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NOVEL CRITERIA FOR STABILITY AND CONVERGENCE OF
SOLUTIONS FOR NON-AUTONOMOUS NONLINEAR SYSTEMS

MONDHER BENJEMAA, WIDED GOUADRI, and MOHAMED ALI HAMMAMI

Abstract. In this paper, we give a new integral inequality which is used to
study the asymptotic behavior of solutions for a class of nonlinear dynamic sys-
tems with small perturbation using a numerical approach. We provide some new
results on the stability of perturbed systems where necessary and sufficient con-
dition is derived. We show that the perturbed nonlinear system can be globally
uniformly practically asymptotically stable provided that the bound of perturba-
tion is small enough. A numerical example is presented to illustrate the validity
of the main result.
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1. INTRODUCTION

In studying the effect of perturbations of various types on the solutions
of a nonlinear differential equation, one must assume some stability property
for the unperturbed system. A useful kind of stability is one for which the
effect of perturbations can be studied. In fact, some types of stabilities, such
as the Lyapunov stability for instance, are defined in terms of the behavior
of solutions under perturbations (see [7]-[16]). The usual technical in the
literature for the stability analysis of perturbed nonlinear systems is based
on the stability of the associated nominal systems [11–13]. Furthermore the
practical stability, in the sense introduced in [2, 3], is very important and
very useful for analyzing the stability or for designing practical controllers of
dynamical systems. The practical stability only needs to stabilize a system into
a region of phase space, namely the system may oscillate close to the state, in
which the performance is still acceptable (see [5,6,18]). The uncertainties were
represented by an additive term on the right-hand side of the state equation
and the origin is not supposed to be an equilibrium point of the system. One
also desires that the state approaches the origin (or some sufficiently small
neighborhood of it) in a sufficiently fast manner. Here we define a new method
for stability in terms of the behavior of solutions using the transition matrix
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of the nominal system. Being formulated in terms of integral inequalities of
Gronwall type, it is a type of stability which is easy to verify in practice, and
it extends the class of systems for which the effect of perturbations can be
measured [1, 4, 14, 15, 17, 19, 20]. We will provide some sufficient conditions
for exponential stability of perturbed systems under the assumption that the
unperturbed linear system is exponentially stable. Our approach uses a new
integral inequality depending on a small parameter which allows us to conclude
the global practical uniform asymptotic stability of the system in presence of
perturbations. The effectiveness of the proposed method is shown throughout
some numerical examples in the plane.

2. PRELIMINARY

It is well known that some differential equations can be solved explicitly.
Unfortunately, there is no general recipe for solving a given differential equa-
tion. Moreover, finding explicit solutions is in general impossible unless the
equation is of a particular form. Given two solutions to a dynamical system
with initial conditions that are close at the same value of time, these solutions
will remain close over the entire time interval and not just at the initial time.
The qualitative behavior of the solutions of perturbed nonlinear systems of dif-
ferential equations is often studied by considering some integral inequalities.
Consider the time-varying differential equation described by the following:

ẋ = F (t, x),

where F : R+ × Rn −→ Rn is a continuous function and globally Lipschitz
uniformly on t with respect to x such that F (t, 0) = 0, ∀t ≥ 0. The associated
perturbed systems is given by:

ẏ = F (t, y) + h(t, y, ε),

where t ∈ R+, ε > 0, h : R+ × Rn × R∗
+ −→ Rn is a continuous func-

tion which represents the perturbation term satisfying the following condition:
∥h(t, y, ε)∥ ≤ w(t, ε), ∀y ∈ Rn, ∀t ≥ 0, where w(., .) is a nonnegative contin-
uous function. Let consider the following generalized Lipschitz condition on
F (., .): there exists a continuous function v : R+ × R∗

+ → R+, such that,

∥F (t, y)− F (t, x)∥ ≤ v(t, ε)∥y − x∥, ∀y ∈ Rn, ∀x ∈ Rn, ∀t ≥ 0.

