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PRIMAL-PROXIMITY SPACES

AHMAD AL-OMARI, MURAD ÖZKOÇ, and SANTANU ACHARJEE

Abstract. Proximity space is one of the common topics in mathematics, com-
puter science, and pattern recognition. Recently, Acharjee et al. introduced a
new structure named primal in mathematics. Thus, the main purpose of this
paper is to introduce and study primal-proximity spaces. Also, we define two
new operators via primal proximity spaces and investigate some of their funda-
mental properties. In addition, we obtain a new topology, which is weaker than
old one, via these new operators. Moreover, we not only discuss some of their
properties but also enrich with some examples.
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1. INTRODUCTION

In many areas of mathematics and computer science, topology plays crucial
roles. Applications of many topological ideas, to solve various problems of
nature, have attracted researchers of different branches of science and social
sciences. Many new notions have been introduced in topology, which have
enriched topology with several new areas of research.

Some of the most important classical structures of topology are filters [34],
ideals [20], and grills [7]. The definition of ideal was introduced by Kuratowski
[20]. On the other hand, the notion of grill was introduced in [7]. It is im-
portant to observe that the notion of ideal is the dual of filter, but the one
of ideal has helped researchers to introduce many new areas of topology, viz.,
ideal topological spaced [14], I-proximities [16], etc. But to the best of our
knowledge, no literature was available on the dual structure of grill prior to
[1].

Recently, Acharjee et al. [1] introduced a new structure named ‘primal’.
They obtained not only some fundamental properties related to primal but also
some relationships between topological spaces and primal topological spaces.

A primal [1] is the dual of a grill while the dual of a filter is an ideal.
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Later, Al-Omari et al. [2, 3] introduced several new operators in primal
topological spaces using the notion of a primal.

On the other hand, the notion of proximity [11] is also important in topol-
ogy. Several forms of this notion such as I-proximity [16], µ-proximity [26,35],
quasi proximity [30], and multiset proximity [19] have been studied by several
researchers. Moreover, applications of proximity can be found in pattern recog-
nition [28], region based theory of space [8,9], artificial intelligence [10], spatial
analysis [6], etc. One may refer to [4, 5, 12, 13, 15, 17, 18, 21–25, 27, 29, 31–33]
and many others for proximity.

In Section 3, we introduce a new type of proximity named primal-proximity.
Also, we define a point-primal proximity operator and investigate some of its
fundamental properties in Section 4. In addition, we prove that this opera-
tor is a Kuratowski closure operator under special conditions. Moreover, we
define one more operator via the point-primal proximity operator. This op-
erator comes across as a Kuratowski closure operator without any condition.
Furthermore, we give not only some relationships but also several examples.

2. PRELIMINARIES

In this section, we discuss some preliminary definitions which will be used
in the next sections.

Definition 2.1 ([1]). Let X be a non-empty set. A collection P ⊆ 2X is
called a primal on X if it satisfies the following conditions:

(a) X /∈ P,
(b) if A ∈ P and B ⊆ A, then B ∈ P,
(c) if A ∩B ∈ P, then A ∈ P or B ∈ P.

Corollary 2.2 ([1]). Let X be a non-empty set. A collection P ⊆ 2X is a
primal on X if and only if it satisfies the following conditions:

(i) X /∈ P,
(ii) if B /∈ P and B ⊆ A, then A /∈ P,
(iii) if A /∈ P and B /∈ P, then A ∩B /∈ P.

Example 2.3 ([1]). Let X be a non-empty set. Then,

P = {A ⊆ X : |Ac| ≥ ℵ0}

is a primal on X, where ℵ0 is the smallest infinite cardinal number.

Definition 2.4 ([11]). A binary relation δ on 2X is called an (Efremovich)
proximity on X if δ satisfies the following five conditions:

(a) AδB ⇒ BδA,
(b) Aδ(B ∪ C) ⇔ AδB or AδC,
(c) AδB ⇒ A ̸= ∅ and B ̸= ∅,
(d) A ∩B ̸= ∅ ⇒ AδB,
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(e) if A ̸ δ B, then there exists C,D ⊆ X such that A ̸ δ Cc, Dc ̸ δ B and
C ∩D = ∅.

A proximity space is a pair (X, δ) consisting of a set X and a proximity
relation onX. We shall write AδB if the sets A,B ⊆ X are δ-related, otherwise
we shall write A ̸ δ B. Throughout this paper, the space (X, δ,P) means an
Ef -proximity space (X, δ) with a primal P on X. Now, we give the following
definition which will be used in Section 5.

Definition 2.5. In a space (X, δ,P), we say that a subset A of X is locally
in P at x ∈ X if there exists a δ-neighborhood U of x such that U c ∪Ac /∈ P.
Also for a subset A of X, the primal local function of A with respect to δ and
P, denoted by A⋄(δ,P), simply A⋄(P) or A⋄, is the set⋃

{x ∈ X : A is not primal locally in P at x}

i.e.,

A⋄(δ,P) =
⋃

{x ∈ X : U c ∪Ac /∈ P for every δ-neighborhood U of x}.

3. PRIMAL-PROXIMITY SPACES

In this section, we introduce the notion of primal-proximity on X and in-
vestigate some of its fundamental properties.

