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SANDOR’S INEQUALITY FOR PSEUDO INTEGRALS

BAYAZ DARABY, MOHAMMAD REZA KARIMZADEH, and MOHAMMAD
SHAHRIARI

Abstract. In this paper, we show a Sandor type inequality for pseudo-integrals.
Indeed, we prove a classic version of this inequality for pseudo-integrals. Some
illustrative examples are given for the theorems. We continue by proving a
strengthened version of Sandor’s inequality for pseudo-integral.

MSC 2020. 35A23, 26E50, 28A25.

Key words. Sandor type inequality, fuzzy integral inequality, pseudo-integral,
fuzzy measure.

1. INTRODUCTION

The theory of fuzzy measures and fuzzy integral (Sugeno integral) was in-
troduced by Sugeno [22] in his Ph.D. thesis in 1974. The properties and ap-
plications of fuzzy integral have been studied by many authors. Ralescu and
Adams studied in [21] several equivalent definitions of fuzzy integrals; Román
Flores et al. started studying some fuzzy integral inequalities for monotone
functions with applications for solving fuzzy integrals.

Since 2007, some authors have studied some other fuzzy integral inequalities
(see [5, 7–10,13]).

Pseudo-analysis is a generalization of the classical analysis, where instead
of the field of real numbers a semiring is taken on a real interval [a, b] ⊆
[−∞,+∞] endowed with pseudo-addition ⊕ and with pseudo-multiplication
⊙ ([17], [18], [19]). Based on this structure, there were developed the concepts
of ⊕ measure (pseudo-additive measure), pseudo-integral, pseudo-convolution,
pseudo-Laplace transform, etc.

Recently, Daraby et al. generalized Stolarsky, Hardy and Feng Qi type
inequalities for pseudo-integrals ([4, 6, 11,12]).

Sandor inequality in classical case has the following form.
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Theorem 1.1 ([3]). Let f : [a, b] → R be a convex and non-negative func-
tion. Then

(1)
1

b− a

∫ b

a
f2(x)dx ≤ 1

3

[
f2(a) + f(a)f(b) + f2(b)

]
,

holds.

Sandor’s inequality is proved in some versions for Sugeno integrals, for more
details of these versions, we refer reader to [3]. Also, Li et al. have proved
Sandor type inequalities for Sugeno integral with respect to general (α,m, r)-
convex functions in [14]. Moreover Yang et al. and Lu et al. have studied on
Sandor’s inequalities for fuzzy integrals respectively in [23] and [15].

In this paper, we express and prove the Sandor type inequality for pseudo
integrals and illustrate it by some examples. Also, we prove a strengthened
version of Sandor’s inequality for pseudo-integral.

2. PRELIMINARY

Now, we are going to review some well known results of pseudo-operations,
pseudo-analysis and pseudo-additive measures and integrals in details, we refer
to [16,24].

Let [a, b] be a closed (in some cases can be considered semi-closed) subin-
terval of [−∞,∞]. The full order on [a, b] will be denoted by ⪯.

Definition 2.1. (Wang and Klir [24]). The operation ⊕ (pseudo-addition)
is a function ⊕ : [a, b] × [a, b] → [a, b] which is commutative, non-decreasing
(with respect to ⪯ ), associative and with a zero (neutral) element denoted by
0, i.e., for each x ∈ [a, b],0⊕ x = x holds (usually 0 is either a or b).

Let [a, b]+ = {x|x ∈ [a, b],0 ⪯ x}.

Definition 2.2 (Wang and Klir [24]). The operation ⊙ (pseudo-multiplica-
tion) is a function ⊙ : [a, b] × [a, b] → [a, b] which is commutative, positively
non-decreasing, i.e., x ⪯ y implies x⊙ z ⪯ y ⊙ z for all z ∈ [a, b]+, associative
and for which there exists a unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b],1⊙
x = x.

We assume also 0⊙x = 0 and that ⊙ is a distributive pseudo-multiplication
with respect to ⊕, i.e., x⊙ (y ⊕ z) = (x⊙ y)⊕ (x⊙ z).

We shall consider the semiring ([a, b],⊕,⊙) for two important (with com-
pletely different behavior) cases. The first case is when pseudo-operations are
generated by a monotone and continuous function g : [a, b] → [0,∞), i.e.,
pseudo-operations are given with:

(2) x⊕ y = g−1(g(x) + g(x)) and x⊙ y = g−1(g(x)g(x)).
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Then, the pseudo-integral for a function f : [c, d] → [a, b] reduces on the
g−integral

(3)

∫ ⊕

[c,d]
f(x)dx = g−1

(∫ d

c
g(f(x))dx

)
.