One can find some estimations on the solutions of the perturbed equation with
respect to the solutions of the original unperturbed system. Let x(t0) = x0
and y(t0) = y0 = x0(ε). The solution of the perturbed equation is given by:

y(t) = x0(ε) +

∫ t

0

(
F (τ, y(τ)) + h(τ, y(τ), ε)

)
dτ.

Thus, ∀t0 ≥ 0, ∀x0, y0, one has

∥y(t)− x(t)∥ ≤ ∥x0(ε)− x0∥+
∫ t

0
∥F (τ, y(τ)) + h(τ, y(τ), ε)− F (τ, x(τ))∥dτ.
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It follows that,

∥y(t)− x(t)∥ ≤ ∥x0(ε)− x0∥+
∫ t

0

(
v(τ, ε)∥y(τ)− x(τ)∥+ w(τ, ε)

)
dτ.

The last inequality shows that one can examine, using a certain integral in-
equality, the difference between the respective solutions of the unperturbed
system and the perturbed one in order to investigate the asymptotic behavior
of solutions. The following generalized integral inequality of Gronwall type
permits to solve this problem for different classes of perturbed systems.

2.1. Integral inequalities. First, we give a new integral inequality which will
be useful for our study. This result extends the Gronwall-Bellman inequality
given in [15].

Lemma 2.1. Let u, v and w nonnegative continuous functions on R+ ×R∗
+

satisfying the inequality

u(t, ε) ≤ c(ε) +

∫ t

a
(u(τ, ε)v(τ, ε) + w(τ, ε))dτ,(1)

where a, ε and c(ε) are nonnegative constants. Then,

u(t, ε) ≤ c(ε)e
∫ t
a v(τ,ε)dτ + re

∫ t
a(v(τ,ε)+

w(τ,ε)
r

)dτ ∀t ≥ a,∀r > 0.(2)

Proof. From (1) and the inequality x < ex, we have for all r > 0 and t ≥ a

0 ≤ u(t, ε) < c(ε) + re
∫ t
a

w(τ,ε)
r

dτ +

∫ t

a
u(τ, ε)v(τ, ε)dτ,(3)

which implies

u(t, ε)

c(ε) + re
∫ t
a

w(τ,ε)
r

dτ +
∫ t
a u(τ, ε)v(τ, ε)dτ

≤ 1.

Multiplying the last inequality by v ≥ 0, we obtain

u(t, ε)v(t, ε) + w(t, ε)e
∫ t
a

w(τ,ε)
r

dτ

c(ε) + re
∫ t
a

w(τ,ε)
r

dτ +
∫ t
a u(τ, ε)v(τ, ε)dτ

≤ v(t, ε) +
w(t, ε)e

∫ t
a

w(τ,ε)
r

dτ

c(ε) + re
∫ t
a

w(τ,ε)
r

dτ
.(4)

Now, define for any ε > 0 and t ≥ a

fε(t) =

∫ t

a
v(τ, ε)dτ + log

(
c(ε) + re

∫ t
a

w(τ,ε)
r

dτ
)

− log

(
c(ε) + re

∫ t
a

w(τ,ε)
r

dτ +

∫ t

a
u(τ, ε)v(τ, ε)dτ

)
.

The function fε is defined, continuous and differentiable on [a,+∞), and

f ′
ε(t) = v(t, ε) +

w(t, ε)e
∫ t
a

w(τ,ε)
r

dτ

c(ε) + re
∫ t
a

w(τ,ε)
r

dτ
− w(t, ε)e

∫ t
a

w(τ,ε)
r

dτ + u(t, ε)v(t, ε)

c(ε) + re
∫ t
a

w(τ,ε)
r

dτ +
∫ t
a u(τ, ε)v(τ, ε)dτ
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for all t ≥ a. It follows by (4) that fε is a non increasing function, and hence

fε(t) ≥ fε(a) = 0, ∀t ≥ a.

