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WEAK SOLUTION FOR BIHARMONIC EQUATION
WITH NAVIER BOUNDARY CONDITIONS

RUPALI KUMARI and RASMITA KAR

Abstract. The aim of this paper is to study the existence and uniqueness of
weak solution for the problem

Lu(x)− µu(x)f(x) = −g
(
x, u(x)

)
in Ω,

u(x) = ∆u(x) = 0 on ∂Ω,
(1)

in W 2,2(Ω, v) ∩W 1,2
0 (Ω, v) where,

Lu(x) = −
n

Σ
i,j=1

Dj

(
aij(x)Diu(x)

)
+∆

[
v(x)∆u(x)

]
,

with µ ∈ R, Ω ⊂ Rn is bounded and open. Here, the functions f : Ω → R and
g : Ω× R → R satisfy the suitable hypotheses.

2020 AMS subject classification: 46E35, 35J61, 35J70, 35J91.
Key words: biharmonic operator, Navier boundary, elliptic partial differential equa-
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1. INTRODUCTION

We prove the existence and uniqueness of weak solution for the problem

(2)
Lu(x)− µu(x)f(x) = −g(x, u(x)) in Ω,

u(x) = ∆u(x) = 0 on ∂Ω,

in W 2,2(Ω, v) ∩W 1,2
0 (Ω, v). Here,

(3) Lu(x) = −
n
Σ

i,j=1
Dj(aij(x)Diu(x)) + ∆[v(x)∆u(x)],

with µ ∈ R, Ω is an open bounded set in Rn and the aij are real-valued,
measurable functions. The coefficient matrix (aij) is symmetric and fulfill the
ellipticity condition

(4) λ| ρ |2v(x) ≤
n
Σ

i,j=1
aij(x)ρiρj ≤ Λ| ρ |2v(x),

for almost every x in Ω, each ρ ∈ Rn, λ > 0,Λ > 0 and v is a weight function.
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Much has been written in past years about the existence and multiplicity
of solutions for nonlinear second order elliptic partial differential equations
in bounded and unbounded domains of Rn. Interest in higher order nonlin-
ear problems has recently grown due to exciting and promising developments,
particularly for fourth order equations. Semilinear elliptic partial differential
equations with biharmonic operator appear in the study of bio-physics, con-
tinuum mechanics, differential geometry. In [1], M. Bhakta has studied about
the existence and nonexistence of positive solution to the specific semilinear
elliptic biharmonic problem with singular potential in space W 2,2 ∩W 1,2

0 (Ω).
Applying an additional condition on the equation, the author has established
the uniqueness of the positive solution. A similar equation has been stud-
ied by M. Pérez-Llanos and A. Primo in [9], where the authors have solved
the semilinear biharmonic boundary value problem with the optimal exponent
term.

The weight v is a function which is integrable on every compact subset of
Rn and v > 0 for almost every x in Rn. Through integration, each weight v
yields measure on Rn’s measurable subsets. Ap-weights, which was presented
by B. Muckenhoupt [8], is a notable category of weights. These classes offer a
wide range of applications in harmonic analysis (we refer [11]).

For parabolic and elliptic partial differential equations, the Sobolev spaces
without weight appear as spaces of solutions. It is reasonable to search for
solution in weighted Sobolev spaces for the equations having coefficients with
different forms of singularities. Many research papers have been published
in the recent few years that deal with the W 2,p(Ω, v) ∩ W 1,p

0 (Ω, v) solution
of elliptic partial differential equations with p-biharmonic operator and some
specific nonlinearities. We list several of them [3,4,10]. Similar type of problem
was studied by A.C. Cavalheiro in [2] involving the Laplacian operator in

the space W 1,2
0 (Ω, v). We apply the idea of it in studying the biharmonic

problem(2). In [3], the author has solved the Navier problem with (p, q)-
biharmonic operators to find its existence of weak solution. We refer to [7]
for the existence of solution of a class of elliptic problems on the Sierpinski
gasket.

In Section 2, we introduce the known results, necessary definitions and
hypotheses which we have used subsequently. The main result is proved in the
Section 3.

2. PRELIMINARIES

Suppose that v be a locally integrable nonnegative function in Rn and let
0 < v < ∞ almost everywhere. We say v is an Ap-weight, if there is a constant
B such as (

1

| D |

∫
D
vdx

)(
1

| D |

∫
D
v1/(1−p)dx

)p−1

≤ B,

for every ball D contained in Rn, where | . | stands for Lebesgue measure.
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Definition 2.1. We denote X = W 2,2(Ω, v) ∩W 1,2
0 (Ω, v) with the norm

∥ u ∥X =
( ∫

Ω | ∇u |2vdx +
∫
Ω | ∆u |2vdx

)1/2
.