More details on this structure as well as corresponding measures and integrals
can be found in [16]. The second class is when x⊕ y = max(x, y) and x⊙ y =
g−1(g(x)g(y)), the pseudo-integral for a function f : R → [a, b] is given by∫ ⊕

R
f ⊙ dm = sup

x∈R
(f(x)⊙ ψ(x)) ,

where function ψ defines sup-measure m. Any sup-measure generated as es-
sential supremum of a continuous density can be obtained as a limit of pseudo-
additive measures with respect to generated pseudo-additine. Then any con-
tinuous function f : [0,∞] → [0,∞] the integral

∫ ⊕
f ⊙ dm can be obtained

as a limit of g-integrals.
We denote by µ the usual Lebesgue measure on R. We have

m(A) = ess supµ(x|x ∈ A)

= sup {a|µ(x|x ∈ A, x > a) > 0} .

Theorem 2.3 (Mesiar and Pap [16]). Let m be a sup-measure on ([0,∞],
B[0,∞]), where B([0,∞]) is the Borel σ-algebra on [0,∞],

m(A) = ess supµ(ψ(x)|x ∈ A),

and ψ : [0,∞] → [0,∞] is a continuous function. Then for any pseudo-
addition ⊕ with a generator g there exists a family mλ of ⊕λ-measure on
([0,∞],B), where ⊕λ is a generated by gλ (the function g of the power λ, λ ∈
(0,∞)) such that lim

λ→∞
mλ = m.

Theorem 2.4 (Mesiar and Pap [16]). Let ([0,∞], sup,⊙) be a semiring ,
when ⊙ is a generated with g, i.e., we have x ⊙ y = g−1(g(x)g(y)) for every
x, y ∈ (0,∞). Let m be the same as in Theorem 2.3, Then there exists a family
{mλ} of ⊕λ -measures, where ⊕λ is a generated by gλ, λ ∈ (0,∞) such that
for every continuous function f : [0,∞] → [0,∞],∫ sup

f ⊙ dm = lim
λ→∞

∫ ⊕λ

f ⊙ dmλ

= lim
λ→∞

(gλ)−1

(∫
gλ(f(x))dx

)
.

(4)

3. MAIN RESULT

In this section, we express and prove Sandor’s inequality for pseudo-inte-
grals.
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3.1. Sandor type inequality for pseudo integrals.

Theorem 3.1. Let f : [a, b] → [c, d] be a continuous, convex and non-
negative function and g : [c, d] → [0,∞) be a continuous and increasing func-
tion. Then

(5)

(
1

b− a

)
g

(∫ ⊕

[a,b]
f2⊙(x)dx

)
≤ 1

3
g

([
f2⊙(a)⊕ f(a)⊙ f(b)⊕ f2⊙(b)

])
,

holds.

Proof. From the right side of inequality, we have

1

3

[
f2⊙(a)⊕ f(a)⊙ f(b)⊕ f2⊙(b)

]
=

1

3

{[
g−1(g(f)(a) · g(f)(a)

)
⊕ g−1 (g(f)(a) · g(f)(b))

]
⊕
[
g−1 (g(f)(b) · g(f)(b)]

}
=

1

3

{
g−1

(
g
(
g−1 (g(f)(a) · g(f)(a))

)
+ g

(
g−1 (g(f)(a) · g(f)(b))

))
⊕
[
g−1 (g(f)(b) · g(f)(b))

] }
=

1

3

{
g−1

(
g
[
g−1
(
g
(
g−1 (g(f)(a) · g(f)(a))

)
+ g

(
g−1 (g(f)(a) · g(f)(b))

) )]
+ g
[
g−1

(
g(f)(b) · g(f)(b)

]))}

=
1

3

{
g−1

(
g(f)2(a) + g(f)(a) · g(f)(b) + g(f)2(b)

)}
.

From classical version of Sandor’s inequality and Equality 3, we conclude that

1

3

(
g−1

[(
3

b− a

)∫ b

a
g(f)2(x)dx

])
≤ 1

3

(
g−1

[
g(f)2(a) + g(f)(a) · g(f)(b) + g(f)2(b)

])
.