Then,

log

(
c(ε) + re

∫ t
a

w(τ,ε)
r

dτ +

∫ t

a
u(τ, ε)v(τ, ε)dτ

)
≤

∫ t

a
v(τ, ε)dτ + log

(
c(ε) + re

∫ t
a

w(τ,ε)
r

dτ
)

∀t ≥ a,

hence,

c(ε) + re
∫ t
a

w(τ,ε)
r

dτ +

∫ t

a
u(τ, ε)v(τ, ε)dτ ≤

(
c(ε) + re

∫ t
a

w(τ,ε)
r

dτ
)
e
∫ t
a v(τ,ε)dτ .

Finally, we have by using the inequality (3)

u(t, ε) ≤ c(ε)e
∫ t
a v(τ,ε)dτ + re

∫ t
a(v(τ,ε)+

w(τ,ε)
r

)dτ .

□

3. STABILITY ANALYSIS

3.1. DEFINITIONS AND NOTATIONS

We consider the following nonlinear system described by

ẋ = f(t, x, ε), x(t0, ε) = x0,ε(5)

where t ∈ R+ is the time, x ∈ Rnis the state, ε is a real parameter ”small
enough” and f : R+ × Rn × R∗

+ −→ Rn is continuous in (t, x, ε), locally
Lipschitz in (x, ε) and uniformly in t.

Definition 3.1. (i) The equilibrium point x∗ = 0 is said uniformly expo-
nentially stable if there exists c(ε) > 0, λ1(ε) > 0 and λ2(ε) > 0 such that
∀ t0 ⩾ 0, ∀ ∥x0,ε∥ ⩽ c(ε),

∥x(t, ε)∥ ⩽ λ1(ε)e
−λ2(ε)(t−t0)∥x0,ε∥.

(ii) The equilibrium point x∗ = 0 is said globally uniformly exponentially
stable if there exists λ1(ε) > 0 and λ2(ε) > 0 such that ∀ t0 ⩾ 0, ∀ x0,ε ∈ Rn

∥x(t, ε)∥ ⩽ λ1(ε)e
−λ2(ε)(t−t0)∥x0,ε∥, ∀t ⩾ t0 ⩾ 0.

Definition 3.2. A solution of (5) is said to be globally uniformly bounded
if every η = η(ε) > 0 there exists c = c(η), independent of t0, such that for all
t0 ⩾ 0,

∥x0,ε∥ < η =⇒ ∥x(t, ε)∥ < c, ∀t ⩾ t0.
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Definition 3.3. Let r = r(ε) ⩾ 0 and Br = {x ∈ Rn / ∥x∥ ⩽ r}.
(i) Br is uniformly stable if for all A = A(ε) > r, there exist δ = δ(A) > 0
such that for all t0 ⩾ 0,

∥x0,ε∥ < δ =⇒ ∥x(t, ε)∥ < A, ∀ t ⩾ t0.

(ii) Br is globally uniformly stable if it is uniformly stable and the solutions
of system (5) are globally uniformly bounded.

Definition 3.4. Br is globally uniformly exponentially stable if there exists
γ = γ(ε) > 0 and k = k(ε) ⩾ 0 such that ∀ t0 ∈ R+ and ∀ x0,ε =∈ Rn,

∥x(t, ε)∥ ⩽ k∥x0,ε∥ exp(−γ(t− t0)) + r, ∀t ⩾ t0.

System (5) is globally practically uniformly exponentially stable if there
exist r = r(ε) > 0 such that Br is globally uniformly exponentially stable.

3.2. MAIN RESULTS

We consider the following system :{
ẋ = Aε(t)x+ h(t, x, ε)

x(t0, ε) = x0,ε,
(6)

where Aε(.) is an n × n continuous matrix on R+ . We will first study the
linear problem where h(t, x, ε) = 0{

ẋ = Aε(t)x

x(t0, ε) = x0,ε.
(7)

We may write Aε(t) = A0(t) + εF (t) where A0(·) and F (.) are an n × n
continuous matrix on R+ and ε being a small real parameter. In order to study
the global exponential stability of the system (6) we shall assume throughout
all the paper that the nominal unperturbed system{

ẋ = A0(t)x

x(t0) = x0
(8)

is globally uniformly exponentially stable, that is there exists constants c > 0
and γ > 0 independent of t0 such that ∀ t0 ≥ 0

∥RA0(t, t0)∥ ≤ c e−γ(t−t0) ∀ t ≥ t0(9)

where RA0(t, t0) denotes the state transition matrix of the system (8) [16]. We
have the following result.

