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S-PRIME PROPERTY IN LATTICES

SHAHABADDIN EBRAHIMI ATANI

Abstract. Let £ be a bounded distributive lattice and S a join closed subset
of £. Following the concept of S-prime ideals (resp. weakly S-prime ideals),
we define S-prime filters (resp. weakly S-prime filters) of £. We will make an
extensive investigation of the basic properties and possible structures of these
filters.
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1. INTRODUCTION

All lattices considered in this paper are assumed to have a least element
denoted by 0 and a greatest element denoted by 1, in other words they are
bounded. As algebraic structures, lattices are definitely a natural choice of
generalizations of rings, and it is appropriate to ask which properties of rings
can be extended to lattices. The lack of subtraction in lattices shows that
many results in rings have no counterparts in lattices, hence, it ought to be in
the literature.

The main aim of this article is that of extending some results obtained for
ring theory to the theory of lattices.

The notion of prime ideals has a significant place in the theory of rings, and
it is used to characterize certain classes of rings. For years, there have been
many studies and generalizations on this issue. See, for example, [1, 3, 5, 8, 9,
13–15].

Anderson and Smith generalized the concept of prime ideals in [3]. We
recall from [3] that a nonzero proper ideal I of a commutative ring R is said
to be a weakly prime if whenever a, b ∈ R and 0 ̸= ab ∈ I, then either a ∈ I
or b ∈ I (also see [8]).

In 2019, Hamed and Malek [13] introduced the notion of an S-prime ideal,
i.e. let S ⊆ R be a multiplicative set and I an ideal of R disjoint from S.
We say that I is S-prime if there exists s ∈ S such that for all a, b ∈ R with
ab ∈ I, we have sa ∈ I or sb ∈ I.
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the paper.
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Almahdi et. al. [1] introduced the notion of a weakly S-prime ideal as
follows: We say that I is a weakly S-prime ideal of R if there is an element
s ∈ S such that for all x, y ∈ R, if 0 ̸= xy ∈ I, then xs ∈ I or ys ∈ I. Let £
be a bounded distributive lattice.

Our objective in this paper is to extend the notion of S-primeness from
commutative rings to S-primeness in lattices, and to investigate the relations
between S-prime filters, weakly S-prime filters, weakly prime filters and prime
filters. We say that a subset S ⊆ £ is join closed if 0 ∈ S and s1 ∨ s2 ∈ S for
all s1, s2 ∈ S (if p is a prime filter of £, then £ \ p is a join closed subset of
£). Among many results in this paper, the first, introduction section contains
elementary observations needed later on.

In Section 2, we give the basic properties of S-prime filters. At first, we
give the definition of S-prime filters (Definition 2.1) and we give an example
(Example 2.2) of an S-prime filter of £ that is not a prime filter. It is shown
(Theorem 2.4) that p is an S-prime filter of £ if and only if there exists s ∈ S
such that for all q, r filters of £, if q ∨ r ⊆ p, then s ∨ q ⊆ p or s ∨ r ⊆ p.
It is proved (Theorem 2.8) that if q is a filter of £, p1, . . . ,pn are S-prime
filters of £ and q ⊆ ∪n

i=1pi, then there exist s ∈ S and i ∈ {1, . . . , n} such
that s ∨ q ⊆ pi. It is shown (Theorem 2.13) that if S is a strongly join closed
subset of £, then each filter of £ disjoint with S is contained in a minimal
S-prime filter of £. Also, we show that every S-maximal filter of £ is an
S-prime filter (Proposition 2.15). In the rest of this section, we investigate the
properties of S-prime filters similar to prime filters. In particular, we investi-
gate the behavior of S-prime filters under homomorphism, in factor lattices,
S-Noetherian lattices, and in Cartesian products of lattices (see Proposition
2.17, Proposition 2.18, Theorem 2.21, Theorem 2.22, Theorem 2.25, Corollary
2.28, Proposition 2.29, Theorem 2.30).

Section 3 is dedicated to the investigation of the basic properties of weakly
S-prime filters. At first, we give the definitions of weakly S-prime filters and
weakly prime filters (Definition 3.1) and we give an example (Example 3.2) of
a weakly S-prime filter of £ that is not a S-prime filter (so it is not a prime
filter of £). It is proved (Theorem 3.4) that if S is a join closed subset of
£ and p is a weakly S-prime filter of £ that is not S-prime, then p = {1}.
Theorem 3.6 proves that a filter p is weakly S-prime if and only if there exists
s ∈ S such that for each x /∈ (p :£ s) we have either (p :£ x) ⊆ (p :£ s) or
(p :£ x) = (1 :£ x). Also, we show that if S is a join closed subset of £, then
every weakly S-prime filter of £ is prime if and only if £ is a £-domain and
every S-prime filter of £ is prime (Proposition 3.9). In the rest of this section,
we investigate the properties of weakly S-prime filters similarly to weakly
prime filters. In particular, we investigate the behavior of weakly S-prime
filters under homomorphism, in factor lattices, S-Noetherian lattices, and in
Cartesian products of lattices (see Theorem 3.10, Theorem 3.14, Corollary
3.15, Theorem 3.16, Corollary 3.17).
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Let us recall some notions and notations.
By a lattice we mean a poset (£,≤) in which every couple of elements x, y

has a greatest lower bound (g.l.b. - called the meet of x and y, and written
x∧ y) and a least upper bound (l.u.b. - called the join of x and y, and written
x ∨ y).

A lattice £ is complete when each of its subsets X has a l.u.b. and a g.l.b.
in £. Setting X = £, we see that any nonvoid complete lattice contains a
least element 0 and a greatest element 1 (in this case, we say that £ is a lattice
with 0 and 1).

A lattice £ is called a distributive lattice if (a∨ b)∧ c = (a∧ c)∨ (b∧ c) for
all a, b, c in £ (equivalently, £ is distributive if (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c)
for all a, b, c in £).

A non-empty subset F of a lattice £ is called a filter, if for a ∈ F , b ∈ £,
a ≤ b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if £ is a lattice with 1,
then 1 ∈ F and {1} is a filter of £).

A proper filter F of £ is called prime if x ∨ y ∈ F , then x ∈ F or y ∈ F .
A proper filter F of £ is said to be maximal if G is a filter in £ with F ⫋ G,

then G = £ [10, 11].
Let A be subset of a lattice £. Then the filter generated by A, denoted by

T (A), is the intersection of all filters that contain A.
A filter F is called finitely generated if there is a finite subset A of F such

that F = T (A).
A lattice £ with 1 is called a £-domain if whenever a ∨ b = 1 (a, b ∈ £),

then a = 1 or b = 1 (so £ is £-domain if and only if {1} is a prime filter of
£).

First we need the following lemma proved in [4–7].

Lemma 1.1. Let £ be a lattice.

(i) A non-empty subset F of £ is a filter of £ if and only if x ∨ z ∈ F
and x∧ y ∈ F for all x, y ∈ F , z ∈ £. Moreover, since x = x∨ (x∧ y),
y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all
x, y ∈ £.

(ii) If F1, · · · , Fn are filters of £ and a ∈ £, then

n∨
i=1

Fi =

{
n∨

i=1

ai : ai ∈ Fi

}
and a ∨ Fi = {a ∨ ai : ai ∈ Fi}

are filters of £ and
∨n

i=1 Fi =
⋂n

i=1 Fi.

(iii) Let A be an arbitrary non-empty subset of £. Then

T (A) = {x ∈ £ : a1 ∧ a2 ∧ · · · ∧ an ≤ x for some ai ∈ A (1 ≤ i ≤ n)}.

Moreover, if F is a filter and A is a subset of £ with A ⊆ F , then

T (A) ⊆ F, T (F ) = F and T (T (A)) = T (A).
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(iv) If £ is distributive, F,G are filters of £ and y ∈ £, then

(G :£ F ) = {x ∈ £ : x ∨ F ⊆ G},
(F :£ T ({y})) = (F :L y) = {a ∈ £ : a ∨ y ∈ F} and

(1 :£ y) = {x ∈ £ : x ∨ y = 1}
are filters of £.

