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ON THE SOLUTIONS OF A STURM-LIOUVILLE TYPE SYSTEM
OF DIFFERENTIAL INCLUSIONS WITH NONLOCAL INTEGRAL
BOUNDARY CONDITIONS

AURELIAN CERNEA

Abstract. We consider a Sturm-Liouville type system of differential inclusions
with nonlocal integral boundary conditions and we obtain an existence result for
this problem in the case when the set-valued maps have nonconvex values.
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1. INTRODUCTION

In the elementary theory of ordinary differential equations it is well known
that any linear second-order differential equation can be rewritten in the self-
adjoint form (p(t)x’) = r(t)z. Together with boundary conditions of the form
a12(0) = a22’(0), bya(T) = baa'(T') this problem is called the Sturm-Liouville
problem. At the same time, a differential inclusion of the form (p(t)z’)" €
F(t,z) with any boundary conditions is usually called a Sturm-Liouville type
differential inclusion.

In this note we are concerned with the following system

(1) { (p(t)u'(t)) € F(t,u(t),v(t)), a.e.t€ a,b],
(q(t)v'(t)) € G(t,u(t),v(t)), ae.tE€ [a,b],

with nonlocal integral boundary conditions of the form

@) aju(a) + agu(b) —alfn azu'(a) + aqu ’(b)—agfn ! ds
biv(a) + bav(b) = as f£ ds bsv'(a) + bt/ (b 4f§

) =
where a <n <& <b,p(.):[a b] (0,00), ¢(.) : [a,b] = (0,00) are continuous
functions, a;,b;,c; € Ry, i = 1,2,3,4 and F(.,.,.) : [a,b] x R? — P(R),
G(.,.,.) : [a,b] x R — P(R) are given set-valued maps.
In a recent paper [1], problem f is studied and two existence results
for this problem are obtained by using fixed point techniques. Our aim is
to improve a result in [1]; namely, we treat the situation when the values of
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the set-valued maps are not convex, but these set-valued maps are assumed
to be Lipschitz in the second and third variable. In this case we establish
an existence result for problem (/1] . Our result use Filippov’s technique
([12]); more exactly, the existence of solutions is obtained by starting from a
pair of given "quasi” solutions. In addition, the result provides an estimate
between the ”quasi” solutions and the solutions obtained.

Such kind of results for ”simple” Sturm-Liouville differential inclusions may
be found in the literature [3-7]. A similar result for a Sturm-Liouville type
system of differential inclusions is obtained in [11], but the problem in [11]
involves nonlocal multi-point boundary conditions which can’t be covered by
boundary conditions as in . Also, we point out that the approach presented
here may be found at coupled systems of fractional differential inclusions [8-
10]. Finally, we underline that even if the method we use here is known in the
theory of differential inclusions it is largely ignored by the authors that are
dealing with such problems in favor of fixed point approaches.

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES

We set by I the interval [a,b]. We denote by C(I,R) the Banach space
of all continuous functions z(.) : I — R endowed with the norm |z(.)|c =
sup,c7|z(t)| and by L'(I,R) the Banach space of all integrable functions x(.) :

I — R endowed with the norm |z(.)|; = f |z (t)|dt.

The Pompeiu-Hausdorff distance of the closed subsets A, B C R is defined
by di(A, B) = max{d*(A, B),d*(B, A)}, where d*(A, B) = sup{d(a, B);a €
A} and d(z, B) = infycp d(z, y).

Next the following notations will be used.

M = (a1 + az)(bl + bg) — 051043(7] — a)(b — f), K= K1K4 — KQK?,,

where

as ayg N a9 b Yy b3 b4
K= ——<+——, K. :/ —ds, K :/ —ds, Kqj=——+——.
T opla) ) TP ) a(s) 7 Je n(s) 17 gla) " q(b)

The next technical result is proved in [1].