Theorem 3.5. Assume the unperturbed system (8) is globally uniformly
exponentially stable and suppose F (·) is a bounded function, then for any ε ∈
[0, γc ) the system (7) is globally uniformly exponentially stable.
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Proof. Let RAε(t, t0) denotes the state transition matrix for the system (7).
Since the mapping ε 7→ RAε(t, t0) is C∞, then one may write an asymptotic
expansion of RAε as

RAε(t, t0) = RA0(t, t0) + εY1(t) + · · ·+ εiYi(t) + . . .(10)

where the Yi(·), i ≥ 1, are matrices that can be found as follows. First, we
plug equation (10) into the system

∂

∂t
RAε(t, t0) = (A0(t) + εF (t))RAε(t, t0)

RAε(t0, t0) = I.

It follows

ṘA0(t, t0) + εẎ1(t) + · · ·+ εiẎi(t) + . . .

= (A0(t) + εF (t))
(
RA0(t, t0) + εY1(t) + · · ·+ εiYi(t) + . . .

)
,

or similarly

ε
(
Ẏ1(t)−A0Y1(t)− F (t)RA0(t, t0)

)
+ ε2

(
Ẏ2(t)−A0Y2(t)− F (t)Y1(t)

)
+

· · ·+ εi
(
Ẏi(t)−A0Yi(t)− F (t)Yi−1(t)

)
+ · · · = 0.

The previous identity is verified for all ε > 0 if and only if

Ẏ1(t)−A0Y1(t)− F (t)RA0(t, t0) = 0

and

Ẏi(t)−A0Yi(t)− F (t)Yi−1(t) = 0 ∀ i ≥ 2.(11)

On another hand, by using the identity

I = RAε(t0, t0) = I + εY1(t0) + · · ·+ εiYi(t0) + . . . , ∀ ε > 0

we obtain

Y1(t0) = · · · = Yi(t0) = 0.

To find Y1 we solve the following system:{
Ẏ1(t) = A0Y1(t) + F (t)RA0(t, t0)

Y1(t0) = 0.

It follows by the Duhamel’s formula

Y1(t) =

∫ t

t0

RA0(t, s1)F (s1)RA0(s1, t0)ds1.

Now we solve {
Ẏ2(t) = A0Y2(t) + F (t)Y1(t)

Y2(t0) = 0,
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we obtain,

Y2(t) =

∫ t

t0

RA0(t, s1)F (s1)Y1(s1)ds1

=

∫ t

t0

RA0(t, s1)F (s1)

∫ s1

t0

RA0(s1, s2)F (s2)RA0(s2, t0)ds2 ds1

=

∫ t

t0

∫ s1

t0

RA0(t, s1)F (s1)RA0(s1, s2)F (s2)RA0(s2, t0)ds2 ds1 .

Using (11), we obtain by induction

Yi(t) =

∫ t

t0

∫ s1

t0

· · ·
∫ si−1

t0

RA0(t, s1)F (s1)RA0(s1, s2)F (s2)

. . . RA0(si−1, si)F (si)RA0(si, t0)dsi dsi−1 . . . ds1 .

It follows by (9)

∥Yi(t)∥ ≤
∫ t

t0

∫ s1

t0

· · ·
∫ si−1

t0

c e−γ(t−s1)∥F (s1)∥ c e−γ(s1−s2) ∥F (s2)∥ . . .

c e−γ(si−1−si) ∥F (si)∥ c e−γ(si−t0) dsi dsi−1 . . . ds1

= ci e−γ(t−t0)

∫ t

t0

∫ s1

t0

· · ·
∫ si−1

t0

∥F (s1)∥ ∥F (s2)∥ . . . ∥F (si)∥dsi dsi−1 . . . ds1.