(v) If {Fi}i∈∆ is a chain of filters of £, then
⋃

i∈∆ Fi is a filter of £.

(vi) If £ is distributive, G,F1, · · · , Fn are filters of £, then

G ∨

(
n∧

i=1

Fi

)
=

n∧
i=1

(G ∨ Fi).

(vii) If £ is distributive and F1, · · · , Fn are filters of £, then
n∧

i=1

Fi = {∧n
i=1ai : ai ∈ Fi}

is a filter of £ and Fi ⊆
∧n

i=1 Fi for each i.

2. CHARACTERIZATION OF S-PRIME FILTERS

In this section, we collect some basic properties concerning S-prime filters.
We remind the reader the following definition.

Definition 2.1. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with S. We say that p is an S-prime filter of £ if there
is an element s ∈ S such that for all x, y ∈ £ if x ∨ y ∈ p, then x ∨ s ∈ p or
y ∨ s ∈ p.

Example 2.2. (a) If S = {0}, then the prime and the S-prime filters
of £ are the same.

(b) If p is a prime filter of £ disjoint with S, then p is an S-prime filter.

(c) Assume that £ = {0, a, b, c, 1} is a lattice with the relations 0 ≤ a ≤
c ≤ 1, 0 ≤ b ≤ c ≤ 1, a ∨ b = c and a ∧ b = 0 and let S = {0, a}.
Then S is a join closed subset of £ and p = {1, c} is an S-prime filter
of £. Note that S ∩ p = ∅. Also, p is not a prime filter of £ because
a∨ b = c ∈ p and a, b /∈ p. Thus an S-prime filter need not be a prime
filter.

Proposition 2.3. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. The following assertions are equivalent:

(i) p is an S-prime filter of £;

(ii) (P :£ s) is a prime filter of £ for some s ∈ S.

Proof. (i)⇒(ii) Since p is an S-prime filter, we conclude that there is an
element s ∈ S such that for all x, y ∈ £ with x ∨ y ∈ p we have x ∨ s ∈ p or
y ∨ s ∈ p.
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Now, we show that (p :£ s) is a prime filter of £. Let x, y ∈ £ such that
x ∨ y ∈ (P :£ s). Then x ∨ y ∨ s ∈ p gives x ∨ s ∨ s = x ∨ s ∈ p or y ∨ s ∈ p
which means that x ∈ (P :£ s) or y ∈ (P :£ s). Thus (P :£ s) is a prime filter
of £.

The implication (ii)⇒(i) is obvious. □

Theorem 2.4. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. The following assertions are equivalent:

(i) p is an S-prime filter of £;

(ii) There exists s ∈ S such that for any two q, r filters of £, if q∨ r ⊆ p,
then s ∨ q ⊆ p or s ∨ r ⊆ p.

Proof. (i)⇒(ii) Since p is an S-prime filter, we conclude that there is an
element s ∈ S such that for all x, y ∈ £, if x ∨ y ∈ p, then s ∨ x ∈ p or
s ∨ y ∈ p. On the contrary, assume that for all u ∈ S, there are qu, ru two
filters of £ with qu ∨ ru ⊆ p, but u ∨ qu ⊈ p and u ∨ ru ⊈ p. So there exist
qs, rs two filters of £ with qs ∨ rs ⊆ p, but s ∨ qs ⊈ p and s ∨ rs ⊈ p, as
s ∈ S. This shows that there exist xs ∈ qs and ys ∈ rs such that s ∨ xs /∈ p
and s ∨ ys /∈ p which is impossible, as p is an S-prime filter, i.e. (ii) holds.

(ii)⇒(i) Let x, y ∈ £ such that x ∨ y ∈ p. Set q = T ({x}) and r = T ({y}).
Then q ∨ r ⊆ p gives that there exits s ∈ S such that s ∨ x ∈ s ∨ q ⊆ p or
s ∨ y ∈ s ∨ r ⊆ p by (ii), i.e. (i) holds. □

Corollary 2.5. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. Then p is an S-prime filter if and only if there
exists s ∈ S such that for all q1, · · · ,qn filters of £, if q1 ∨ · · · ∨qn ⊆ p, then
s ∨ qi ⊆ p for some i ∈ {1, · · · , n}.

Proof. Let p be an S-prime filter of £. Then there is an element s ∈ S
such that for all x, y ∈ £, if x ∨ y ∈ p, then s ∨ x ∈ p or s ∨ y ∈ p. We use
induction on n. We can take n = 2 as a base case by Theorem 2.4. Let n ≥ 3,
assume that the property holds up to the order n−1 and let q1, · · · ,qn filters
of £ such that q1 ∨ · · · ∨ qn = (q1 ∨ · · · ∨ qn−1) ∨ qn ⊆ p. Then by Theorem
2.4, s ∨ qn ⊆ p or (s ∨ q1) ∨ q2 ∨ · · · ∨ qn−1 ⊆ p. Therefore s ∨ qn ⊆ p or
(s ∨ s ∨ q1 = s ∨ q1 ⊆ p or s ∨ qi ⊆ p for some i ∈ {2, · · · , n − 1}). In the
same way we prove that s ∨ qi ⊆ p for some i ∈ {1, 2, · · · , n}. □

Corollary 2.6. Let p be a proper filter of £. Then p is a prime filter if
and only if for all q1, · · · ,qn filters of £, if q1 ∨ · · · ∨ qn ⊆ p, then qi ⊆ p
for some i ∈ {1, · · · , n}.

Proof. Take S = {0} in Corollary 2.5. □

Corollary 2.7. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. Then p is an S-prime filter if and only if there
exists s ∈ S such that for all x1, x2, · · · , xn ∈ £, if x1 ∨ · · · ∨ xn ∈ p, then
s ∨ xi ∈ p for some i ∈ {1, · · · , n}.
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Proof. Assume that p is an S-prime filter of £ and let x1, · · · , xn ∈ £ such
that x1∨· · ·∨xn ∈ p. So T ({x1})∨· · ·∨T ({xn}) ⊆ p. Then by Corollary 2.5,
there exists s ∈ S such that s ∨ xi ∈ s ∨ T ({xi}) ⊆ p for some i ∈ {1, · · · , n}.
For the converse, take n = 2. □

Compare the next theorem with Theorem 2 in [13].

Theorem 2.8. Let S be a join closed subset of £. Let q be a filter of £and
p1, · · · ,pn be S-prime filters of £. If q ⊆ ∪n

i=1pi, then there exist s ∈ S and
i ∈ {1, · · · , n} such that s ∨ q ⊆ pi.

Proof. By Proposition 2.3, for each i ∈ {1, · · · , n}, there exists si ∈ S such
that (pi :£ si) is a prime filter of £. Then q ⊆ ∪n

i=1pi ⊆ ∪n
i=1(pi :£ si) gives

that there exists i ∈ {1, · · · , n} such that q ⊆ (pi :£ si) by [6, Theorem 2.1
(ii)]; this implies that si ∨ q ⊆ pi. □

Definition 2.9. Let S be a join closed subset of £. We say that S is a
strongly join closed subset if for each family {si}i∈Λ of elements of S we have

(∩i∈ΛT ({si})) ∩ S ̸= ∅.

Example 2.10. Assume that S = {s1, · · · , sk} is a join closed subset of £
and let {si1 , · · · , sit} ⊆ S. Set s = si1 ∨ · · · ∨ sit (so s ∈ S). Then for each
j ∈ {i1, · · · , it} = S′, s ∈ T (sij ); hence s ∈ (∩j∈S′T ({sij})) ∩ S. Thus every
finite join closed subset of £ is a strongly join closed subset.

Theorem 2.11. Assume that S is a strongly join closed subset of £ and let
{pi}i∈Λ be a chain of S-prime filters of £. Then p = ∩i∈Λpi is an S-prime
filter of £.