LEMMA 2.1. Let f(. [ a,bl = R, g(.) : [a,b] — R be continuous mappings
and assume that M # 0, K # 0. Then the solution of the linear system

)
0

(p(t)u' (1)) = f(t) € [a,b],
{ (qt)'(t)) =g(t) t€]la,b]
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with boundary conditions (2| is given by

(u(t) f f f )dr)du + 77— ag(b1+b2)f (ﬁ [ f(r)dr)du
+aq(by +b2 f" (fF 2 o] ([g(r dT)du)ds — apba(n —a) fb%

([ g(r)dr)du + aras(n fg fa o f f(r)dr) du)ds]
+W[(K1a2(b1 —|—bz)f (l)du Kgoq(bl + b9) fnf )duds
+Ksaiba(n — )fa q(u)du K4a1a3 f£ faspl duds

~ MKy [} Stsdu) (s [7 f(u)du) + (—Ksaz (b + bo) [ +tsdu
+Ks3a1(by + b9) fn fa q(lu)duds Kgalbz( —a) f; ﬁdu
+Ksraz(n—a) [ f7 sdsduds + MKy [} o Lsdu)([7 &%

f g(u)du)ds + (Ka2a2(by + b2) f (1 )du Kioq (b + g;))

S g Lyduds + Kiaby(n — a) ff q(lu)du Kgalag(n —a)

fg fa p(u) dUdS MK f(f plu)du q(b) f g K2a2(b1 + bg)
fa p(u)du + Kion(by + bo) [ [? q u)duds Kloqbg( —a)
f: Tty duKaanas(n f£ fa oy duds

+MEK, [} —bsdu) fb L [ f(u duds

o(t) = fy (s Ja' a7 dr)du+ [—asas(b— &) [} Gy Ju' (7
Tanas(b—€) [1([7 A5 ([ g(r)dr) du ds—bg(a1+az)fbﬁ
([ g(r deu+a3(a1+a2 fgf f f(r)dr)du)ds]
+ iz [(Kaasas(b — &) [ odsdu — K3a1a3 b—¢) [ [ tyduds
—|—K3b2(a1+a2)f q(u)du K4a3(a1—|—a2 ff fs L duds

a a p(u)

~MEK; [l 2 70] f Flu)du) + (~Kyazas(b—€) [

p(u

p(u)
+Kzaras(b—§) fnf l)d“ds _K3b2(a1 +a2)fa q(u)du

+Kyas(ar +az) [{ f? 1)duds+MK3ft tydw) - (825 [ g(u

duds) + (Ksazas(b— €) [ sdsdu — Kionag(b - gf”

N ﬁduds + Kbz (a1 + a2) fab (1u)d — Kyas(ar + ap f5 Ja ﬁ

duds — MK [; ~1sdu)( f g(w)du) + (—Kaazas(b— &) [} -1

du+K1a1a3 (b—¢) fnf )duds — Klbg(al + as)

fa sy du + Kgag aj + az) fg fas p(lu)duds

MKy [y Sbsdu)(f 455 [ f(u)duds)]

—L_du

DEFINITION 2.2. (u(.),v(.)) € C(I,R)? is said to be a solution of problem
f if there exists f(.),g(.) € LI(I R) such that f(t) € F(t,u(t),v(t))
a.e. (1), g(t) € G(t,u(t),v(t)) a.e. (I) and u(.) and v(.) are given by (3)—(4).

In what follows x4 (-) denotes the characteristic function of the set A C R.
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REMARK 2.3. Let us introduce the following notations

i (t) = ﬁ[[(wg(bl +bo) [P (l)du Ksai(by +b2 I J7 sty duds+

Ksaba(n —a) [, sdu— Kaaras(n —a) f¢ [ sdsduds — MK4 Ja sy dul,
CQ(t) [KQCLQ(bl + bz) fa p(lu) du — Kloq(bl + bg fﬂ fa @ duds+

K1alb2( - )f: q(lu)du Kaaras(n fs faspl duds — MK, fat p(lu)du]

c;;(t):ﬁ[(lﬂlagag(b &) [ staydu — Kzaras(b =€) [} [ i duds+

Ksbo(ar + as) [ otydu — Kaag(ar +as) f{ [7 -Lsduds — MK3 Ju s,

ey(t) = ﬁ[(Kgagag,(b f)f e )du Kiojas(b—€) fnf duds+

Klbg(al +a2) f; q(lu)d Kgag(al + as f{ fs 1)duds MK1 fi p(lu)du],

S1 (t> Z) (zb) Cl(t) CZ ffb ron] du + (f ﬁdu)X[a,t}(z)_
az(b1+b alo a) s
2(5/[—% 2) j‘z p(u)d w4 3(77 f£ fz 1 du)X[a,s] (z)ds,