Definition 3.1. A binary relation ↪→ on 2X with a primal P on a non-
empty set X is called a primal-proximity on X if ↪→ satisfies the following
conditions:

(a) if A ↪→ B, then B ↪→ A;
(b) A ↪→ (B ∪ C) if and only if A ↪→ B or A ↪→ C;
(c) if Ac /∈ P, then A ↪̸→ B for all B ⊆ X;
(d) if (A ∩B)c ∈ P, then A ↪→ B;
(e) if A ↪̸→ B, then there exist C,D ⊆ X such that A ↪̸→ Cc, Dc ↪̸→ B and

(C ∩D)c /∈ P.

Definition 3.2. A primal-proximity space is a pair (X, ↪→) consisting of a
set X and primal-proximity relation on a non-empty set X. We write A ↪→ B
if the sets A,B ⊆ X are ↪→-related, otherwise we write A ↪̸→ B.

Remark 3.3. LetX be a non-empty set and A ⊆ X such that P = 2X\{X}.
(a) If x ∈ A, then {x} ↪→ A.
(b) If A ↪̸→ B, then A ∩B = ∅.
Suppose A ∩ B ̸= ∅. Then, there exists at least one point in X such that

a ∈ A∩B. Therefore, (A∩B)c ̸= X. Hence, (A∩B)c ∈ P since P = 2X \{X}.
It follows that A ↪→ B, which is impossible. Therefore, A ∩B = ∅.
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Corollary 3.4. Let ↪→ be a primal-proximity on a non-empty set X.
Then, the following hold:

(i) if B ↪̸→ A, then A ↪̸→ B,
(ii) A ↪̸→ (B ∪ C) if and only if A ↪̸→ B and A ↪̸→ C,
(iii) if there exists B ⊆ X such that A ↪→ B, then Ac ∈ P,
(iv) if A ↪̸→ B, then (A ∩B)c /∈ P,
(v) if A ↪̸→ B, then there exist C,D ⊆ X such that A ↪̸→ Cc, Dc ↪̸→ B and

(C ∩D)c /∈ P.

Example 3.5. Let P be a primal on a non-empty set X and A,B ⊆ X.
We define a binary relation ↪→ on 2X as:

A ↪→ B ⇔ Ac, Bc ∈ P.

Then, ↪→ is a primal-proximity relation. Indeed, one easily finds that ↪→
satisfies conditions, (i) to (iv). We are going to check that ↪→ also satisfies
condition (v). Let A ↪̸→ B. It follows that Ac /∈ P or Bc /∈ P. If Ac /∈ P, by
taking C = Ac and D = A we have the required properties. If Bc /∈ P, by
taking C = B and D = Bc, we again have the required properties.

Example 3.6. Let P be a primal on a non-empty set X and A,B ⊆ X.
We define a binary relation ↪→ on 2X as:

A ↪→ B ⇔ (A ∩B)c ∈ P.

Then, ↪→ is a primal-proximity on X. It follows directly from the definition
that ↪→ satisfies conditions (i) to (iv). To prove that ↪→ satisfies condition (v),
let A ↪̸→ B. It follows that (A∩B)c /∈ P. If we take C = Bc and D = B, then
the result can be proven.

Example 3.7. Let (X, τ,P) be a primal topological space such that P =
2X \{X}. Let (X, τ) be a normal space and A,B ⊆ X. Define a binary relation
↪→ on 2X as:

A ↪→ B ⇔ (cl(A) ∩ cl(B))c ∈ P,

where the closure is taken with respect to τ . Then, the binary relation ↪→ is
a primal-proximity on X.

Proof. (a) Let A,B ⊆ X.

A ↪→ B ⇔ (cl(A) ∩ cl(B))c ∈ P
⇔ (cl(B) ∩ cl(A))c ∈ P
⇔ B ↪→ A.
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(b) Let A,B,C ⊆ X.

A ↪→ (B ∪ C) ⇔ (cl(A) ∩ cl(B ∪ C))c ∈ P
⇔ (cl(A) ∩ (cl(B) ∪ cl(C)))c ∈ P
⇔ ((cl(A) ∩ cl(B)) ∪ (cl(A) ∩ cl(C)))c ∈ P
⇔ (cl(A) ∩ cl(B))c ∩ (cl(A) ∩ cl(C))c ∈ P
⇔ (cl(A) ∩ cl(B))c ∈ P or (cl(A) ∩ cl(C))c ∈ P
⇔ A ↪→ B or A ↪→ C.

(c) Let A ↪→ B with P = 2X \ {X}.
A ↪→ B ⇔ (cl(A) ∩ cl(B))c ∈ P ⇒ (cl(A))c ∈ P

P = 2X \ {X}

}
⇒ (cl(A))c ̸= X

⇒ cl(A) ̸= ∅ ⇒ A ̸= ∅ ⇒ Ac ̸= X
P = 2X \ {X}

}
⇒ Ac ∈ P.