Definition 2.2. If a function u ∈ X satisfies∫
Ω
aijDiuDjφdx +

∫
Ω
∆u∆φvdx− µ

∫
Ω
ufφdx = −

∫
Ω
gφdx,(5)

for every φ ∈ X then, (2) has a weak solution.

Proposition 2.3. Suppose v ∈ Ap and Ω ⊂ Rn, which is bounded, open.
There exist a positive δ and constant CΩ in such a way that every k fulfilling
1 ≤ k ≤ n

n−1 + δ and for every u ∈ C∞
0 (Ω), we have

CΩ∥ ∇u ∥Lp(Ω,v) ≥ ∥ u ∥Lkp(Ω,v).

For proof, we refer the Theorem 1.3 of [5].

Proposition 2.4. Let v ∈ Ap and Ω ⊂ Rn, which is bounded and open.
If un converges to u in Lp(Ω, v) then, there is a function Φ ∈ Lp(Ω, v) and a
subsequence {unk

} in such a way that:

(1) Φ(x) ≥| unk
(x) | almost everywhere on Ω;

(2) unk
(x) → u(x) as nk → ∞ almost everywhere on Ω.

For proof, we refer the Theorem 2.8.1 in [6].

Remark 2.5. If v ∈ A2, then

∥ u ∥L2(Ω,v)≤ CΩ ∥ ∇u ∥L2(Ω,v)≤ CΩ ∥ u ∥X ,

so X ⊂ L2(Ω, v) is continuous embedding.

Definition 2.6. Suppose H : X → X∗ be an operator, where X is a real
Banach space.

(1) H is angle-bounded iff H is monotone, linear and we have a nonnega-
tive constant β with the aim of

| ⟨Hu1, u2⟩X − ⟨Hu2, u1⟩X |2 ≤ β⟨Hu1, u1⟩X⟨Hu2, u2⟩X ,

where u1, u2 belong to X and ⟨f, u⟩X denotes the value of f(u).
(2) H is monotone if and only if

⟨Hu1 −Hu2, u1 − u2⟩X ≥ 0,

where u1, u2 ∈ X.
(3) H is hemicontinuous iff

s 7→ ⟨H(u1 + su2), u3⟩X ,

is continuous on [0, 1], where u1, u2, u3 ∈ X.

Proposition 2.7. Suppose X is a Banach space, which is real and separable.
Suppose operators F : X∗ → X and K : X → X∗ satisfy the assumptions given
below:
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(1) F is monotone and hemicontinuous;
(2) K is angle-bounded, monotone and linear.

Then, u+KFu = 0 has only one solution u in X∗.

We refer to [13, Theorem 28 A] for the proof.
For further study, we require the following hypotheses. Let v ∈ A2.
(H1) Suppose g : Ω× R → R satisfies the Carathéodory condition.
(H2) The increasing function t 7→ g(x, t) on R for every x ∈ Ω.
(H3) f1 and f2 are two nonnegative functions such as; f1 ∈ L2(Ω, v) ∩

L2(Ω, v−1), f2 ∈ L∞(Ω) and f2/v ∈ L∞(Ω) so as

| g(x, t) |≤ f1(x) + f2(x) | t | .
(H4) f/v ∈ L∞(Ω).
Let us define B : X ×X → R, where

B(u, φ) =

∫
Ω
aijDiuDjφdx +

∫
Ω
∆u∆φvdx − µ

∫
Ω
ufφdx.

The map u is a weak solution of (2) if u ∈ X satisfies

B(u, φ) = −
∫
Ω
gφdx,

for all φ ∈ X.

3. THE MAIN RESULT

We show the existence as well as uniqueness of solution for equation (2) in
this section.

Theorem 3.1. Suppose (H1)–(H4) hold. Let

0 < λ− µ ∥ f/v ∥L∞(Ω) CΩ < 1, µ > 0,

then (2) has only one solution u ∈ X.

Proof. Step 1.
Let us define F : L2(Ω, v) → L2(Ω, v) as

(Fu)(x) = g(x, u(x)).

