sequence of β. It remains to prove that β is algebraic

of degree r + 1. We denote

F (x) = xr+1 − Pt

Qt
xr +

Qt−1

Qt
x− Pt−1

Qt
.

Then we have F (β) = 0. If there is a double root γ of F (x), then F (γ) =

F ′(γ) = 0. Since F ′(x) = xr + Qt−1

Qt
, we have the relation

−γr =
Qt−1

Qt
.

Applying to F (γ) = 0 we have:

0 = γr(γ − Pt

Qt
) +

Qt−1

Qt
γ − Pt−1

Qt

= −Qt−1

Qt
(γ − Pt

Qt
) +

Qt−1

Qt
γ − Pt−1

Qt

= −Qt−1

Qt

Pt

Qt
− Pt−1

Qt
.

This implies that PtQt−1 − Pt−1Qt = (−1)t−1 = 0, a contradiction. Hence
F (x) is separable over Fq((T

−1)).
Now we consider the Newton polygon of F (x), which is denoted by N(F ).

There are four points (0, deg bt−deg b1), (1, deg bt), (r,−deg b1) and (r+1, 0)
on the xy-plane, and hence N(F ) consists of two line segments. The first one
has slope deg b1, which is a shift of the Newton polygon of x − β and the
second one has slope −deg bt

r . Suppose that F (x) = (x−β)G(x) in Fq[T ], then
the second line segment is a shift of the Newton polygon of G(x). Because
gcd(deg bt, r) = 1, by the theory of Newton polygons we see that G(x) is
irreducible over Fq. Moreover F (x) is irreducible over Fq since β /∈ Fq. So it
follows that β is algebraic of degree r + 1. □

Lemma 3.6 ([11]). Let s, t ≥ 1 be integers and we put q := ps and r := qt,
where p is an odd prime number. Let λ be in F∗

q such that λ ̸= 2 and put
µ := 2− λ.
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Define a finite sequence Hn of elements of Fq[T ], for n ≥ 1 by

Hn = T, (λT, µT )[(r
n−1)/2].

Let H∞ be the infinite sequence defined by

H∞ = H1, H2, . . . ,Hn, . . . .

Let γ ∈ Fq((T
−1)) such that

γ = [H∞].

Then γ satisfies the algebraic equation

(2) (λµ)(r−1)/2Pr+1γ
r+1 − (λµ)(r−1)/2Qr+1γ

r + P1γ −Q1 = 0,

where (Pn/Qn)n≥0 is the convergent sequence of γ.

It has been proved that deg γ = r + 1 (see [5, Corollary 3.2]).

4. MAIN RESULTS

Theorem 4.1. Let β = [b1, · · · , bn, · · · ] be as defined above. Let (ti)i≥1

an increasing sequence of integers. Let ni = 2ti−1, for all i ≥ 1. Let α ∈
Fq((T

−1)) such that α = [Un1 , . . . , Un2 , . . .] = [a1, a2, . . .], where (Uni)i⩾1 is
a sequence of finite blocks of polynomials such that Uni = b1b2 . . . b2ni. If
limi→+∞ rti−ti−1 = +∞, then α is transcendental.

Example 4.2. For r = 3, A = T and ti = 2i for all i ≥ 1. Then the
continued fraction

[T, 2T 2, 2T, 2T 5︸ ︷︷ ︸
Un1

, T, 2T 2, 2T, 2T 5, T, T 2, 2T, T 14, T, T 2, 2T, T 5, T, T 2, 2T, T 41︸ ︷︷ ︸
Un2

,

T, 2T 2, 2T, 2T 5, T, . . .]

is transcendental since limi→+∞ 32
i−2i−1

= +∞.

Theorem 4.3. Let α ∈ Fq((T
−1)) such that α = [U1, V1, . . . , Un, Vn, . . .] =

[a1, a2, . . .], where (Un)n⩾1 and (Vn)n⩾1 are two sequences of finite blocks of
polynomials such that

(i) Ui = u1,i, u2,i, . . . , ut,i, u
r
1,i, u

r
2,i, . . . , u

r
t,i, . . . , u

rηn−1

1,i , . . . , ur
ηn−1

t,i , for any

i ⩾ 1, with uj,i ∈ Fq[T ] of degree ⩾ 1 for all 1 ≤ j ≤ t and

gcd(deg ut,i, r) = 1.

(ii) (ηi)i⩾0 is an increasing sequence of positive integers.
(iii) (deg uj,i)i⩾0 is bounded for all 1 ≤ j ≤ n.
(iv) φ(Vn) ⩽ φ(Un), for all n ⩾ 1.
(v) The sequence (|Vn|/|Un|)n⩾1 is bounded.