Proof. For each i ∈ Λ, there is an element si ∈ S such that for all x, y ∈ £
with x ∨ y ∈ pi we have si ∨ x ∈ pi or si ∨ y ∈ pi. Since S is a strongly
join closed subset, we conclude that (∩i∈ΛT ({si})) ∩ S ̸= ∅. Consider t ∈
(∩i∈ΛT ({si})) ∩ S. Then for each i ∈ Λ, t = si ∨ ai, where ai ∈ £.

Now we will show that for all a, b ∈ £ such that a∨ b ∈ p we have t∨ a ∈ p
or t ∨ b ∈ p, i.e. p is S-prime. Let a, b ∈ £ such that a ∨ b ∈ p and suppose
that t ∨ a /∈ p. Then t ∨ a /∈ pj for some j ∈ Λ. Let k ∈ Λ. Then pk ⊆ pj or
pj ⊆ pk. We split the proof into two cases.

Case 1. pk ⊆ pj. Since t∨a /∈ pj, we conclude that t∨a = sk∨ak∨a /∈ pk;
so sk ∨ a /∈ pk. This shows that sk ∨ b ∈ pk; hence sk ∨ ak ∨ b = t ∨ b ∈ pk.
Thus t ∨ b ∈ p.

Case 2. pj ⊆ pk. Since t∨ a = sj ∨ aj ∨ a /∈ pj, we get that sj ∨ a /∈ pj; so
sj ∨ b ∈ pj ⊆ pk which gives t ∨ b = sj ∨ aj ∨ b ∈ pk, and so t ∨ b ∈ p. □

Assume that S is a join closed subset of £ and let F be a filter of £ disjoint
with S. Let p be an S-prime filter of £ such that F ⊆ p. We say that p is a
minimal S-prime filter over F if p is minimal in the set of the S-prime filters
containing F . Let F(£) be the set of all filters of £.
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Lemma 2.12. Suppose that F is a filter of £ and let S be a join closed
subset of £ such that S ∩ F = ∅. Then there exists an S-prime filter p of £
such that F ⊆ p.

Proof. Set Ω = {G ∈ F(£) : F ⊆ G and S ∩ G = ∅}. Clearly, F ∈ Ω, and
so Ω ̸= ∅. Moreover, (Ω,⊆) is a partial order. It is easy to see that Ω is closed
under taking unions of chains and so Ω has at least one maximal element by
Zorn’s Lemma, say p. Since S ∩ p = ∅ and 0 ∈ S, we see that 0 /∈ p and
p ⫋ £. It remains to show that p is a prime filter by Example 2.2 (b).

Now let a, b /∈ p; we must show that a ∨ b /∈ p for some elements a, b ∈ £.
Since a /∈ p, we have F ⊆ p ⫋ p ∧ T ({a}). By the maximality of p in Ω,
we must have S ∩ (p ∧ T ({a})) ̸= ∅, and so there exist s ∈ S, t ∈ £ and
e ∈ p such that s = e ∧ (a ∨ t). Similarly, there exist s′ ∈ S, t′ ∈ £ and
e′ ∈ p such that s′ = e′ ∧ (b ∨ t′). Put u = a ∨ t and v = b ∨ t′. Then
s ∨ s′ = ((e ∧ u) ∨ e′) ∧ ((e ∧ u) ∨ v) = ((e ∧ u) ∨ e′) ∧ (e ∨ v) ∧ (a ∨ b ∨ t ∨ t′).
Since s ∨ s′ ∈ S and ((e ∧ u) ∨ e′) ∧ (e ∨ v) ∈ p, we must have a ∨ b /∈ p since
S ∩ p = ∅. Thus p is a prime filter of £. □

Compare the next theorem with Proposition 5 in [13].

Theorem 2.13. If S is a strongly join closed subset of £, then each filter
of £ disjoint with S is contained in a minimal S-prime filter of £.

Proof. Let F be a filter of £ with F ∩S = ∅ and let Ω be the set of S-prime
filters containing F . By Lemma 2.12, Ω ̸= ∅. Moreover, (Ω,⊇) is a partial
order and Ω is inductive. Indeed, if {pi}i∈Λ is a chain of elements of Ω, then
by Theorem 2.11, p = ∩i∈Λpi is an S-prime filter of £ which contains F ;
hence p ∈ Ω is an upper bound for the chain. Then by Zorn’s Lemma, Ω has
a maximal element for ”⊇” and so F is contained in a minimal S-prime filter
of £. □

Definition 2.14. Assume that S is a join closed subset of £ and let p be
a filter of £ disjoint with S. Then p is said to be an S-maximal filter if there
exists a fixed s ∈ S and whenever p ⊆ q for some filter q of £, then either
s ∨ q ⊆ p or q ∩ S ̸= ∅.

Classically, in a lattice £ every maximal filter is a prime filter, but its
S-version has the following property. Compare it with Proposition 10 in [15].

Proposition 2.15. Let S be a join closed subset of £. Then every S-
maximal filter of £ is an S-prime filter.

Proof. Suppose that p is an S-maximal filter. Then there exists a fixed
s ∈ S, and p ⊆ q for some filter q of £, which implies that s ∨ q ⊆ p or
q ∩ S ̸= ∅. Now, we will show that p is an S-prime filter. Let x ∨ y ∈ p for
some x, y ∈ £. It suffices to show that s ∨ x ∈ p or s ∨ y ∈ p.

On the contrary, assume that s ∨ x /∈ p and s ∨ y /∈ p. This shows that
p ⫋ p ∧ T ({x}) and p ⫋ p ∧ T ({y}). Since p is S-maximal, we conclude that
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s ∨ (p ∧ T ({x})) ⊆ p or (p ∧ T ({x})) ∩ S ̸= ∅. If s ∨ (p ∧ T ({x})) ⊆ p, then
s ∨ x = s ∨ (1 ∧ (0 ∨ x)) ∈ p which is impossible. So (p ∧ T ({x})) ∩ S ̸= ∅.
Likewise, (p ∧ T ({y})) ∩ S ̸= ∅. Then there exist s1, s2 ∈ S such that s1 =
p1 ∧ (a ∨ x) and s2 = p2 ∧ (b ∨ y) for some p1, p2 ∈ p and a, b ∈ £. Then we
have s1 ∨ s2 = ((p1 ∧ (a∨ x))∨ p2)∧ (p1 ∨ b∨ y)∧ (x∨ y ∨ a∨ b) ∈ S ∩p, as p
is a filter, which is a contradiction. Thus p is an S-prime filter of £. □

We continue this section with the investigation of the stability of S-prime
filters in various lattice-theoretic constructions.

Quotient lattices are determined by equivalence relations rather than by
ideals as in the ring case. If F is a filter of a lattice (£,≤), we define a
relation on £, given by x ∼ y if and only if there exist a, b ∈ F satisfying
x ∧ a = y ∧ b. Then ∼ is an equivalence relation on £, and we denote the
equivalence class of a by a ∧ F and the collection of all equivalence classes by
£
F . We set up a partial order ≤Q on £

F as follows: for each a∧F, b∧F ∈ £
F , we

write a ∧ F ≤Q b ∧ F if and only if a ≤ b. The following notation below will

be kept in this paper: It is straightforward to check that (£F ,≤Q) is a lattice
with (a∧ F )∨Q (b∧ F ) = (a∨ b)∧ F and (a∧ F )∧Q (b∧ F ) = (a∧ b)∧ F for

all elements a ∧ F, b ∧ F ∈ £
F . Note that f ∧ F = F if and only if f ∈ F . Let

y ∈ £. We denote by ȳ the equivalence class of y in £
F .

An element x of £ is called the identity join of a lattice £, if there exists
1 ̸= y ∈ £ such that x ∨ y = 1. The set of all identity joins of a lattice £ is
denoted by Id(£).

Proposition 2.16. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. The following hold:

(i) SQ = {s̄ : s ∈ S} is a join closed subset of £
p ;

(ii) If Id(£p ) ∩ SQ = ∅, then prime and S-prime filters coincide.