We assert that function F is monotone, bounded and continuous.
Applying (H2), we get that g = g(x, t) is increasing function with respect

to t, that is, g(x, t1) ≤ g(x, t2) holds for all t1, t2 ∈ R with t1 ≤ t2 and for all
x ∈ Ω. Then

(
g(x, t1) − g(x, t2)

)
(t1 − t2) ≥ 0, for all t1, t2 ∈ R, x ∈ Ω. This

implies

(6)

⟨Fu1 − Fu2, u1 − u2⟩L2(Ω,v)

=

∫
Ω

[
g
(
x, u1(x)

)
− g

(
x, u2(x)

)](
u1(x)− u2(x)

)
dx ≥ 0,

for all u1, u2 ∈ L2(Ω, v). Thus, F : L2(Ω, v) → L2(Ω, v) is monotone.
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Next, to show F is bounded, we use (H3) and Proposition 2.3, so that

∥ Fu ∥2L2(Ω,v) =

∫
Ω
| F (u(x)) |2vdx

=

∫
Ω
| g(x, u(x)) |2vdx

≤
∫
Ω
(f1(x) + f2(x) | u(x) |)2vdx

≤ 2

∫
Ω
(f2

1 (x) + f2
2 (x)| u(x) |

2)vdx

≤ 2
(
∥ f1 ∥2L2(Ω,v) + ∥ f2 ∥2L∞(Ω)∥ u ∥2L2(Ω,v)

)
.

(7)

So, F is bounded.
Now, to show the continuity of F, let un → u in L2(Ω, v) as n → ∞. We

have to verify that Fun → Fu in L2(Ω, v). Applying Theorem 2.4, there exist
a function Φ ∈ L2(Ω, v) and a subsequence {unk

} such that | unk
(x) |≤ Φ(x),

almost everywhere in Ω and unk
(x) → u(x), almost everywhere in Ω. Thus,

we obtain

∥ Funk
− Fu ∥2L2(Ω,v) =

∫
Ω
| Funk

(x)− Fu(x) |2vdx

=

∫
Ω
| g(x, unk

)− g(x, u) |2vdx

≤ 2

∫
Ω

(
| g(x, unk

) |2 + | g(x, u) |2
)
vdx

≤ 2

[ ∫
Ω

(
f1(x) + f2(x) | unk

|
)2
vdx

+

∫
Ω

(
f1(x) + f2(x) | u |

)2
vdx

]
≤ C

(
∥ f1 ∥2L2(Ω,v) + ∥ f2 ∥2L∞(Ω)∥ Φ ∥2L2(Ω,v)

)
.

Applying (H1), we get Fun(x) = g
(
x, un(x)

)
→ g

(
x, u(x)

)
= Fu(x) when

n → +∞. Hence, using the Dominated Convergence theorem, we get

∥ Funk
− Fu ∥L2(Ω,v) → 0,

that is, Funk
→ Fu in L2(Ω, v). Due to the convergence principle in Banach

spaces, we can show that Fun → Fu in L2(Ω, v). Thus, F is continuous.

Step 2. We claim that the map B : X ×X → R is bounded, bilinear and
strongly positive.
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Since, we have | aij(x) |≤ Λv(x) for almost every x ∈ Ω. Using Proposition
2.3 and (H4),

| B(u, φ) |

=

∣∣∣∣ ∫
Ω
aijDiuDjφdx+

∫
Ω
∆u∆φvdx− µ

∫
Ω
ufφdx

∣∣∣∣
≤

∫
Ω
| aij || Diu || Djφ | dx+

∫
Ω
| ∆u || ∆φ | vdx

+ | µ |
∫
Ω
| u || f/v || φ | vdx

≤
∫
Ω
Λ | Diu || Djφ | vdx+

∫
Ω
| ∆u || ∆φ | vdx

+ | µ | ∥ f/v ∥L∞(Ω)

∫
Ω
| u || φ | vdx

≤ Λ

(∫
Ω
| Diu |2vdx

)1/2(∫
Ω
| Djφ |2vdx

)1/2

+

(∫
Ω
| ∆u |2vdx

)1/2(∫
Ω
| ∆φ |2vdx

)1/2

+ | µ | ∥ f/v ∥L∞(Ω)

(∫
Ω
| u |2vdx

)1/2(∫
Ω
| φ |2vdx

)1/2

≤ Λ∥ u ∥X∥ φ ∥X + ∥ u ∥X∥ φ ∥X+ | µ | ∥ f/v ∥L∞(Ω)C
2
Ω∥ u ∥X∥ φ ∥X

= (Λ + 1+ | µ | ∥ f/v ∥L∞(Ω)C
2
Ω)∥ u ∥X∥ φ ∥X

= C∗∥ u ∥X∥ φ ∥X ,

where C∗ =
(
Λ + 1+ | µ | ∥ f/v ∥L∞(Ω)C

2
Ω

)
. Hence, the bilinear form B is

bounded.
We obtain following by applying the inequality (4), (H4), Remark 2.5 and

Proposition 2.3,

B(u, u) =

∫
Ω
aijDiuDjudx+

∫
Ω
(∆u)(∆u)vdx− µ

∫
Ω
ufudx

=

∫
Ω
aijDiuDjudx+

∫
Ω
| ∆u |2vdx− µ

∫
Ω
u2f/v vdx

≥ λ

∫
Ω
| ∇u |2vdx+

∫
Ω
| ∆u |2vdx− µ∥ f/v ∥L∞(Ω)