p(U)
b a asgaz(b—
S3<t(Z)+ (b) f oy du — = 2]\(4 &) fz p(u)du
423 a]t/[ az) f£ fz p(lu)du)X[as]( )dS,
Salt,z) = Zsea(t) — es(t)(J! 9% du)X (o () + <f,§ Lrdu)xpa (2)
_|_a1a3 (b=8) fﬂ f )dU)X[as}( )ds b2(a]1\/-[‘ra2) fz q(u)du
Then the solutions (u(), v(.)) in Lemma 1 may be put as
= [P8,(t, ) f(r)dr + [P Sa(t, )g(r)dr, tel
= fa Ss(t, ) f(r)dr + fa Su(t,7)g(r)dr, tel.

Moreover, if we define C; := maxser |c;(t)], i = 1,2,3,4, My := maxes —

My := maxey ﬁ, for any ¢,z € I we have the following estimates

[S1(t,2)] < UE + M1 Coaa(b - &) + Mi(b— a) + UM (b — a)

| M|
ajaz(n—a —a)? —a)?
1 |3(T]| )[(b2) (6=a) ]_: 51,

|Sa(t, 2)| < b4(c)2 + MyCraz(n — a) + al(b1|J]\F/[l’|2)M2 (n;a)2+
anba Ma(n—a)(b—€) _

[M] : 82,
|S3(t,2)| < & p ) + M Cyas(b — g) asale‘%f‘a)(bfﬁ)_i_
azla a — a 2
3(\1\1/1JIFQM[ 2) (2)]:133,

arasz(b— —a)?
|S4(t, 2)| < b;(%‘ + MyCsas(n — a) + Ma(b—a) + = 3(§4|§)M2 (o 5 )

|
+7b2(a1‘};‘2)M2 =: 54.

mv
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Finally, in the proof of our main result we need the following classical se-
lection result for set-valued maps (e.g., [1]).

LEMMA 2.4. Let Z be a separable Banach space, B its closed unit ball,
A I — P(Z) is a set-valued map whose values are nonempty closed and
b: I — Z c:I— Ry are two measurable functions. If

AN (b(t) +c(t)B) #0  a.e. (I),
then the set-valued map t — A(t)N(b(t)+c(t)B) admits a measurable selection.

3. THE MAIN RESULT

We are working under the following assumptions.
Hypothesis. i) F: I x R?> = P(R) and G : I x R?> — P(R) have nonempty
closed values and the set-valued maps F(.,u,v), G(.,u,v) are measurable for
any u,v € R.

ii) There exist Lq(.), L2(.) € L*(I,(0,00)) such that, for almost all ¢t € I,
F(t,.,.) is Ly(t)-Lipschitz and G(t,.,.) is La(t)-Lipschitz; i.e.,

dH(F(t, ul,vl) (t UQ,UQ)) < Ll(t)(]ul —u2‘+‘01 —1}2’) YV ui,ug,v1,v2 € R,
(

dH(G(t, Ui, Ul) (t UQ,’UQ)) < Lg(t) |U1 —’UQ‘ + |U1 —Ug’) v uy, U2, V1,02 € R.
We use the notation L(t) = s1L1(t) + saLa(t) + s3Li(t) + salo(t), t € 1.
THEOREM 3.1. Assume that M, K # 0, Hypothesis is satisfied and |L(.)|; <

1. For the mappings (z(.),y(.)) € C(I,R)? there exist r1(.),m2(.) € L*(I,R)

with d(p(t)a’ (1)), F(t,a(t),y(0))) < r1(0) ave. ¢ € T, d((a(t)y/ () G(t, (1),

y(t)) < ro(t) ae. t €1, ayz(a) + aga(b) = a1 [ y(s)ds, asa’(a) + asy (b)

ag [y (s)ds, bry(a) +bay(b) = a3 fgb s)ds, bsa’(a) +bax’ (b) = ou fg s)ds.
Then there ezists (u(.),v(.)) € C(I,R)? a solution of problem (1)—(2) sat-

isfying for allt € I
5)  Jult) —2(8)] + o(t) — y(t)] < L SNOh + 2+ s0)lra(ls

1—[L()h

Proof. By the assumption of theorem we have

F(tw() ())ﬂ{( ) ') +rO)-1,1} #0 ae. (D),
G(t,2(t),y(1) N {(g(D)y (1)) +r2()[-1, 1]} # 0 ace. ().