Proof. (i) Clearly, 0̄ ∈ SQ. If s̄1, s̄2 ∈ SQ for some s1, s2 ∈ S (so s1∨s2 ∈ S),
then s̄1 ∨Q s̄2 = (s1 ∨ s2) ∧ p ∈ SQ, i.e. (i) holds.

(ii) It suffices to show that P = (P :£ s) for all s ∈ S by Proposition 2.3.
Since the inclusion P ⊆ (P :£ s) is clear, we will prove the reverse inclusion.
Let s ∈ S and x ∈ (P :£ s). Then s ∨ x ∈ p gives (s ∧ p) ∨Q (x ∧ p) =

(s ∨ x) ∧ p = 1 ∧ p. Since Id(£p ) ∩ SQ = ∅, we conclude that x ∧ p = 1 ∧ p; so

x ∧ p1 = 1 ∧ p2 = p2 for some p1, p2 ∈ p. This implies that x ∈ p, by Lemma
1.1. □

Proposition 2.17. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. The following hold:

(i) Let q be a filter of £ such that q ∩ S ̸= ∅. If p is an S-prime filter of
£, then p ∨ q is an S-prime filter of £;

(ii) Let £ ⊆ £′ be an extension of lattices. If q is an S-prime filter of £′,
then q ∨£ is an S-prime filter of £;
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(iii) Let f : £ → £′ be a lattice homomorphism such that f(0) = 0 and
f(s) ̸= 1 for all 1 ̸= s ∈ £. Then f(S) is a join closed subset of £′

and if q is an f(S)-prime filter of £′, then p = f−1(q) is an S-prime
filter of £.

Proof. (i) Suppose that q ∈ S∩q and let x, y ∈ £ such that x∨y ∈ p∨q ⊆ p.
Then there is an element s ∈ S such that s ∨ x ∈ p or s ∨ y ∈ p which gives
s ∨ q ∨ x ∈ p or s ∨ q ∨ y ∈ p, where s ∨ q ∈ S, i.e. (i) holds.

(ii) Let x, y ∈ £ such that x ∨ y ∈ q ∨ £ ⊆ q. Then there is an element
s ∈ S such that s ∨ x ∈ q or s ∨ y ∈ q which implies that s ∨ x ∈ q ∨ £ or
s ∨ y ∈ q ∨£. This completes the proof.

(iii) Clearly, f(S) is a join closed subset of £′. By assumption, there exists
s ∈ S such that for all x, y ∈ £′ if x∨ y ∈ q, then f(s)∨x ∈ q or f(s)∨ y ∈ q.
It is clear that p∩S = ∅. Let a, b ∈ £ such that a∨b ∈ p; so f(a∨b) = f(a)∨
f(b) ∈ q which gives f(s) ∨ f(a) = f(s ∨ a) ∈ q or f(s) ∨ f(b) = f(s ∨ b) ∈ q.
This implies that s ∨ a ∈ p or s ∨ b ∈ p, as required. □

Proposition 2.18. Assume that q is a filter of £ and let S be a join closed
subset of £ disjoint with q. Let p be a proper filter of £ containing q such
that (pq ) ∩ SQ = ∅. Then p is an S-prime filter of £ if and only if p

q is an

SQ-prime filter of £
q .

Proof. Let p be an S-prime filter of £. Then there is an element s ∈ S
such that for all x, y ∈ £, if x ∨ y ∈ p, then s ∨ x ∈ p or s ∨ y ∈ p. Let
a ∧ q, b ∧ q ∈ £

q such that (a ∧ q) ∨Q (b ∧ q) = (a ∨ b) ∧ q ∈ p
q which gives

a ∨ b ∈ p by [4, Lemma 4.3]; hence s ∨ a ∈ p or s ∨ b ∈ p. Therefore
(s ∧ q) ∨Q (a ∧ q) ∈ p

q or (s ∧ q) ∨Q (b ∧ q) ∈ p
q . Thus

p
q is an SQ-prime filter

of £
q . Conversely, if p∩ S ̸= ∅, then (pq )∩ SQ ̸= ∅, which is impossible. Hence

S ∩ p = ∅. Since p
q is an SQ-prime filter of £

q , we conclude that there exists

s ∈ S such that for all x ∧ q, y ∧ q ∈ £
q with (x ∧ q) ∨Q (y ∧ q) ∈ p

q , we get

(s ∧ q) ∨Q (x ∧ q) ∈ p
q or (s ∧ q) ∨Q (y ∧ q) ∈ p

q .

Now, let a, b ∈ £ such that a ∨ b ∈ p. Then (a ∧ q) ∨Q (b ∧ q) ∈ p
q gives

(s ∧ q) ∨Q (a ∧ q) ∈ p
q or (s ∧ q) ∨Q (b ∧ q) ∈ p

q ; hence s ∨ a ∈ p or s ∨ b ∈ p,

i.e. the result holds. □

Definition 2.19. Let S be a join closed subset of £. We say that a filter
F of £ is S-finite if s ∨ F ⊆ G ⊆ F for some finitely generated filter G of £
and some s ∈ S. We say that £ is S-Noetherian if each filter of £ is S-finite.

Lemma 2.20. Assume that S is a join closed subset of £ and let p be a
filter of £ which is maximal among all non-S-finite filters of £. Then p is a
prime filter of £.

Proof. Notice that £ is S-finite since s∨£ ⊆ T ({s}) ⊆ £ for every s ∈ S∩£.
If p is not prime, let a, b /∈ p with a∨b ∈ p. Since p ⫋ p∧T ({a}), we conclude
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that p ∧ T ({a}) is S-finite by maximality of p; hence

s ∨ (p ∧ T ({a}) ⊆ T ({p1 ∧ (a ∨ s1), · · · , pn ∧ (a ∨ sn)})
for some s ∈ S, p1, · · · , pn ∈ p and s1, · · · , sn ∈ £. Also, (p :£ a) is S-finite,
so t ∨ (p :£ a) ⊆ T ({q1, · · · , qk}) for some t ∈ S and q1, · · · , qn ∈ (p :£ a).
Now let x ∈ p (so x ∨ s ∈ s ∨ (p ∧ T ({a})). Then

s ∨ x = (s ∨ x) ∨ ∧n
i=1(pi ∧ (a ∨ si))

= ∧n
i=1(s ∨ x ∨ pi) ∧ (∧n

i=1(s ∨ x ∨ a ∨ si)),

so y = ∧n
i=1(s ∨ x ∨ si) ∈ (p :£ a) (so t ∨ y ∈ (p :£ a)) which gives

t ∨ y = (t ∨ y) ∨ (∧k
i=1qi) = ∧k

i=1(t ∨ y ∨ qi).

Therefore

s ∨ x ∨ t = ∧n
i=1(s ∨ x ∨ pi ∨ t) ∧ (∧n

i=1(s ∨ x ∨ t ∨ si ∨ a))

= ∧n
i=1(s ∨ x ∨ pi ∨ t) ∧ (a ∨ t ∨ y)

= ∧n
i=1(s ∨ x ∨ pi ∨ t) ∧ (∧k

i=1(a ∨ qi ∨ t ∨ y)).

So (s∨t)∨p ⊆ T (A) ⊆ p, where A = {p1∨t, · · · , pn∨t, a∨q1, · · · , a∨qk} ⊆ p;
hence p is S-finite, which is a contradiction. Thus p is a prime filter of £. □

In the following theorem we give an S-version of Cohen’s Theorem ([12,
Theorem 2]). Compare it with Proposition 4 in [2]).

Theorem 2.21. Let S be a join closed subset of £. Then £ is S-Noetherian
if and only if every prime filter of £ (disjoint from S) is S-finite.

Proof. One side is clear. To see the other side, assume that p is S-finite for
each prime filter p of £ disjoint from S. Suppose That £ is not S-Noetherian
and we look for a contradiction.

The set Ω of all non-S-finite filters of £ is inductively ordered under inclu-
sion. By Zorn’s Lemma, choose q maximal in Ω. Then Lemma 2.20 shows
that q is a prime filter. If q ∩ S ̸= ∅, then s ∨ q ⊆ T ({s}) ⊆ q for every
s ∈ q ∩ S gives that q is S-finite, which is a contradiction. Thus q ∩ S = ∅.