If α satisfies

lim sup
n→∞

rηn−ηn−1

(n− 1)ηn−1
= +∞,

then α is transcendental.
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Theorem 4.4. Let p > 2, q = ps and r = qt where s > 1 and t ≥ 1 are
integers. Let α ∈ Fq((T

−1)) such that α = [A1B1...AnBn..] = [a1, . . . , an, . . .],
where (An)n⩾0 and (Bn)n⩾0 are two sequences of finite blocks of polynomials
such that

(i) An = H1H2 . . . Hn2

(ii) φ(Bn) = 1
(iii) |Bn| < |An| for all n ≥ 1.

Then α is transcendental.

Example 4.5. Let λ be in F∗
9\{1, 2} and µ = 2 − λ. Let α ∈ F9((T

−1))
such that

α = [T, (λT, µT )[(9−1)/2], T, T, (λT, µT )[(9
2−1)/2],

T, T, T, (λT, µT )[(9
3−1)/2], T, T, T, . . .]

Then α is transcendental.

5. PROOFS OF THE MAIN RESULTS

Proof of Theorem 4.1. Clearly α has unbounded partial quotients so it is
not quadratic. We suppose that α is algebraic of degree d > 2. Let

ηni =

i−1∑
k=1

|Unk
|.

Let αηni
= [Uni , Uni+1 , . . .]. Then by Lemma 3.1 we have

|αηni
− β| ⩾ H(αηni

)−rH(β)−d,

and Lemma 3.3 gives that

|αηni
− β| ⩾ H(α)−r

∣∣∣∣ ηni∏
k=1

ak

∣∣∣∣(2−d)r

|A|−d.(3)

Furthermore, αηni
and β have the same first partial quotients, hence by Lemma

3.2 we get

(4) |αηni
− β| ⩽ |b1b2 . . . b2ni |−2.

From the inequalities (3) and (4) we obtain

|b1b2 . . . b2ni |2 ⩽ H(α)r
ηni∏
k=1

|ak|(d−2)r |A|−d

whence

2λ

(
(r − 2)rti + 1

r − 1

)
⩽ r deg(H(α)) + r(d− 2)

ηni∑
k=1

deg ak + dλ.
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Hence

2λ( (r−2)rti+1
r−1 )∑ηni

k=1 deg ak
⩽

r deg(H(α)) + dλ∑ηni
k=1 deg ak

+ r(d− 2).(5)

As
ηni∑
k=1

deg ak =

i−1∑
j=1

|b1b2 . . . b2nj |

=

ti−1∑
j=t1

λ
(r − 2)rj + 1

r − 1
)

= λ
1

(r − 1)2
((r − 2)(rti−1+1 − rt1) + (r − 1)(ti−1 − t1)),

we have

lim
i−→+∞

2λ( (r−2)rti+1
r−1 )

λ 1
(r−1)2

((r − 2)(rti−1+1 − rt1) + (r − 1)(ti−1 − t1))
= lim

i−→+∞
rti−ti−1

= +∞.

But the inequality (5) gives that the above limit is finite. This is a contradic-
tion. □

Proof of Theorem 4.3. It is clear that α is not quadratic. Assume that α
is algebraic of degree d > 2. Set λn = |Un|, γn = |Vn| for all n ≥ 1 and

kn =
∑n−1

i=1 (λi + γi), for all n ≥ 1. We denote

βn = [u1,n, . . . , ut,n, u
r
1,t, u

r
1,n, . . . , u

r
t,n, u

r2

1,t, . . . , u
r2

t,n, . . .].

Then, from the previous lemma, βn is algebraic of degree r + 1. Now, Let
αkn = [Un, Vn, Un+1, Vn+1...] denote the kthn complete quotient of α. From
Lemma 3.3, αkn is algebraic of degree d > 2 and

H(αkn) ⩽ H(α)

∣∣∣∣ kn−1∏
i=1

ai

∣∣∣∣d−2

where (ai)i⩾1 is the sequence of partial quotients of α.
On the other hand, according to Lemma 3.1 we obtain

|αkn − βn| ⩾ H(αkn)
−r−1|βn|d

⩾ H(α)−r−1

∣∣∣∣∣
kn∏
i=1

ai

∣∣∣∣∣
(2−d)(r+1)

|βn|d
(6)

Furthermore, αkn and βn have the same first λn partial quotients, hence by
Lemma 3.2 we get

(7) |αkn − βn| ⩽ |u1,n . . . ut,nur1,n . . . urt,n . . . ur
ηn−1

1,t . . . ur
ηn−1

t,n |−2.
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From the inequalities (6) and (7) we obtain

|u1,n . . . ut,nur1,n . . . urt,n . . . ur
ηn−1

1,t . . . ur
ηn−1

t,n |2 ⩽ H(α)r+1

∣∣∣∣∣
kn∏
i=1

ai

∣∣∣∣∣
(d−2)(r+1)

|βn|d

whence

2
t∑

i=1

deg ui,n

(
rηn − 1

r − 1

)

⩽ (r + 1) logq(H(α)) + (d− 2)(r + 1)

kn∑
i=1

deg ai + d
t∑

i=1

deg ui,n.