Continuting left side of the above mentioned inequality follows that:

1

3

(
g−1

[(
3

b− a

)∫ b

a
g(f)(x) · g(f)(x)dx

])
=

1

3

(
g−1

[(
3

b− a

)∫ b

a
gg−1 (g(f)(x) · g(f)(x)dx)

])
=

1

3

(
g−1

[(
3

b− a

)∫ b

a
g
(
f2⊙(x)

)
dx

])
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=
1

3

(
g−1

[(
3

b− a

)
gg−1

∫ b

a

∫ b

a
g
(
f2⊙(x)

)
dx

])
=

1

3

(
g−1

[(
3

b− a

)
g

(∫ ⊕

[a,b]
f2⊙(x)

)])
.

It follows that:

1

3

(
g−1

[(
3

b− a

)
g

(∫ ⊕

[a,b]
f2⊙(x)dx

)])

≤ 1

3

[
f2⊙(a)⊕ f(a)⊙ f(b)⊕ f2⊙(b)

]
.

Then

g−1

[(
3

b− a

)
g

(∫ ⊕

[a,b]
f2⊙(x)dx

)]
≤
[
f2⊙(a)⊕ f(a)⊙ f(b)⊕ f2⊙(b)

]
.

So, (
1

b− a

)
g

(∫ ⊕

[a,b]
f2⊙(x)dx

)
≤ 1

3
g
(
f2⊙(a)⊕ f(a)⊙ f(b)⊕ f2⊙(b)

)
.

Thereby, the proof is complete. □

When, we restrict our argument to semiring ([0, 1],⊕,⊙), we obtain the
following theorem.

Corollary 3.2. Let f : [0, 1] → [c, d] be a continuous, convex and non-
negative function and g : [c, d] → [0,∞) be a continuous and increasing func-
tion. Then

(6)

(
1

b− a

)
g

(∫ ⊕

[0,1]
f2⊙(x)dx

)
≤ 1

3
g
[
f2⊙(0)⊕ f(0)⊙ f(1)⊕ f2⊙(1)

]
,

holds.

Example 3.3. Let f and g are defined from [0, 1] to [0, 1] by f(x) = x2 and
g(x) =

√
x. Then we have

1

4
=

1

1− 0

∫ ⊕

[0,1]
f2⊙(x)dx ≤ 1

3
g
[
f2⊙(0)⊕ f(0)⊙ f(1)⊕ f2⊙(1)

]
=

1

3
.

Example 3.4. Let f and g are defined from [0, 1] to [0, 1] by f(x) = x2 ,
g(x) = x3. Then we have

1

13
=

1

1− 0

∫ ⊕

[0,1]
f2⊙(x)dx ≤ 1

3
g
[
f2⊙(0)⊕ f(0)⊙ f(1)⊕ f2⊙(1)

]
=

1

3
.

The following example shows that convexity of f in Theorem 3.1 is neces-
sary.
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Example 3.5. Suppose that f(x) =
√
x and g(x) = x2. Them simple

calculaion show that

2

3
=

1

1− 0

∫ ⊕

[0,1]
f2⊙(x)dx ≰

1

3
g
[
f2⊙(0)⊕ f(0)⊙ f(1)⊕ f2⊙(1)

]
=

1

3
.

We can not remove the assumption g is increasing in Theorem 3.1. The
following example shows this fact.

Example 3.6. Let f(x) =
√
x and g(x) =

√
1− x. Then we have

5

6
=

1

1− 0

∫ ⊕

[0,1]
f2⊙(x)dx ≰

1

3
g
[
f2⊙(0)⊕ f(0)⊙ f(1)⊕ f2⊙(1)

]
=

1

3
.

Corollary 3.7. In the Theorem 3.1, if we suppose that g(x) = x, then the
Inequality (5) follows that Inequality (1).

Now, we generalize the Sandor type inequity by the semiring ([a, b], sup,⊙),
where λ ∈ (0,∞).

Theorem 3.8. Let f : [a, b] → [a, b] be a measurable comonotone function
and ([a, b], sup,⊙) be a simiring and m be the same as Theorems 2.3 and 2.4.
If g is a continuous and increasing function, then the following inequality

(7)

(
1

b− a

)
g

(∫ sup

[a,b]
f2⊙(x)dx

)
≤ 1

3
g
[
f2⊙(a)⊕ f(a)⊙ f(b)⊕ f2⊙(b)

]
,

holds.

Proof. The proof is similar to the Theorem 3.1. □

Now, by an example we illustrate the validity of Theorem (3.8).

Example 3.9. Let gλ(x) = eλx. Then we have:

x⊕ y = lim
λ→∞

ln
(
eλx + eλy

)
= max(x, y),

x⊙ y = lim
λ→∞

1

λ

(
eλx · eλy

)
= x+ y.