Now, by the hypothesis, q is S-finite which is impossible since q ∈ Ω. Thus
£ is S-Noetherian. □

Theorem 2.22. Let S be a join closed subset of £. The following assertions
are equivalent:

(i) £ is S-Noetherian;

(ii) Every S-prime filter of £ is S-finite;

(iii) Every prime filter of £ is S-finite.

Proof. (i)⇒(ii) This is clear.

(ii)⇒(iii) Let p be a prime filter of £. If p∩S ̸= ∅, then s∨p ⊆ T ({s}) ⊆ P
for every s ∈ p∩S gives p is S-finite. If p∩S = ∅, then p is an S-prime filter
of £; so by the hypothesis, p is S-finite.
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(iii)⇒(i) Follows from Theorem 2.21. □

Lemma 2.23. (i) If A = {a1, · · · , an} ⊆ £, then T (A) = ∧n
i=1T ({ai}).

(ii) Assume that F is a filter of £ and let G be a finitely generated filter.
Then G∧F

F is a finitely generated filter of £
F .

Proof. (i) Since for each i ∈ {1, · · · , n}, {ai} ⊆ A ⊆ T (A), we conclude that
T ({ai}) ⊆ T (A); so ∧n

i=1T ({ai}) ⊆ T (A). If x ∈ T (A), then

x = (x ∨ a1) ∧ · · · ∧ (x ∨ an) ∈ ∧n
i=1T ({ai}),

and so we have equality.

(ii) By assumption, there exists a finite set A = {a1, · · · , an} ⊆ G such that
G = T (A). Let ȳ = y ∧ F ∈ G∧F

F . Then there exist

x = (x ∨ a1) ∧ · · · ∧ (x ∨ an) ∈ G

and f ∈ F such that

ȳ = x̄ = (x̄ ∨Q ā1) ∧Q · · · ∧Q (x̄ ∨Q ān) ∈ ∧n
i=1T ({āi}) = T ({ā1, · · · , ān}),

by (i). This shows that G∧F
F is a finitely generated filter of £

F . □

Proposition 2.24. Suppose that F is a filter of £ and let S be a join
closed subset of £ such that S ∩ F = ∅. If £ is S-Noetherian, then £

F is
QS-Noetherian.

Proof. Let H be a filter of £
F . Then by the hypothesis and [4, Lemma 4.2],

there exists an S-finite filter G of £ such that H = G
F ; so s ∨ G ⊆ K ⊆ G

for some finitely generated filter K = T (A) of £ and some s ∈ S, where
A = {a1, · · · , ak} ⊆ G. Then by Lemma 2.23, K∧F

F = T ({ā1, · · · , ān}) is

finitely generated. An inspection will show that s̄ ∨Q
G
F ⊆ K∧F

F ⊆ G
F which

implies that G
F is a QS-finite filter of £

F , i.e.
£
F is QS-Noetherian. □

Compare the next theorem with Theorem 5 in [13].

Theorem 2.25. Let S be a join closed subset of £ and F a filter of £
disjoint with S. If £ is S-Noetherian, then there exist an s ∈ S and S-prime
filters p1, · · · ,pn of £ containing F such that s ∨ (p1 ∨ · · · ∨ pn) ⊆ F .

Proof. At first, we show that the set Ω = {F ∈ F(£) : for all s ∈ S, for all
S-prime filters p1, · · · ,pn of £, we have s ∨ (p1 ∨ · · · ∨ pn) ⊈ F} is empty.

On the contrary, assume that Ω ̸= ∅. Clearly, (Ω,⊆) is a partial order. Let
{Fi}i∈Λ be a chain of elements of Ω and set G = ∪i∈ΛFi. It is clear that G is
a filter of £.

We claim that G ∈ Ω. Assume on the contrary, that G /∈ Ω. Then there
exist s ∈ S and S-prime filters p1, · · · ,pn of £ such that s∨(p1∨· · ·∨pn) ⊆ G.
Since £ is S-Noetherian, for all i ∈ {1, · · · , n}, there exist p1,i, · · · , pmi,i ∈ £
and si ∈ S such that si ∨ pi ⊆ T ({p1,i, · · · , pmi,i}) ⊆ pi.
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Therefore,

s ∨ s1 ∨ · · · ∨ sn ∨ (p1 ∨ · · · ∨ pn)

⊆ s ∨ (T ({p1,1, · · · , pm1,1}) ∨ · · · ∨ T ({p1,n, · · · , pmn,n})
⊆ s ∨ (p1 ∨ · · · ∨ pn)

⊆ G.

Set T ({p1,1, · · · , pm1,1}) ∨ · · · ∨ T ({p1,n, · · · , pmn,n}) = T ({c1, · · · , ct}) for
some c1, · · · , ct ∈ £. Since T ({c1, · · · , ct}) ⊆ G, there is an element j ∈ Λ
such that T ({c1, · · · , ct}) ⊆ Fj ; hence

s ∨ s1 ∨ · · · ∨ sn ∨ (p1 ∨ · · · ∨ pn) ⊆ T ({c1, · · · , ct}) ⊆ Fj ∈ Ω,

which is impossible.
Thus G is an upper bound of the chain {Fi}i∈Λ; hence by Zorn’s Lemma,

Ω has a maximal element p. If s ∈ S ∩p, then p is a filter, which implies that
for all S-prime filters p′ of £, s ∨ p′ ⊆ p ∈ Ω, which is a contradiction.

Thus p ∩ S = ∅. Since p ∈ Ω, we conclude that p is not S-prime. So for
all s ∈ S, there are elements a, b ∈ £ such that a ∨ b ∈ p, but s ∨ a /∈ p and
s ∨ b /∈ p.

Since p ⫋ p∧T ({s∨a}) and p ⫋ p∧T ({s∨ b}), then by the maximality of
p there are u, v ∈ S and p1, · · · ,pn,q1, · · · ,qm S-prime filters of £ such that
u∨ (p1 ∨ · · · ∨ pn) ⊆ p∧ T ({s∨ a}) and v ∨ (q1 ∨ · · · ∨ qm) ⊆ p∧ T ({s∨ b}).

Put A = T ({s ∨ a}) and B = T ({s ∨ b}). Therefore

(u ∨ v) ∨ (p1 ∨ · · · ∨ pn ∨ q1 ∨ · · · ∨ qm)

⊆ (p ∧A) ∨ (p ∧B) = p ∧ (A ∨B)

⊆ p ∧ T ({a ∨ b})
⊆ p ∈ Ω,

which is a contradiction. Thus Ω = ∅.
Let F be a filter of £ disjoint with S. By Proposition 2.24, £

F is QS-

Noetherian; so there exist s ∈ S and SQ-prime filters £
F which are of the

form qi
F by [4, Lemma 4.2], where qi are S-prime filters of £ containing F , by

Proposition 2.18, such that

(s ∧ F ) ∨Q (
q1

F
∨Q · · · ∨Q

qn

F
) =

s ∨ (q1 ∨ · · · ∨ qn)

F
⊆ {1̄} =

F

F
;

thus s ∨ (q1 ∨ · · · ∨ qn) ⊆ F . This completes the proof. □

Corollary 2.26. Let F be a proper filter of a Noetherian lattice £. Then
there exist prime filters p1, · · · ,pn of £ containing F such that

p1 ∨ · · · ∨ pn ⊆ F.

Proof. Take S = {0} in Theorem 2.25. □
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Corollary 2.27. Assume that S is a finite join closed subset of £ and
let F be a filter of £ disjoint with S. Suppose that £ is S-Noetherian. The
following hold:

(i) There exist a minimal S-prime filter q over F and an S-prime filter
p of £ containing F such that q = (p ∨ T ({s}) ∧ F ;

(ii) Each filter of £ disjoint with S has a finite number of minimal S-prime
filters. In particular, the set of minimal S-prime filters of £ is finite.