(d) Let A ↪̸→ B with P = 2X \ {X}.
A ↪̸→ B ⇒ (cl(A) ∩ cl(B))c /∈ P

P = 2X \ {X}

}
⇒ (cl(A) ∩ cl(B))c = X

⇒ cl(A ∩B) ⊆ cl(A) ∩ cl(B) = ∅ ⇒ cl(A ∩B) = ∅ ⇒ A ∩B = ∅
⇒ (A ∩B)c = X

P = 2X \ {X}

}
⇒ (A ∩B)c /∈ P.

(e) Let A ↪̸→ B. Then, (cl(A) ∩ cl(B))c /∈ P. So, cl(A) ∩ cl(B) = ∅. Since
(X, τ) is normal space, there exist two disjoint open sets in τ , C and D such
that cl(A) ⊆ C and cl(B) ⊆ D. Hence, Cc is closed and cl(A) ∩ Cc = ∅. This
implies cl(A) ↪̸→ Cc. Since C∩D = ∅, we have C ⊆ Dc. It follows that cl(C) ⊆
Dc since Dc is closed. Therefore, cl(C) ∩ cl(B) = ∅ and (cl(C) ∩ cl(B))c /∈ P.
Hence, C ↪̸→ B. Let E = Cc. Then, A ↪̸→ B implies that there exists a subset
E such that A ↪̸→ E, Ec ↪̸→ B, and (E ∩ Ec)c /∈ P. □

4. POINT-PRIMAL PROXIMITY OPERATOR

This section introduces the point-primal proximity operator. Here, we study
several properties of a primal-proximity space using this operator.

Definition 4.1. Let (X, ↪→) be a primal-proximity space. Then, the oper-

ator
↪→
(·) : 2X → 2X defined by

↪→
A = {x ∈ X|{x} ↪→ A}

is said to be point-primal proximity operator. Moreover,
↪→
A is said to be the

point-primal proximity of A.

We now provide the following lemma without the proof.
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Lemma 4.2. Let P be a primal on a non-empty set X. If A ↪→ B, A ⊆ C,
and B ⊆ D, then C ↪→ D.

Lemma 4.3. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X. If

B ↪̸→ A, then
↪→
A ⊆ Bc.

Proof. Suppose
↪→
A ∩ B ̸= ∅. Then, there exists at least a point x ∈

↪→
A ∩ B.

So, x ∈
↪→
A and x ∈ B, i.e. {x} ↪→ A and {x} ⊆ B. By Lemma 4.2, it implies

that A ↪→ B, which is a contradiction. Hence,
↪→
A ⊆ Bc. □

Theorem 4.4. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X.

If B ↪̸→ A, then B ↪̸→
↪→
A.

Proof. Let B ↪̸→ A. Then by (e) of Definition 3.1, there exist C,D ⊆ X
such that B ↪̸→ Cc, Dc ↪̸→ A and (C ∩D)c /∈ P. This result, combined with

Lemma 4.3, implies that
↪→
A ⊆ D. Now, we want to prove that

↪→
A ⊆ Cc. Let

x ∈
↪→
A, then {x} ↪→ A. Suppose x ∈ C. Then x ∈ C ∩ D and (C ∩ D)c ⊆

X \{x}, so X \{x} /∈ P. Then, by Definition 3.1 (c), we have {x} ↪̸→ A, which

is a contradiction. Hence, x ∈ Cc. So,
↪→
A ⊆ Cc. Now, we have by Lemma 4.2,

B ↪̸→
↪→
A. Hence, the theorem is proven. □

Due to Theorem 4.4 and (a) of Definition 3.1, we have the following corol-
lary.

Corollary 4.5. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X.

If B ↪̸→ A, then
↪→
B ↪̸→

↪→
A.

Theorem 4.6. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X.
Then, the following properties hold:

(i) if A ⊆ B, then
↪→
A ⊆

↪→
B;

(ii)
↪→

(A ∩B) ⊆
↪→
A ∩

↪→
B;

(iii)
↪→
A ∪

↪→
B =

↪→
(A ∪B);

(iv)

↪→
↪→
A ⊆

↪→
A;

(v) if Ac /∈ P, then
↪→
A = ∅;

(vi)
↪→
∅ = ∅;

(vii)
↪→
A \

↪→
B ⊆

↪→
(A \B);

(viii) if Bc /∈ P, then
↪→

(A ∪B) =
↪→
A =

↪→
(A \B);

(ix) if [(A \B) ∪ (B \A)]c /∈ P, then
↪→
A =

↪→
B.



7 Primal-proximity spaces 157

Proof. (i) Let A ⊆ B and x ∈
↪→
A. Then, {x} ↪→ A. Since A ⊆ B, by Lemma

4.2, we have {x} ↪→ B. Hence, x ∈
↪→
B.

(ii) Let A,B ⊆ X. From (i), it is not difficult to see that
↪→

(A ∩B) ⊆
↪→
A and

↪→
(A ∩B) ⊆

↪→
B. Thus, we get

↪→
(A ∩B) ⊆

↪→
A ∩

↪→
B.

(iii) Let A,B ⊆ X. From (i), we can easily find that
↪→
A ⊆

↪→
(A ∪B) and

↪→
B ⊆

↪→
(A ∪B). Thus, obviously

↪→
A ∪

↪→
B ⊆

↪→
(A ∪B).