From Lemma 2 there exist measurable selections fi(t) € F(t,x(t),y(t)), g1(t) €
G(t,x(t),y(t)) a.e. (I) such that

|fi(t) = ()" @) < ri(t),  [g1(t) — (a®)y' ()] < r2(t)  ace. (1).
Define

uy(t) = f‘g Si(t, ) fr(r)dr + beQ(t, T)gi(T)dr, tel
vi(t) = fa Ss(t, ) f1(m)dr + fa Sy(t,T)g1(m)dr, tel.
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We have the estimates

lur(t) — x(t)| < s1lri( )] + s2fr2( ) Ve e,
[v1(t) —y(@)| < sslri( )+ salr2(h Vi€ D,

and so,
ur(£) — z(®)] + o1 (t) —y()] < (s1+s3)[ri( )1 + (52 + sa)lr2( )1 =2 s.

Next we construct the sequences uy(.),vn(.) € C(I,R) and f,(.), gn(.) €
LY(I,R), n > 1 with the following properties

(6) t fSl dT—i—f%Sz (T)dT, tel
n(t) f Ss(t fn dT—l—faS4 ,T)gn(T)dT, tel.

(1) fu(t) € F(t,un-1(t), vn-1(1),  gn(t) € Gt un—1(t), vn-1(t))  a.e. (1),

8) 1) = )] < La(®)(un(t) = una ()] + |on(t) = v (B)ae. (1),
|9n41() = gn ()] < Lo (@) ([un(t) — un-1(t)] + [vn(t) = va-ar(t)a-e. ().

In what follows we prove that from @f it follows
9 Tuns1(8) = wn(®)] + [ons1(8) — va(®)] < sLOW)" ace. (I) Vn e N.

The situation when n = 0 is already shown. Now, we assume that @ is
true for n — 1. For almost all t € I,

Jtnr1(t) — un ()] < [7S1(t T)| | a1 (7) — ( )dr + [21Sa(t, 7)]-Igna1(7)
—gn( )|dT<31f | fn1 (7) = fu(DIAT + 52 [} |gnsr (7) — ( )|dr <

s1J2 Li(T)(Jun(T) = tn_1(7)] + [on(T) = vp1(r )!)d7+52f La(7)(|un(1)—
Un—1(T)| + |[vn(7) = vo_1(7))dT < s(JL()]1)" slf Ly(r)dr+

sz [V Lo(7)dr).

Similarly, we obtain for almost all ¢ € I,

b b
o1 (£) — v (B)] < (L))" (53 / Ly(r)dr + 54 / Lo(r)dr).

Thus, @D is true for n.

From (9) the sequences {un(.)},{v,(.)} are Cauchy in the space C(I,R).
Let u(.) € C(I,R) and v(.) € C(I,R) be their limits in C(I,R). Also, from
we deduce that, for almost all ¢ € I, the sequences {f,(t)}, {gn(t)} are
Cauchy in R. We consider f(.), g(.) their pointwise limit.

Also, from @ and Hypothesis we deduce

un(t) — 2(®)] + [on(t) —y(O)] < [ua(t) = 2(t)] + [vi(t) = y(?)]

(10) + 30 (i (8) — wi()] + [visa (8) — vi(8)])
< 8+Ez:1 s(ILC)W)' < =0
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and for almost all t €

[fn(t) = (p()"(1))'] + gn(t) — (a(t )i/’(t))’l < [A() = (p(t)2’ f))'lJr
t

t
t)

91(6) = @0 @) |+ X0 e (®) — F0)] g (1) — 6:(0) <
F0) — (DY + 1910) — @OV + 30 (L 0) 1 Laft)) e
a1 (0)]+ oi(8) = via (D) < 72 (8) + ralt) + (L2 (8) + La(t) =iy

In particular, from the last inequality it follows that the sequences f,(.),
gn(.) are integrably bounded and therefore, their limits f(.),g(.) belong to
LY(I,R).

Finally, we realize the construction in @f. By induction, we suppose
that for L > 1, w(.),v(.) € C(I,R) and fi(.),q(.) € LY(I,R), | = 1,2,...L
with @ and fori=1,2,...L and for I =1,2,...L — 1 are constructed.