∫
Ω
u2vdx

≥ λ

∫
Ω
| ∇u |2vdx+

∫
Ω
| ∆u |2vdx− µ∥ f/v ∥L∞(Ω)CΩ

∫
Ω
| ∇u |2vdx

=

(
λ− µ ∥ f/v ∥L∞(Ω) CΩ

)∫
Ω
| ∇u |2vdx+

∫
Ω
| ∆u |2vdx
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=

(
λ− µ ∥ f/v ∥L∞(Ω) CΩ

)∫
Ω
| ∇u |2vdx+ ∥ u ∥2X −

∫
Ω
| ∇u |2vdx

=

(
λ− µ ∥ f/v ∥L∞(Ω) CΩ − 1

)∫
Ω
| ∇u |2vdx+ ∥ u ∥2X

= −
(
− λ+ µ ∥ f/v ∥L∞(Ω) CΩ + 1

)∫
Ω
| ∇u |2vdx+ ∥ u ∥2X

≥ −
(
− λ+ µ ∥ f/v ∥L∞(Ω) CΩ + 1

)
∥ u ∥2X + ∥ u ∥2X

=

(
λ− µ∥ f/v ∥L∞(Ω)CΩ

)
∥ u ∥2X = C1∥ u ∥2X ,

where,

C1 =

(
λ− µ∥ f/v ∥L∞(Ω)CΩ

)
> 0 and

(
− λ+ µ ∥ f/v ∥L∞(Ω) CΩ + 1

)
> 0.

Therefore, the bilinear map B is strongly positive, if

0 < λ− µ ∥ f/v ∥L∞(Ω) CΩ < 1.

Step 3. We study the following linear problem

(8)
Lu(x)− µu(x)f(x) = h(x) in Ω,

u(x) = ∆u(x) = 0 on ∂Ω.

Here, h(x) ≡ −g(x, u(x)). Applying Theorem 22.C in [12], we obtain a unique
solution u ∈ X ⊂ L2(Ω, v) for

B(u, φ) = −
∫
Ω
h(x)φ(x)dx,

where, φ ∈ X. By putting u = Kh and using Corollary 22.20 from [12],
K : L2(Ω, v) → L2(Ω, v) is angle-bounded, compact, monotone and linear.
Hence, the problem (2) is equivalent to the operator equation

(9) u+KFu = 0, for all u ∈ L2(Ω, v).

Now, applying Proposition 2.7, we get that Equation (9) has a unique solu-
tion. Thus, we can conclude that the solution to the problem (2) is unique. □

Remark 3.2. In particular, for φ = u ∈ X, we obtain

B(u, u) = −
∫
Ω
g(x, u(x))u(x)dx.

From Step 2, we get

B(u, u) ≥ C1∥ u ∥2X .
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Applying (H3) and Remark 2.5, we have∣∣∣∣ ∫
Ω
g(x, u)udx

∣∣∣∣ ≤ ∫
Ω
| g(x, u) || u | dx

≤
∫
Ω

(
f1 + f2 | u |

)
| u | dx

=

∫
Ω
f1v

−1/2 | u | v1/2dx+

∫
Ω
f2v

−1| u |2vdx

≤
(∫

Ω
f1

2v−1dx

)1/2(∫
Ω
| u |2vdx

)1/2

+ ∥ f2/v ∥L∞(Ω)

∫
Ω
| u |2vdx

≤∥ f1 ∥L2(Ω,v−1)∥ u ∥L2(Ω,v) + ∥ f2/v ∥L∞(Ω)∥ u ∥2L2(Ω,v)

≤ CΩ ∥ f1 ∥L2(Ω,v−1)∥ u ∥X +C2
Ω ∥ f2/v ∥L∞(Ω) ∥ u ∥2X .

Hence,

C1∥ u ∥2X ≤ CΩ ∥ f1 ∥L2(Ω,v−1)∥ u ∥X +C2
Ω ∥ f2/v ∥L∞(Ω) ∥ u ∥2X .

Thus,

∥ u ∥X≤
CΩ ∥ f1 ∥L2(Ω,v−1)

C1 − C2
Ω ∥ f2/v ∥L∞(Ω)

.

Now, putting CΩ

C1−C2
Ω∥f2/v∥L∞(Ω)

= C∗∗, we have

∥ u ∥X≤ C∗∗ ∥ f1 ∥L2(Ω,v−1) .

C∗∗ > 0 if C1 − C2
Ω ∥ f2/v ∥L∞(Ω) > 0.
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