This gives that

lim sup
n→∞

rηn∑kn
i=1 deg ai

⩽ (d− 2)(r2 − 1).

Set H = sup1≤j≤t,i⩾1 deg(uj,i). As φ(Vi) ⩽ φ(Ui) for all i ⩾ 1, we get

deg(ai) ⩽ rηn−1−1H, for all 1 ⩽ i ⩽ kn. Therefore

lim sup
n→∞

rηn

rηn−1−1Hkn
⩽ (r2 − 1)(d− 2).

By hypothesis (v), there exists c > 0 such that γi < cλi for all i ⩾ 1. Thus,
kn < (c+ 1)(n− 1)λn−1 = (c+ 1)(n− 1)tηn−1. Hence, we conclude that

lim sup
n→∞

rηn−ηn−1

(n− 1)ηn−1
< ∞,

which contradicts the hypothesis. □

Proof of Theorem 4.4. It is clear that the length of the blocks An is increas-
ing, so α is not quadratic. Assume that α is algebraic of degree d > 2. Set
λn = |An|, γn = |Bn| for all n ≥ 1 and kn =

∑n−1
i=1 (λi + γi), for all n ≥ 1. We

denote
γ = [H1, H2, . . . ,Hn, . . .].

Now, let αkn = [AnBnAn+1Bn+1...] denote the kthn complete quotient of α.
From Lemma 3.3, αkn is algebraic of degree d > 2 and

H(αkn) ⩽ H(α)

∣∣∣∣∣
kn−1∏
i=1

ai

∣∣∣∣∣
d−2

where (ai)i⩾1 is the sequence of partial quotients of α.
On the other hand, according to Lemma 3.1 we obtain

|αkn − β| ⩾ H(αkn)
−r−1H(γ)−d(8)

We have that γ satisfies the equation (2), then

H(γ) = |Pr+1| = |T |degPr+1 = |T |
∑r+1

j=1 deg aj = |T |r+1.
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So, the inequality (8) becomes

|αkn − γ| ⩾ H(α)−r−1

∣∣∣∣∣
kn−1∏
i=1

ai

∣∣∣∣∣
(2−d)(r+1)

|T |−d(r+1)(9)

Furthermore, αkn and γ have the same first λn partial quotients, hence by
Lemma 3.2 we get

(10) |αkn − β| ⩽ |H1H2 . . . Hn2 |−2.

From the inequalities (9) and (10) we obtain

|H1H2 . . . Hn2 |2 ⩽ H(α)r+1
kn−1∏
i=1

|ai|(d−2)(r+1) |T |(r+1)d

whence

2

n2∑
i=1

ri = 2r

(
rn

2 − 1

r − 1

)
⩽ (r+1) deg(H(α))+(d−2)(r+1)

kn−1∑
i=1

deg ai+(r+1)d.

Then

lim sup
n→∞

rn
2 − 1∑kn−1

i=1 deg ai
⩽

(d− 2)(r2 − 1)

r

As φ(Ai) = φ(Bi) = 1 for all i ⩾ 1, we get deg ai ≤ 1, for all 1 ⩽ i ⩽ kn.
Therefore

lim sup
n→∞

rn
2 − 1

kn − 1
⩽

(r2 − 1)(d− 2)

r
.(11)

As |Bi| < |Ai| for i ≥ 1, then γi < λi for all i ⩾ 1. Thus, kn < 2
∑n−1

i=1 λi ≤
2(n− 1)λn−1. Hence, we have that

lim sup
n→∞

rn
2 − 1

2(n− 1)λn−1 − 1
≤ lim sup

n→∞

rn
2 − 1

kn − 1

On the other hand we have λn−1 = |An−1| =
∑(n−1)2

i=1 ri = r( r
(n−1)2−1

r−1 ). So

lim sup
n→∞

rn
2 − 1

2(n− 1)λn−1 − 1
= lim sup

n→∞

rn
2 − 1

2(n− 1)(r(n−1)2 − 1)
= +∞

which is a contradiction with (11). □
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[14] E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés
arithmétiques des fonctions, Gauthier-Villars, Paris, 1906.

[15] M. Mkaouar, Sur les fractions continues des séries formelles quadratiques sur Fq(X),
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