Proof. (i) By Example 2.10 and Theorem 2.13, there exists a minimal S-
prime filter q over F . Also, by Theorem 2.25, there exists a t ∈ S and
S-prime filters p1, · · · ,pn of £ such that t ∨ (p1 ∨ · · · ∨ pn) ⊆ F ⊆ q. By
Corollary 2.5, s ∨ pi ⊆ q, for some s ∈ S and some i ∈ {1, · · · , n}. Since
s = s∧1 ∈ T ({s})∧F , we conclude that (p∨T ({s})∧F = (F ∧T ({s})∨pi is
an S-prime filter of £ containing F , by Proposition 2.17. But q is minimal in
the set of S-prime filters containing F , this shows that q = (p ∨ T ({s}) ∧ F .

(ii) This follows from (i) and its proof. □

Corollary 2.28. If £ is Noetherian, then the set of minimal prime filters
of £ is finite.

Proof. Take S = {0} in Corollary 2.27. □

Assume that (£1,≤1), (£2,≤2), · · · , (£n,≤n) are lattices (n ≥ 2) and let
£ = £1 × £2 × · · · × £n. We set up a partial order ≤c on £ as follows: for
each x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ £, we write x ≤c y if and only
if xi ≤i yi for each i ∈ {1, 2, · · · , n}.

The following notation below will be kept in this paper: It is straightforward
to check that (£,≤c) is a lattice with x∨cy = (x1∨y1, x2∨y2, · · · , xn∨yn) and
x ∧c y = (x1 ∧ y1, · · · , xn ∧ yn). In this case, we say that £ is a decomposable
lattice.

Proposition 2.29. Let £ = £1 × £2 be a decomposable lattice and S =
S1 × S2, where Si is a join closed subset of £i. Suppose that p = p1 × p2 is
a filter of £. The following statements are equivalent:

(i) p is an S-prime filter of £;

(ii) p1 is an S1-prime filter of £1 and p2 ∩ S2 ̸= ∅ or p2 is an S2-prime
filter of £2 and p1 ∩ S1 ̸= ∅.

Proof. (i)⇒(ii) Let p be an S-prime filter of £. Since (0, 1) ∨c (1, 0) =
(1, 1) ∈ p, there exists s = (s1, s2) ∈ S such that s ∨c (0, 1) = (s1, 1) ∈ p or
s ∨c (1, 0) = (1, s2) ∈ p and hence p1 ∩ S1 ̸= ∅ or p2 ∩ S2 ̸= ∅.

Without any loss of generality, we can assume that p1 ∩ S1 ̸= ∅. Since
p ∩ S = ∅, we conclude that p2 ∩ S2 = ∅. Let x ∨ y ∈ p2 for some x, y ∈ £2.
As (1, x) ∨c (1, y) = (1, x ∨ y) ∈ p and p is an S-prime filter, we obtain either
t∨c (1, x) = (1, t2∨x) ∈ p or t∨c (1, y) = (1, t2∨y) ∈ p for some t = (t1, t2) ∈ S
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and this yields t2 ∨ x ∈ p2 or t2 ∨ y ∈ p2. Hence p2 is a S2-prime filter of £2.
In the other case, one can similarly show that p1 is an S1-prime filter of £1.

(ii)⇒(i) Suppose that p1 ∩ S1 ̸= ∅ and p2 is an S2-prime filter of £2.
Consider s1 ∈ p1∩S1. Let (a, b)∨c (c, d) ∈ p for some a, c ∈ £1 and b, d ∈ £2.
This shows that b∨d ∈ p2 and hence there exists s2 ∈ S2 such that s2∨b ∈ p2

or s2∨d ∈ p2. Set s = (s1, s2) ∈ S. Then we have s∨c(a, b) = (s1∨a, s2∨b) ∈ p
or s ∨c (c, d) = (s1 ∨ c, s2 ∨ d) ∈ p. Thus p is an S-prime filter of £. In the
other case, one can similarly prove that p is an S-prime filter of £. □

Theorem 2.30. Let £ = £1 × · · · × £n be a decomposable lattice and let
S = S1 × · · · × Sn, where Si is a join closed subset of £i. Suppose that
p = p1 × · · · × pn is a filter of £. The following statements are equivalent:

(i) p is an S-prime filter of £;

(ii) pi is an Si-prime filter of £i for some i ∈ {1, · · · , n} and pj ∩ Sj ̸= ∅
for all j ∈ {1, · · · , n} \ {i}.

Proof. We use induction on n. For n = 1, the result is true. If n = 2, then
(i) and (ii) are equivalent by Proposition 2.29.

Assume that (i) and (ii) are equivalent when k < n. Set

p′ = p1 × · · · × pn−1, S′ = S1 × · · · × Sn−1 and £′ = £1 × · · · ×£n−1.

Then by Proposition 2.29, p = p′ × pn is an S-prime filter of £ if and
only if p′ is an S′-prime filter of £′ and pn ∩ Sn ̸= ∅ or p′ ∩ S′ ̸= ∅ and
pn is a Sn-prime filter of £n. Now the assertion follows from the induction
hypothesis. □

3. CHARACTERIZATION OF WEAKLY S-PRIME FILTERS

In this section, the concept of weakly S-prime filter is introduced and in-
vestigated. We remind the reader the following definition.

Definition 3.1. (a) A proper filter p of a lattice £ is called weakly
prime if whenever x, y ∈ £ and 1 ̸= x ∨ y ∈ p, then either x ∈ p or
y ∈ p.

(b) Let S be a join closed subset of £. A filter p of £ satisfying S ∩p = ∅
is said to be weakly S-prime if there exists an element s ∈ S such that,
whenever x, y ∈ £, 1 ̸= x ∨ y ∈ p implies x ∨ s ∈ p or y ∨ s ∈ p.

Example 3.2. (a) A weakly prime filter p of £ is weakly S-prime for
each join closed subset S of £ such that S ∩ p = ∅.

(b) Assume that £ is the lattice as in Example 2.2 (c) and let S = {0, a}.
Then p = {1, c} is a weakly S-prime filter of £. Also, p is not a weakly
prime filter of £ because 1 ̸= a∨b = c ∈ p and a, b /∈ p. Thus a weakly
S-prime filter need not be a weakly prime filter.

(c) If S = {0}, then the weakly prime and the weakly S-prime filters of £
are the same.
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(d) It is easy to see that every S-prime filter is a weakly S-prime filter.

(e) Let D = {a, b, c}. Then £ = {X : X ⊆ D} forms a distributive lattice
under set inclusion with greatest element D and least element ∅ (note
that if x, y ∈ £, then x ∨ y = x ∪ y and x ∧ y = x ∩ y). Set p = {1}
and S = {{a}, ∅}. Then S is a join closed subset of £ and p is clearly
a weakly S-prime filter of £. Since {a, b} ∨ {c} ∈ p, {a} ∨ {a, b} /∈ p
and {a} ∨ {c} /∈ p, it follows that p is not a S-prime filter of £. Thus
a weakly S-prime filter need not be an S-prime filter.

Proposition 3.3. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p and Id(£) ∩ S = ∅. The following assertions are
equivalent:

(i) p is a weakly S-prime filter of £;

(ii) (P :£ s) is a weakly prime filter of £ for some s ∈ S.

Proof. (i)⇒(ii) Since p is a weakly S-prime, then there is an element s ∈ S
such that for all x, y ∈ £ with 1 ̸= x ∨ y ∈ p, we have x ∨ s ∈ p or y ∨ s ∈ p.

Now, we show that (p :£ s) is a weakly prime filter of £. Let x, y ∈ £
such that 1 ̸= x ∨ y ∈ (P :£ s). Then x ∨ y ∨ s ∈ p (so x ∨ y ∨ s ̸= 1, as
Id(£) ∩ S = ∅), which gives x ∨ s ∨ s = x ∨ s ∈ p or y ∨ s ∈ p, which means
that x ∈ (P :£ s) or y ∈ (P :£ s). Thus (P :£ s) is a weakly prime filter of £.