Conversely, let y ∈
↪→

(A ∪B). Then, {y} ↪→ A ∪ B. Due to Definition 3.1,

either {y} ↪→ A or {y} ↪→ B. It indicates that either y ∈
↪→
A or y ∈

↪→
B. So, we

can conclude that
↪→

(A ∪B) ⊆
↪→
A ∪

↪→
B.

(iv) Let A ⊆ X and let x /∈
↪→
A. Then, {x} ↪̸→ A. So, by Theorem 4.4, we

have {x} ↪̸→
↪→
A. Hence, x /∈

↪→
↪→
A. Thus, we get

↪→
↪→
A ⊆

↪→
A.

(v) Let Ac /∈ P. Then, by (c) of Definition 3.1, A ↪̸→ B for all subsets B of
X. Therefore, we have A ↪̸→ {x} for all x ∈ X. Again, by (a) of Definition 3.1,

{x} ↪̸→ A for all x ∈ X. This means x /∈
↪→
A for all x ∈ X. Hence,

↪→
A = ∅.

(vi) Let
↪→
∅ ̸= ∅. Thus, we assume that x ∈

↪→
∅ . Hence, {x} ↪→ ∅. By (a) of

Definition 3.1, ∅ ↪→ {x}. Again, by (c) of Definition 3.1, ∅c = X ∈ P; which

is a contradiction to the definition of primal P. Hence,
↪→
∅ = ∅.

(vii) For all A,B ⊆ X, A = (A \B) ∪ (A ∩B). By (iii), we have

↪→
A =

↪→
(A \B) ∪

↪→
(A ∩B) ⊆

↪→
(A \B) ∪

↪→
B.

Hence,
↪→
A \

↪→
B ⊆

↪→
(A \B).

(viii) If Bc /∈ P, then
↪→

(A ∪B) =
↪→
A∪

↪→
B =

↪→
A∪∅ =

↪→
A. Also,

↪→
A\

↪→
B ⊆

↪→
(A \B),

thus
↪→
A ⊆

↪→
(A \B). Moreover,

↪→
(A \B) =

↪→
(A ∩Bc) ⊆

↪→
A ∩

↪→
Bc ⊆

↪→
A. Hence,

↪→
(A ∪B) =

↪→
A =

↪→
(A \B).

(ix) If [(A \ B) ∪ (B \ A)]c /∈ P, then (A \ B)c /∈ P and (B \ A)c /∈ P.

Since
↪→
A =

↪→
[(A \B) ∪ (A ∩B)] and (A \ B)c /∈ P, by using (viii), we get

↪→
A =

↪→
(A ∩B) ⊆

↪→
B. It follows that

↪→
A ⊆

↪→
B. Similarly, since

↪→
B =

↪→
[(B \A) ∪ (B ∩A)]

and (B \ A)c /∈ P, by using (viii), we get
↪→
B =

↪→
(B ∩A) ⊆

↪→
A. It follows that

↪→
B ⊆

↪→
A. Hence,

↪→
A =

↪→
B. □
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Remark 4.7. Let (X, ↪→,P) be a primal-proximity space and A ⊆ X. The

inclusion A ⊆
↪→
A need not be true in general as shown by the following example:

Example 4.8. Let X = {a, b, c}, P = {∅, {b}, {c}, {b, c}}, and the binary
relation ↪→ on 2X defined as in Example 3.6. For the subset A = {b}, we have
A = {b} ⊈ ∅ =

↪→
A.

Theorem 4.9. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X.
Then, the following statements hold:

(i) A ∩
↪→
B = ∅ for all Ac /∈ P and B ⊆ X,

(ii) {x} ↪→ X for all x ∈ X if and only if P = 2X \ {X},

(iii) if P = 2X \ {X}, then
↪→
X = X.

Proof. (i) Let Ac /∈ P and suppose A ∩
↪→
B ̸= ∅. It follows that A ↪̸→ B since

Ac /∈ P and also
↪→
B ⊈ Ac. Hence, by Lemma 4.3, we have A ↪→ B, which is a

contradiction. Thus, A ∩
↪→
B = ∅.

(ii) If {x} ↪→ X for all x ∈ X, then by (iii) of Corollary 3.4, we have
{x}c ∈ P for all x ∈ X. Hence, P = 2X \ {X}. Conversely, if P = 2X \ {X},
then ({x} ∩X)c = ({x})c ∈ P and by (d) of Definition 3.1, we have {x} ↪→ X
for all x ∈ X.

(iii) Let x ∈ X. Since P = 2X \ {X}, then ({x})c = ({x} ∩X)c ∈ P and by

(d) of Definition 3.1, we get {x} ↪→ X for all x ∈ X. Hence,
↪→
X = X. □

Theorem 4.10. Let (X, ↪→,P) be a primal-proximity space. If A,B,C ⊆ X
and B ⫋ C such that A ↪̸→ B but A ↪→ C, then A ↪→ (C \B).

Proof. Let A,B,C ⊆ X and B ⫋ C. We consider D = C \B. Since A ↪→ C,
then A ↪→ B ∪ (C \B) = B ∪D. Then by Definition 3.1, A ↪→ B or A ↪→ D.
Now, A ↪→ B is not possible since we consider A ↪̸→ B. Then obviously,
A ↪→ (C \B). □

Theorem 4.11. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X.
If A ↪̸→ B, then there exists C ⊆ X such that A ↪̸→ C and B ↪̸→ Cc.