Therefore (3.3) reduces on the following inequality:

1

b− a
sup

(
f2(x) + ψ(x)

)
≤ 1

3

[
f2(a)⊕ f(a) · f(b)⊕ f2(b)

]
.

where ψ is the same as in Theorem 2.3.

Note that the third important case ⊕ = max and ⊙ = min has been studied
in [3] and the pseudo-integral in a such a case yields the Sugeno integrals.
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4. FURTHER DISCUSSION

In this section, we proved a strengthened version of Sandor’s inequality for
pseudo-integral.

Theorem 4.1. Let f : [a, b] → [c, d] be a measurable function. Let a gener-
ator g : [c, d] → [0,∞) of the pseudo addition ⊕ and the pseudo multiplication
⊙ be an increasing function. Let φ : [c, d] → [c, d] be a continuous and strictly
increasing function such that commutes with ⊙. Then the inequality

φ−1

(
1

b− a
g

(∫ ⊕

[a,b]
φ
(
f2⊙
)
(x)dx

))

≤ φ−1

(
1

3
g
[
(φ(f))2⊙ (a)⊕ (φ(f)) (a)⊙ (φ(f)) (b)⊕ (φ(f))2⊙ (b)

])
.

(8)

holds.

Proof. Since φ commutes with ⊙, then we have

φ−1

(
1

b− a

∫ ⊕

[a,b]
φ
(
f2⊙
)
(x)dx

)
= φ−1

(
1

b− a

∫ ⊕

[a,b]
(φ(f ⊙ f)) (x)dx

)

= φ−1

(
1

b− a

∫ ⊕

[a,b]
(φ(f)⊙ φ(f)) (x)dx

)

= φ−1

(
1

b− a

∫ ⊕

[a,b]
(φ(f))2⊙ (x)dx

)
,

and since f be a convex function and φ be a strictly increasing function, it
follows that,

φ−1

(
1

b− a
g

(∫ ⊕

[a,b]
φ
(
f2⊙
)
(x)dx

))

≤ φ−1

(
1

3
g
[
(φ(f))2⊙ (a)⊕ (φ(f)) (a)⊙ (φ(f)) (b)⊕ (φ(f))2⊙ (b)

])
.

□

Example 4.2. If we suppose that φ(x) = xs for any s > 0, then from
Inequality (8) we have:(

1

b− a

)
g

(∫ ⊕

[a,b]

(
f2⊙
)s

dm

)

≤ 1

3
g
((
f2⊙
) 1

s (a)⊕ f
1
s (a)⊙ f

1
s (b)⊕

(
f2⊙
) 1

s (b)
)
.

Now, we generalize the above mentioned strengthened version by the semir-
ing ([a, b], sup,⊙), where λ ∈ (0,∞).
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Theorem 4.3. If f : [a, b] → [c, d] be a measurable function and φ is a
continuous and strictly function, then by using the Theorem 2.4, we have

φ−1

(
1

b− a
g

(∫ sup

[a,b]
φ
(
f2⊙
)
⊙ dm

))

≤ φ−1

(
1

3
g
[
(φ(f))2⊙ (a)⊕ (φ(f)) (a)⊙ (φ(f)) (b)⊕ (φ(f))2⊙ (b)

])
.

(9)

Proof. From the left side of (9), we have

φ−1

(
1

b− a

∫ sup

[a,b]
φ
(
f2⊙
)
⊙ dm

)

= φ−1

(
1

b− a
lim
λ→∞

(
gλ
)−1

∫ b

a
gλ
(
φ
(
f2⊙
))

(x)dx

)
≤ φ−1

(
1

3
g
[
(φ(f))2⊙ (a)⊕ (φ(f)) (a)⊙ (φ(f)) (b)⊕ (φ(f))2⊙ (b)

])
.

□

5. CONCLUSION

In this paper, we have proved Sandor type inequality for pseudo integrals.
More precisely: Let f : [a, b] → [c, d] be a continuous, convex and non-negative
function and g : [c, d] → [0,∞) be a continuous and increasing function. Then

g

(
1

b− a
g

(∫ ⊕

[a,b]
f2⊙(x)dx

))
≤ 1

3

(
g
[
f2⊙(a)⊕ f(a)⊙ f(b)⊕ f2⊙(b)

])
,

holds. Also we have given some illustrate examples. Moreover, a strengthened
version of Sandor’s inequality for pseudo-integral is proved.
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