(ii)⇒(i) Clear. □

Theorem 3.4. Let S be a join closed subset of £, and p be a weakly S-prime
filter of £. If p is not S-prime, then p = {1}.

Proof. By assumption, there exists s ∈ S such that, whenever x, y ∈ £,
1 ̸= x ∨ y ∈ p implies s ∨ x ∈ p or s ∨ y ∈ p. On the contrary, assume that
p ̸= {1}. We show that p is S-prime. Let a, b ∈ £ such that a ∨ b ∈ p. If
1 ̸= a ∨ b ∈ p, then p is weakly S-prime gives s ∨ a ∈ p or s ∨ b ∈ p.

Now, suppose that a ∨ b = 1. Since p ̸= {1}, there exists p′ ∈ p such that
p′ ̸= 1. Then 1 ̸= (a∧p′)∨(b∧p′) = p′ ∈ p gives s∨(a∧p′) = (s∨a)∧(s∨p′) ∈ p
or (s ∨ b) ∧ (s ∨ p′) ∈ p. Therefore, s ∨ a ∈ p or s ∨ b ∈ p by Lemma 1.1 (i).
This shows that p is an S-prime filter, as required. □

Corollary 3.5. If p is a weakly prime filter that is not prime, then

p = {1}.
Proof. Take S = {0} in Theorem 3.4. □

Compare the next theorem with Theorem 7 in [1].

Theorem 3.6. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. The following assertions are equivalent:

(i) p is a weakly S-prime filter of £;

(ii) There exists s ∈ S such that for each x /∈ (p :£ s) we have either
(p :£ x) ⊆ (p :£ s) or (p :£ x) = (1 :£ x);
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(iii) There exists s ∈ S such that for all F and G, two filters of £, if
{1} ≠ F ∨G ⊆ p, then s ∨ F ⊆ p or s ∨G ⊆ p.

Proof. (i)⇒(ii) By assumption, there is an element s ∈ S such that, when-
ever x, y ∈ £, x∨ y ∈ p implies s∨x ∈ p or s∨ y ∈ p. Let x ∈ £ \ (p :£ s) (so
x∨ s /∈ p) and suppose that (p :£ x) ̸= (1 :£ x). Since (1 :£ x) ⫋ (p :£ x), we
conclude that there exists a ∈ (p :£ x) such that a ∨ x ̸= 1. So 1 ̸= a ∨ x ∈ p
gives a ∨ s ∈ p, as p is weakly S-prime. Let z ∈ (p :£ x). If x ∨ z ̸= 1, then
s ∨ z ∈ p, and so z ∈ (p :£ s).

Now, suppose that x∨z = 1. Then 1 ̸= a∨x = (a∨x)∧(x∨z) = x∨(a∧z) ∈ p
implies that s ∨ (a ∧ z) = (s ∨ a) ∧ (s ∨ z) ∈ p; hence s ∨ z ∈ p by Lemma 1.1
(i). Thus z ∈ (p :£ s), i.e. (p :£ x) ⊆ (p :£ s).

(ii)⇒(i) Let x, y ∈ £ such that 1 ̸= x∨y ∈ p with s∨x /∈ p; so x /∈ (p :£ s).
Since y ∈ (p :£ x) and x∨ y ̸= 1, we conclude that (p :£ x) ⊆ (p :£ s) by (ii);
hence y ∨ s ∈ p. This shows that p is weakly S-prime.

(ii)⇒(iii) Assume that F and G are filters of £ such that F ∨G ⊆ p and,
for the element s ∈ S of (ii), we have s∨F ⊈ p and s∨G ⊈ p. We claim that
F ∨G = {1}. Let x ∈ F \ (p :£ s). Then x∨G ⊆ p gives G ⊆ (p :£ x). Since
G ⊈ (p :£ s), we conclude that G ⊆ (p :£ x) = (1 :£ x); so x ∨G = {1}.

Now, assume that x ∈ F ∩ (p :£ s). Let z ∈ G. If z /∈ (p :£ s) then, as
previously, z∨F = {1}, and so z∨x = 1. So we may assume that z ∈ (p :£ s).
Consider g ∈ G such that s ∨ g /∈ p. Then s ∨ (z ∧ g) = (s ∨ g) ∧ (s ∨ z) /∈ p,
by Lemma 1.1 (i), which implies that

g ∈ (p :£ x) \ (p :£ s) and z ∧ g ∈ (p :£ x) \ (p :£ s).

Hence, x ∨ g = 1 and 1 = x ∨ (z ∧ g) = (x ∨ g) ∧ (x ∨ z) = x ∨ z. Thus,
x ∨G = {1}. This shows that F ∨G = {1}.

(iii)⇒(i) Let x, y ∈ £ such that 1 ̸= x ∨ y ∈ p. Then

{1} ≠ T ({x}) ∨ T ({y}) ⊆ p

gives s∨x ∈ s∨T ({x}) ⊆ p or s∨ y ∈ s∨T ({y}) ⊆ p by (iii), and so we have
p is a weakly S-prime filter of £. □

Corollary 3.7. For proper filter p of £, The following assertions are
equivalent:

(i) p is a weakly prime filter of £;

(ii) For each x /∈ p we have either (p :£ x) = p or (p :£ x) = (1 :£ x);

(iii) For filters F and G of £ with {1} ≠ F ∨ G ⊆ p, either F ⊆ p or
G ⊆ p.

Proof. Take S = {0} in Theorem 3.6. □

Proposition 3.8. Assume that p is a filter of £ and let S be a join closed
subset of £ disjoint with p. If q is a filter of £ such that q ∩ S ̸= ∅ and p is
a weakly S-prime, then p ∨ q is a weakly S-prime filter of £.
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Proof. Since (p ∨ q) ∩ S ⊆ p ∩ S = ∅, we have (p ∨ q) ∩ S = ∅. Consider
t ∈ q∩S. Let a, b ∈ £ such that 1 ̸= a∨b ∈ p∨q ⊆ p. Then there exists s ∈ S
such that s∨a ∈ p or s∨ b ∈ p which gives s∨ t∨a ∈ p∨q or s∨ t∨ b ∈ p∨q,
where s ∨ t ∈ S, as desired. □

Proposition 3.9. Suppose that S is a join closed subset of £. The following
assertions are equivalent:

(i) Every weakly S-prime filter of £ is prime;

(ii) £ is a £-domain and every S-prime filter of £ is prime.

Proof. (i)⇒(ii) Since {1} is a weakly S-prime filter, we conclude that it is
a prime filter by (i) which implies that £ is a £-domain. Finally, since every
S-prime filter p of £ is weakly S-prime, we get p is prime by (i).

(ii)⇒(i) Suppose that p is a weakly S-prime filter; we show that p is S-
prime. Let a, b ∈ £ such that a ∨ b ∈ p. If a ∨ b ̸= 1, then there exists s ∈ S
such that s ∨ a ∈ p or s ∨ b ∈ p. If a ∨ b = 1, then a = 1 or b = 1; so
s ∨ a = 1 ∈ p or s ∨ b = 1 ∈ p, for every s ∈ S. Consequently, every weakly
S-prime filter of £ is prime by (ii). □

We close this section with the investigation of the stability of weakly S-
prime filters in various lattice-theoretic constructions.

Theorem 3.10. Suppose that S is a join closed subset of £. The following
assertions are equivalent:

(i) £ is S-Noetherian;

(ii) Every weakly S-prime filter of £ is S-finite;

(iii) Every S-prime filter of £ is S-finite;

(iv) Every prime filter of £ is S-finite.

Proof. (i)⇒(ii)⇒(iii) Obvious.

(iii)⇒(iv) follows from Theorem 2.22.

(iv)⇒(i) follows from Theorem 2.21. □

Example 3.11. Let S′ ⊆ S be join closed subsets of £ and p a filter of
£ disjoint with S. It s clear that if p is a weakly S′-prime filter of £, then
p is a weakly S-prime filter. However, the converse is not true in general.
Indeed, assume that £ is the lattice as in Example 2.2 (c) and let S′ = {0} ⊆
S = {0, a}. Then p = {1, c} is a weakly S-prime filter of £ but not a weakly
S′-prime filter of £.