Proof. Since A ↪̸→ B, thus by (e) of Definition 3.1, there exist M,N ⊆ X
such that A ↪̸→ M c, N c ↪̸→ B and (M ∩N)c /∈ P. Let M = X \C and N = C.
Then, (M ∩N)c = X /∈ P. Also, A ↪̸→ (X \ C)c, Cc ↪̸→ B. It yields A ↪̸→ C,
B ↪̸→ Cc. Hence, the proof is completed. □

Corollary 4.12. Let (X, ↪→,P) be a primal-proximity space and A,B,C ⊆
X. If A ↪̸→ B and B ↪→ C, then A ↪̸→ C.
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5. PROXIMAL CLOSED SETS AND TOPOLOGY

In this section, proximal closed sets are defined. Moreover, various results
between a primal-proximity space and a primal topological space are obtained
using proximal closed sets and related notions.

Definition 5.1. Let (X, ↪→,P) be a primal-proximity space. Then, a sub-
set F of X is called proximity-closed if and only if {x} ↪→ F implies x ∈ F .

Lemma 5.2. If there is a point x ∈ X such that A ↪→ {x} and {x} ↪→ B,
then A ↪→ B.

Proof. Suppose A ↪̸→ B, by Theorem 4.11, there exists a subset C such that
A ↪̸→ C and Cc ↪̸→ B. Now, either x ∈ C or x ∈ Cc.

Case 1. If x ∈ C, then A ↪̸→ {x}. For if A ↪→ {x}, then by Lemma 4.2, we
get A ↪→ C which is a contradiction.

Case 2. If x ∈ Cc, then {x} ↪̸→ B. Therefore, if A ↪→ {x} and {x} ↪→ B,
then A ↪→ B. □

Theorem 5.3. The collection of complements of all proximity-closed sets

of (X, ↪→,P) forms a topology on X. This topology is denoted by
↪→
τ .

Proof. Since X and ∅ are proximity-closed in (X, ↪→,P), their complements

∅ and X are in
↪→
τ .

Let {Fi : i ∈ I} be a collection of proximity-closed sets. If

{x} ↪→
⋂

{Fi : i ∈ I},

then {x} ↪→ Fi for every i ∈ I, by Lemma 4.2. Since Fi is proximity-closed,
x ∈ Fi for every i ∈ I. Hence,

x ∈
⋂

{Fi : i ∈ I} and
⋂

{Fi : i ∈ I} is proximity-closed.

Therefore, if (X \ Fi) ∈
↪→
τ for every i ∈ I, then⋃

{X \ Fi : i ∈ I} is the complement of
⋂

{Fi : i ∈ I},

which belongs to
↪→
τ .

Finally, let F1 and F2 be two proximity-closed sets. If {x} ↪→ F1 ∪ F2,
then {x} ↪→ F1 or {x} ↪→ F2. Thus, x ∈ F1 or x ∈ F2 since F1 and F2 are
proximity-closed. This implies x ∈ F1 ∪F2. Thus, F1 ∪F2 is proximity-closed.

Therefore, if X \ F1 ∈
↪→
τ and X \ F2 ∈

↪→
τ , then

(X \ F1) ∩ (X \ F2) = X \ (F1 ∪ F2) ∈
↪→
τ .

Hence,
↪→
τ is a topology on X. □
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Theorem 5.4. Let (X, ↪→,P) be a primal-proximity space. The set
↪→
A is

the closure of A where the closure is taken with respect to the topology
↪→
τ and

denoted by cl↪→
τ
(A).

Proof. Let x ∈
↪→
A. Then, {x} ↪→ A. By Lemma 4.2, {x} ↪→ cl↪→

τ
(A) since

A ⊆ cl↪→
τ
(A) and cl↪→

τ
(A) is proximity-closed in

↪→
τ . Thus, x ∈ cl↪→

τ
(A). Hence,

↪→
A ⊆ cl↪→

τ
(A).

Conversely, let x /∈
↪→
A. Then, {x} ↪̸→ A. By Theorem 4.11, there exists a

subset C such that {x} ↪̸→ C and Cc ↪̸→ A. Since there is no point of Cc

which is related to A, then
↪→
A ⊆ C. By Lemma 4.2, {x} ↪̸→ cl↪→

τ
(A). Thus,

↪→
A

is proximity-closed in
↪→
τ . Therefore, cl↪→

τ
(A) ⊆

↪→
A. Hence, cl↪→

τ
(A) =

↪→
A. □

Definition 5.5 ([20]). The operator Φ : 2X → 2X is a Kuratowski closure
operator provided:

(a) Φ(∅) = ∅;
(b) A ⊆ Φ(A) for every A ∈ 2X ;
(c) Φ(A ∪B) = Φ(A) ∪ Φ(B) for any A,B ∈ 2X ;
(d) Φ(Φ(A)) = Φ(A) for every A ∈ 2X .

Theorem 5.6. Let (X, ↪→,P) be a primal-proximity space such that

P = 2X \ {X}.

Then, the operator
↪→
A = {x ∈ X|{x} ↪→ A}

on a primal-proximity space (X, ↪→,P) is a Kuratowski closure operator.