Again with Hypothesis 3.1

F(t,ur(t),vr(t)) N {fo(t) + (Li(®)|ur(t) —ur—1(t)] + Li(t)|vr(t)—
v-1(t)))[-1,1]} # 0,
G(t,ur(t),vr(t)) N{gr(t) + (La(t)|ur(t) —ur—1(t)] + La(t)|vr(t)—
o1 (t))[-1,1]} #0

for almost all t € 1.
Lemma 2 gives the existence of measurable selections fr+1(.) of F(.,ur(.),
vr(.) and gr41(.) of G(.,ur(.),vr(.)) such that

)
§’| Ly(®)(Jur(t) = up 1 (O] + |or(t) — var-a(

|fr+(t) = fL()] < ) ae. (1),

l9241(t) = gL(B)] < La(t)(Jur(t) — up—1 ()| + [vr(t) —vr-1(t)]) ae. (I).
We define ur4+1(.),vr+1(.) as in (6) with n = L + 1.

We take n — oo in @ and ((10) and the proof is complete. O

COROLLARY 3.2. Assume that M, K # 0, Hypothesis is satisfied, |L(.)]1 <
1, d(0, F(t,0,0)) < Ly(t) a.e. t € I and d(0,G(t,0,0)) < Lo(t) a.e. t € I.

Then there exists (u(.),v(.)) € C(I,R)? a solution of problem 7(@ sat-
isfying for allt € 1

(s1+ s3)|L1()]1 + (52 4 54)| La(.)]
(1) [u®] + (0] < === TS

Proof. We apply Theorem 1 with z(.) = y(.) =0, r1(.) = L1(.) and ro(.) =
Lo(.). O

REMARK 3.3. A similar result to the one in Corollary 1 may be found in
[1]; namely, Theorem 4.3. The proof of Theorem 4.3 in [1] is done by using
the set-valued contraction principle. Our approach improves the hypothesis
concerning the set-valued map in [1]. More exactly, we do not require for
the values of F' and G to be compact as in [1] and we do not require that
the Lipschitz constant of F' and G to be mappings from C(I,R) as in [1].
Moreover, Theorem 4.3 in [1] does not contains a priori bounds for solutions

as in .



8 A Sturm-Liouville type system of differential inclusions 87

EXAMPLE 3.4. Let us consider the problem

@gw@ye[ﬁfﬁﬁ%mumwgnﬂ%ﬁ ae. ([0,2)),

(Z5v' (1)) € [~k - ot 0] U [0, ok - 2l ], ae. ((0,2)),

(12)

with boundary conditions as in [1]; namely,

1 1
(13) %u(O) +u(2) = % o v(s)ds, %u’(O) + %u’(2) = [} (s)ds,
20(0) + $v(2) = %ff u(s)ds, £0'(0) + 20/(2) = %ff u'(s)ds,
Inthiscase,p(t):ﬁ, q(t):%,a:07b:27n:%7§:17 0412%,
=l as=3, =35 a1=3a=1a=3a=3b=2b=;,
by =1, by =3
Define F(.,.),G(.,.): I x R x R = P(R) by
(14) F(t,u,v) = [_ﬁ : 1—|ﬁ\|u|70] U [0’ % : 1—‘:|"u|]7 a.e. ([Oa 2])7
Gt u,v) = [~k - T2l 0] U [0, s - ek, ace. ([0,2),
Since

T%o Vtelo,2], u,v €R,

sup{|z]; 2 € F(t,u,v)
,U ms vtel0,2], u,veR

<
sup{|z|; z € G(t,u,v)} <
and

dH(F(t,ul,Ul),F(t, UQ,UQ)) < @ﬂul — UQ‘ + |’U1 — U2|) YV uy,u,v,v2 € R,
dH(G(t,’U,l,’Ul),G(t,UQ,’UQ)) < m(\ul - U2| + |1)1 - ’UQD N ui, ug,vV1,vV2 € R.

in this situation Ly(t) = 145 and La(t) = 1i5. By standard computations
(e.g., [1]) s1 4+ s3 =~ 19,27, so + sa = 3,97; therefore, (s1 + s3)|L1(.)[1 + (s2 +
s4)|L2(.)}1 = 0,35 < 1. So, we may apply Corollary 3.3 in order to obtain the
existence of a solution for problem f.
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