Proposition 3.12. Let S′ ⊆ S be join closed subsets of £ such that for any
s ∈ S, there exists t ∈ S satisfying s ∨ t ∈ S′. If p is a weakly S-prime filter
of £, then p is a weakly S′-prime filter of £.
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Proof. Let x, y ∈ £ such that 1 ̸= x ∨ y ∈ p. Then there exists s ∈ S such
that s ∨ x ∈ p or s ∨ y ∈ p. By the hypothesis, there is t ∈ S such that
s ∨ t ∈ S′ and then s ∨ t ∨ ∨x ∈ p or s ∨ t ∨ y ∈ p, as p is a filter. This shows
that p is a weakly S′-prime filter. □

Let £ be a lattice. If x ∈ £, then a complement of x in £ is an element
y ∈ £ such that x ∨ y = 1 and x ∧ y = 0. The lattice £ is complemented if
every element of £ has a complement in £.

Lemma 3.13. Let £1 and £2 be lattices and f : £1 → £2 be a lattice
homomorphism such that f(1) = 1. The following hold:

(i) Ker(f) = {x ∈ £1 : f(x) = 1} is a filter of £1;

(ii) If f is injective, then Ker(f) = {1};
(iii) If £1 is a complemented lattice, then f is injective if and only if

Ker(f) = {1}.

Proof. (i) Straightforward.

(ii) If x ∈ Ker(f), then f(x) = 1 = f(1); so x = 1, as required.

(iii) One side is clear. To see the other side, let a, b ∈ £1 such that f(a) =
f(b). There exist a′, b′ ∈ £1 such that a∨a′ = 1 = b∨b′ and a∧a′ = 0 = b∧b′.
Then f(a ∨ b′) = f(b) ∨ f(b′) = 1 gives a ∨ b′ ∈ Ker(f) = {1}; so a ∨ b′ = 1.
Similarly, b ∨ a′ = 1. This shows that a = a ∧ (a′ ∨ b) = a ∧ b which implies
that a ≤ b. Similarly, b ≤ a, as needed. □

Compare the next theorem with Proposition 22 in [1].

Theorem 3.14. Let f : £ → £′ be a lattice homomorphism such that
f(1) = 1 and S a join closed subset of £. The following hold:

(i) Let £ be a complemented lattice. If f is a epimorphism and p is a
weakly S-prime filter with Ker(f) ⊆ p, then f(p) is a weakly f(S)-
prime filter of £′;

(ii) If f is a monomorphism and p′ is a weakly f(S)-prime filter of £′,
then p = f−1(p′) is a weakly S-prime filter of £.

Proof. (i) Let u ∈ f(S) ∩ f(p). Then u = f(p) = f(s) for some p ∈ p and
s ∈ S.

By assumption, there exists p′ ∈ £ such that p ∨ p′ = 1 and p ∧ p′ = 0
which gives f(s ∨ p′) = f(p) ∨ f(p′) = 1; hence s ∨ p′ ∈ Ker(f) ⊆ p. Since
s = s ∨ (p ∧ p′) = (s ∨ p′) ∧ (s ∨ p) ∈ p, we conclude that s ∈ S ∩ p is a
contradiction.

Thus f(S)∩f(p) = ∅. Let x, y ∈ £′ such that 1 ̸= x∨y ∈ f(p). Then there
exist a, b ∈ £ such that x = f(a), y = f(b) and 1 ̸= f(a ∨ b) = x ∨ y ∈ f(p)
(so a ∨ b ̸= 1) which implies that f(a ∨ b) = f(q) for some q ∈ p.
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By the hypothesis, q ∨ q′ = 1 and q ∧ q′ = 0 for some q′ ∈ £. Since
f(a ∨ b ∨ q′) = 1, we conclude that a ∨ b ∨ q′ ∈ Ker(f) ⊆ p; hence

1 ̸= a ∨ b = (a ∨ b) ∨ (q ∧ q′) = (a ∨ b ∨ q) ∧ (a ∨ b ∨ q′) ∈ p,

as p is a filter. This implies that s ∨ a ∈ p or s ∨ b ∈ p for some s ∈ S. It
means that f(s) ∨ x ∈ f(p) or f(s) ∨ y ∈ f(p). Therefore, f(p) is a weakly
f(S)-prime filter of £′.

(ii) By assumption, there exists s ∈ S such that for all x, y ∈ £′, x∨ y ∈ p′

implies f(s) ∨ x ∈ p′ or f(s) ∨ y ∈ p′. Clearly, p ∩ S = ∅. Let a, b ∈ £ such
that 1 ̸= a ∨ b ∈ p. Since Ker(f) = {1} by Lemma 3.13 (ii), we conclude
that 1 ̸= f(a ∨ b) = f(a) ∨ f(b) ∈ p′; so f(s) ∨ f(a) = f(s ∨ a) ∈ p′ or
f(s)∨ f(b) = f(s∨ b) ∈ p′. Hence, s∨ a ∈ p or s∨ b ∈ p, and so p = f−1(p′)
is a weakly S-prime filter of £. □

Corollary 3.15. Let S be a join closed subset of £. The following hold:

(i) If F ⊆ H are two filters of £ and H is a weakly S-prime filter of £,
then H

F is a weakly QS-prime of £
F ;

(ii) If £ is a sublattice of £′ and H ′ is a weakly S-prime filter of £′, then
H ′ ∩£ is a weakly S-prime filter of £.

Proof. (i) Let f : £ → £
F such that f(a) = a ∧ F . Then f is a lattice

homomorphism from £ onto £
F and f(1) = 1. Suppose that H is a weakly

S-prime filter of £. Since Ker(f) = F ⊆ H and f is onto, we conclude that
f(H) = H

F is a QS-prime filter of £
F by Theorem 3.14 (i).

(ii) It suffices to apply Theorem 3.14 (ii) to the natural injection ι : £ → £′

since ι−1(H ′) = H ′ ∩£′. □

Theorem 3.16. Let £ = £1×£2 be a decomposable lattice and S = S1×S2,
where Si is a join closed subset of £i. Suppose that p = p1 × p2 is a filter of
£, where p1 ̸= {1} and p2 ̸= {1}. The following statements are equivalent:

(i) p is a weakly S-prime filter of £;

(ii) p1 is an S1-prime filter of £1 and p2 ∩ S2 ̸= ∅ or p2 is an S2-prime
filter of £2 and p1 ∩ S1 ̸= ∅,

(iii) p is an S-prime filter of £.

Proof. (i)⇒(ii) Let (1, 1) ̸= (a, b) ∈ p. Then (1, 1) ̸= (a, 0) ∨c (0, b) ∈ p.
So there exists s = (s1, s2) ∈ S such that s ∨c (a, 0) = (s1 ∨ a, s2) ∈ p or
s ∨c (0, b) = (s1, s2 ∨ b) ∈ p which implies that S1 ∩ p1 ̸= ∅ or S2 ∩ p2 ̸= ∅.
Suppose that S2 ∩ p2 ̸= ∅. Since S ∩ p = ∅, we have S1 ∩ p1 = ∅.

Now, we claim that p1 is an S1-prime filter of £1. Let x, y ∈ £1 such that
x∨y ∈ p1. Consider 1 ̸= t ∈ S2∩p2. Then (1, 1) ̸= (x, t)∨c (y, 0) = (x∨y, t) ∈
p gives s ∨c (x, t) = (s1 ∨ x, s2 ∨ t) ∈ p or s ∨c (y, 0) = (s1 ∨ y, s2) ∈ p which
implies that s1 ∨ x ∈ p1 or s1 ∨ y ∈ p1, as needed.

(ii)⇒(iii) Follows directly from Proposition 2.29.
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(iii)⇒(i) Obvious. □

Corollary 3.17. Let £ be a decomposable lattice and S a join closed subset
of £. A proper filter p of £ disjoint with S is weakly S-prime if and only if
p = {1} or p is S-prime.

Proof. This follows from Theorem 3.16. □
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