Proof. (a) By (vi) of Theorem 4.6,
↪→
∅ = ∅.

(b) If x ∈ A, then {x} ↪→ A. Hence, x ∈
↪→
A. This shows that A ⊆

↪→
A.

(c) By (iii) of Theorem 4.6,
↪→

(A ∪B) =
↪→
A ∪

↪→
B.

(d) By (iv) of Theorem 4.6, we have always

↪→
↪→
A ⊆

↪→
A. Now, let x /∈

↪→
↪→
A. Then,

{x} ↪̸→
↪→
A. By (iv) of Corollary 3.4, we have(

{x} ∩
↪→
A

)c

/∈ P.

Since P = 2X \ {X}, we get (
{x} ∩

↪→
A

)c

= X,
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which means that {x} ∩
↪→
A = ∅. Thus, we have x /∈

↪→
A. Hence,

↪→
A ⊆

↪→
↪→
A and

↪→
↪→
A =

↪→
A,

which completes the proof and this topology is denoted by
↪→
τ . □

Theorem 5.7. Let (X, ↪→,P) be a primal-proximity space. Then, the oper-
ator cl∗ : 2X → 2X defined by

cl∗(A) = A ∪
↪→
A

satisfies the Kuratowski closure axioms and induces a topology on X called τ∗,
which is given by

τ∗ = {A ⊆ X | cl∗(Ac) = Ac}.

Proof. (a) By (vi) of Theorem 4.6, we have cl∗(∅) = ∅ ∪
↪→
∅ = ∅.

(b) Let A ⊆ X. Since cl∗(A) = A ∪
↪→
A, we have A ⊆ cl∗(A).

(c) Let A,B ⊆ X. By (iii) of Theorem 4.6, we have

cl∗(A ∪B) = (A ∪B) ∪
↪→

(A ∪B)

= (A ∪B) ∪
(

↪→
A ∪

↪→
B

)
=

(
A ∪

↪→
A

)
∪
(
B ∪

↪→
B

)
= cl∗(A) ∪ cl∗(B).

(d) Let A ⊆ X. By (iv) of Theorem 4.6, we have

cl∗(cl∗(A)) = cl∗(A) ∪
↪→

cl∗(A)

=

(
A ∪

↪→
A

)
∪

↪→(
A ∪

↪→
A

)

=

(
A ∪

↪→
A

)
∪

↪→
A ∪

↪→
↪→
A


=

(
A ∪

↪→
A

)
∪

↪→
A

= A ∪
↪→
A

= cl∗(A). □
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Theorem 5.8. Let (X, ↪→,P) be a primal-proximity space. Then, the fol-
lowing properties hold:

(i) B ↪̸→ A if and only if B ↪̸→ cl∗(A),
(ii)

cl∗
(

↪→
A

)
=

↪→
A,

(iii)

cl∗
(

↪→
A

)
=

↪→
cl∗(A).

Proof. (i) Let B ↪̸→ A. Then, by Theorem 4.4, we have B ↪̸→
↪→
A. Hence,

by (b) of Definition 3.1, B ↪̸→ (A ∪
↪→
A) = cl∗(A) if and only if B ↪̸→ A and

B ↪̸→
↪→
A.

(ii) Let A ⊆ X. By (iv) of Theorem 4.6, we have

cl∗
(

↪→
A

)
=

↪→
A ∪

↪→
↪→
A =

↪→
A.

(iii) Let A ⊆ X. By (iii) of Theorem 4.6, we have

cl∗
(

↪→
A

)
=

↪→
A ∪

↪→
↪→
A =

↪→(
A ∪

↪→
A

)
=

↪→
cl∗(A). □

Theorem 5.9. Let (X, ↪→,P) be a primal-proximity space and A,B,H ⊆ X
such that A ⊆ B. If A ↪→ B and {b} ↪→ H for all b ∈ B, then A ↪→ H.

Proof. Suppose A ↪̸→ H. Then, there exist C,D ⊆ X such that A ↪̸→ Cc,
Dc ↪̸→ B, and (C ∩D)c /∈ P. This result, combined with A ↪→ B and (b) of
Definition 3.1, implies that B ⊈ Cc, that is B ∩ C ̸= ∅. It follows that there
is a point x ∈ X such that {x} ↪→ H and x ∈ C. Then, there are two cases
either x ∈ D or x /∈ D.

Case 1. Let x ∈ D. Hence X \ {x} /∈ P, by (c) of Definition 3.1, implies
{x} ↪̸→ H for any subset H of X, which is a contradiction.

Case 2. Let x ∈ Dc. Then, {x} ↪̸→ B. This result, combined with (c)
and (d) of Definition 3.1, implies {x} ↪̸→ H which is a contradiction. Hence,
A ↪→ H. □

Example 5.10. Let (X, τ,P) be a primal topological space and ‘ ↪→’ be
a binary relation on 2X defined as A ↪→ B if and only if (A ∩ cl(B))c ∈ P.
Then, ‘ ↪→’ is not a primal-proximity relation on 2X but satisfies (b), (c), (d)
and (e) of Definition 3.1. Hence, in this case, τ ⊆ τ∗.
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Proof. We want to show that cl∗(A) ⊆ cl(A) for all A ⊆ X. Let x ∈
cl∗(A) = A ∪

↪→
A. Then, x ∈ A or x ∈

↪→
A. If x ∈ A, then x ∈ cl(A).

Now, if x ∈
↪→
A, then {x} ↪→ A. Hence, ({x} ∩ cl(A))c ∈ P and so

({x} ∩ cl(A))c ̸= X.

Thus, {x} ∩ cl(A) ̸= ∅ which means x ∈ cl(A). Therefore, τ ⊆ τ∗. □

Example 5.11. Let (X, τ,P) be a primal topological space and ‘ ↪→’ be
a binary relation on 2X defined as A ↪→ B if and only if (A ∩ cl⋄(B))c ∈ P.
Then ‘ ↪→’ is not a primal-proximity relation on 2X but satisfies (b), (c), (d)
and (e) of Definition 3.1. Hence, in this case, τ⋄ ⊆ τ∗.

Proof. We want to show that cl∗(A) ⊆ cl⋄(A) for all A ⊆ X.

Let x ∈ cl∗(A) = A ∪
↪→
A. Then, x ∈ A or x ∈

↪→
A. If x ∈ A, then

x ∈ A ⊆ A ∪A⋄ = cl⋄(A).

Now, if x ∈
↪→
A, then {x} ↪→ A. Hence, ({x} ∩ cl⋄(A))c ∈ P and so,

({x} ∩ cl⋄(A))c ̸= X.

Thus, {x} ∩ cl⋄(A) ̸= ∅ which means x ∈ cl⋄(A). Therefore, τ⋄ ⊆ τ∗. □

Definition 5.12. Let (X, τ,P) be a primal topological space. Then, X is
said to be a primal-regular space if for all x ∈ X and τ⋄-closed set F such that
({x} ∩ F )c /∈ P, there exist two open sets H,G such that x ∈ H and F ⊆ G
and (H ∩G)c /∈ P.

Theorem 5.13. Let (X, τ,P) be a primal topological space. Let X be a
primal-regular space and ‘ ↪→’ be a binary relation on 2X as defined in Example
5.11, then τ⋄ = τ∗.

Proof. In order to prove the theorem, it suffices to show cl⋄(A) = cl∗(A) for
all subsets A of X.

Let x ∈ cl∗(A). Then, x ∈ A or x ∈
↪→
A. If x ∈ A, then x ∈ cl⋄(A).

Now, if x ∈
↪→
A, then {x} ↪→ A. Hence, ({x} ∩ cl⋄(A))c ∈ P which means

{x} ∩ cl⋄(A) ̸= ∅. Consequently, we have x ∈ cl⋄(A). Thus, cl∗(A) ⊆ cl⋄(A).

Now, let x /∈ cl∗(A). Then, x /∈ A and x /∈
↪→
A. It follows that {x} ↪̸→ A and

hence by Example 5.11, it implies that ({x} ∩ cl⋄(A))c /∈ P.

Since X is primal-regular space and τ c ⊆ τ⋄c, there exist two open sets H
and G such that x ∈ H and A ⊆ cl⋄(A) ⊆ G and (H ∩ G)c /∈ P. Hence,
(H ∩ A)c /∈ P and since x ∈ H ∈ τ and (H ∩ A)c /∈ P, then x /∈ A⋄. So,
x /∈ cl⋄(A). It follows that cl⋄(A) ⊆ cl∗(A). Hence, cl⋄(A) = cl∗(A). □
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Example 5.14. Let (X, τ,P) be a primal topological space and ‘ ↪→’ be a
binary relation on 2X defined as A ↪→ B if and only if

(cl⋄(A) ∩ cl⋄(B))c ∈ P.

Then, ‘ ↪→’ is not a primal-proximity relation on 2X , but satisfies (a)-(d) of
Definition 3.1.

Definition 5.15. Let (X, τ,P) be a primal topological space. Then, X
is said to be a primal-normal space if for two τ⋄-closed sets F1, F2 such that
(F1 ∩ F2)

c /∈ P, there exist two open sets H and G such that

F1 ⊆ H, F2 ⊆ G and (H ∩G)c /∈ P.

Theorem 5.16. Let (X, τ,P) be a primal topological space. If X is a
primal-normal space and a binary relation defined as in Example 5.14 and
(X, τ) is T1-space, then τ⋄ = τ∗.

Proof. In order to prove the theorem, it suffices to show that cl⋄(A) = cl∗(A)
for all subsets A of X.

Let x ∈ cl∗(A). Then, x ∈ A or x ∈
↪→
A. If x ∈ A, then x ∈ cl⋄(A).

Now, if x ∈
↪→
A, then {x} ↪→ A. Hence,

(cl⋄({x}) ∩ cl⋄(A))c ∈ P.

Since (X, τ) is T1-space and τ c ⊆ τ⋄c, then [{x} ∩ cl⋄(A)]c ∈ P and so,
{x} ∩ cl⋄(A) ̸= ∅. Consequently, we have x ∈ cl⋄(A). Hence, cl∗(A) ⊆ cl⋄(A).

Now, let x /∈ cl∗(A). Then, x /∈ A and x /∈
↪→
A. It follows that {x} ↪̸→ A and

hence by Example 5.14, it implies that

(cl⋄({x}) ∩ cl⋄(A))c /∈ P.

Since (X, τ) is primal-normal space, T1-space and τ c ⊆ τ⋄c, there exist two
open sets H and G such that {x} ⊆ H, A ⊆ cl⋄(A) ⊆ G and (H ∩G)c /∈ P.

Hence, (H ∩A)c /∈ P. Since x ∈ H ∈ τ and (H ∩A)c /∈ P, thus x /∈ A⋄. So,
x /∈ cl⋄(A). It follows that cl⋄(A) ⊆ cl∗(A) and hence, cl⋄(A) = cl∗(A). □

Theorem 5.17. Let (X, ↪→,P) be a primal-proximity space and A ⊆ X.

Then, A ∈ ↪→
τ if and only if {x} ↪̸→ Ac for every x ∈ A.

Proof. Let A ∈ ↪→
τ and x ∈ A. Then, Ac is proximity-closed in

↪→
τ and

x /∈ Ac. Hence, we get {x} ↪̸→ Ac.
Conversely, if for every x ∈ A, we have {x} ↪̸→ Ac. Then, {x} ↪→ Ac implies

that x /∈ A. This means that {x} ↪→ Ac implies x ∈ Ac. Hence, Ac is

proximity-closed in
↪→
τ . Thus, A ∈ ↪→

τ . □
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Theorem 5.18. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X
such that A ↪̸→ B. Then, the following conditions hold:

(i) cl↪→
τ
(B) ⊆ Ac where cl↪→

τ
(B) means the closure of B with respect to

↪→
τ .

(ii) if P = 2X\{X}, then B ⊆ int↪→
τ
(Ac) where int↪→

τ
(Ac) means the interior

of Ac with respect to
↪→
τ .

Proof. (i) Since the closure is taken with respect to
↪→
τ and A ↪̸→ B, we have

↪→
B = cl↪→

τ
(B) ⊆ Ac,

(ii) If x ∈ B, then {x} ↪→ B. This implies that {x} ↪̸→ A. Because if
{x} ↪→ A, then by Lemma 5.2, we get A ↪→ B. Hence, x /∈ cl↪→

τ
(A) which

means x ∈ (cl↪→
τ
(A))c = int↪→

τ
(Ac). Hence, we have B ⊆ int↪→

τ
(Ac). □

Theorem 5.19. Let (X, ↪→,P) be a primal-proximity space and A,B ⊆ X.
Then, A ↪→ B if and only if cl↪→

τ
(A) ↪→ cl↪→

τ
(B), where cl↪→

τ
(A) means the

closure of A with respect to
↪→
τ .

Proof. If A ↪→ B, then by Lemma 4.2, cl↪→
τ
(A) ↪→ cl↪→

τ
(B) since A ⊆ cl↪→

τ
(A)

and B ⊆ cl↪→
τ
(B). If A ↪̸→ B, then there exists a subset E of X such that

A ↪̸→ E and Ec ↪̸→ B and (E ∩ Ec)c /∈ P. Hence, cl↪→
τ
(B) ⊆ E by (i) of

Theorem 5.18. This implies that A ↪̸→ cl↪→
τ
(B). Because if A ↪→ cl↪→

τ
(B) then

by Lemma 4.2, we have A ↪→ E since cl↪→
τ
(B) ⊆ E. Now if A ↪̸→ B, then

A ↪̸→ cl↪→
τ
(B). Also, cl↪→

τ
(B) ↪̸→ A by a similar proof. Again it follows that

cl↪→
τ
(B) ↪̸→ cl↪→

τ
(A). Hence, A ↪→ B if and only if cl↪→

τ
(A) ↪→ cl↪→

τ
(B). □

6. CONCLUSION

In this paper, we introduced a new type of proximity space called primal-
proximity space. Later, we defined point-primal proximity operator and inves-
tigated some of its fundamental properties. We also proved that this operator
is a Kuratowski closure operator under special condition. Moreover, one more
operator via point-primal proximity operator was defined. Furthermore, we
gave not only some relationships but also several examples.
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Menteşe-Muğla, 48000, Turkey

E-mail: murad.ozkoc@mu.edu.tr

https://orcid.org/0000-0003-0068-7415

Gauhati University

Department of Mathematics

Guwahati, 781014, Assam, India

E-mail: sacharjee326@gmail.com

https://orcid.org/0000-0003-4932-3305

https://doi.org/10.1007/s11786-013-0143-z
https://doi.org/10.1007/BF01344159
http://bims.iranjournals.ir/article_738.html
https://doi.org/10.1007/BF01431527
http://elib.mi.sanu.ac.rs/files/journals/mv/278/mvn278p6-16.pdf
http://www.mijst.mju.ac.th/vol15/129-136.pdf
http://www.mijst.mju.ac.th/vol15/129-136.pdf
https://orcid.org/0000-0002-6696-1301
https://orcid.org/0000-0003-0068-7415
https://orcid.org/0000-0003-4932-3305

	1. Introduction
	2. Preliminaries
	3. Primal-proximity spaces
	4. Point-primal proximity operator
	5. Proximal closed sets and topology
	6. Conclusion
	References