Since F (.) is bounded, then ∃ k > 0 s.t. ∥F (t)∥ ≤ k ∀ t ≥ t0. It follows by
the Cauchy formula for repeated integration

∥Yi(t)∥ ≤ ki ci
e−γ(t−t0)

(i− 1)!

∫ t

t0

(t− s)i−1 ds = ki ci e−γ(t−t0) (t− t0)
i

i!
∀ t ≥ t0.

We obtain using (10)

∥RAε(t, t0)−RA0(t, t0)∥ ≤
+∞∑
i=1

εi∥Yi(t)∥

≤ e−γ(t−t0)
+∞∑
i=1

ki ci εi (t− t0)
i

i!

≤ e(−γ+kcε)(t−t0),

yielding by (9)

∥RAε(t, t0)∥ ≤ ∥RA0(t, t0)∥+ ∥RAε(t, t0)−RA0(t, t0)∥

≤ c e−γ(t−t0) + e−(γ−kcε)(t−t0)

≤ Ke−γε(t−t0)

with K = c+ 1 and γε = γ − k c ε. Thus, choosing ε < γ/(kc) we obtain

∥x(t, ε)∥ = ∥RAε(t, t0) x(t0, ε)∥
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≤ ∥RAε(t, t0)∥∥x(t0, ε)∥

≤ K ∥x0,ε∥e−γε(t−t0)

with γε > 0, and the proof is completed. □

Now we study the problem (6) when h(t, x, ε) ̸= 0. In this case we have the
following Theorem.

Theorem 3.6. Consider the system (6) with the following assumptions:
(A1) Aε(t) can be written as:

Aε(t) = A0(t) + εF (t),

where F (.) is an n × n continuous and bounded matrix on R+ and ε being a
small real parameter.
(A2) The system (8) is globally uniformly exponentially stable.
(A3) The nominal system associate to (6) has a unique solution.
(A4) The function h is defined on R+ × Rn × R∗

+, continuous in (t, x, ε) and
locally Lipschitz in (x, ε), uniformly in t.
(A5) There exists continuous positive functions ϕ and λε verifying:

∥h(t, x, ε)∥ ⩽ ϕ(t)∥x∥+ λε(t) ∀t ∈ R+.(12)

(A6) ϕ ∈ Lp(R+,R+) for some p ∈ [1,+∞).
(A7) There exists a constant M ′ > 0, such that

λε(t) ≤ M ′e−γεt,(13)

with γε = γ − kcε where k = supt≥0 ∥F (t)∥ and γ and c are given in (9).
Then,

∀ (t0, x0, ε) ∈ R+ × Rn × [0,
γ

kc
),

the maximal solution x(., ε) of (6) such that x(t0, ε) = x0,ε, verifies:
(i) The function x(., ε) is defined on [t0,+∞).
(ii) for all t ≥ t0

∥x(t, ε)∥ ⩽ L∥x0,ε∥e−δ(t−t0) +Ne−θt,

where N,L ≥ 0 and δ, θ ∈ (0, γε].

In order to prove Theorem 3.6 we need the following lemma from [14].

Lemma 3.7. Let ϕ ∈ Lp(R+,R+) where p ∈ (1,+∞). We denote by ∥ϕ∥p
the p-norme of ϕ. Then, ∀t ≥ 0, s ≥ 0 and t ≥ t0∫ t

t0

ϕ(τ)dτ ⩽ N + L(t− t0)

where N =
∫ s
0 ϕ(τ)dτ + Ms

p and L = p−1
p Ms with Ms = ∥ϕ|[s,+∞[∥p.
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Proof. (of Theorem 3.6).
(i) The system (6) can be written

ẋ(t, ε) = f(t, x(t, ε), ε),

where

f(t, x, ε) = Aε(t)x(t, ε) + h(t, x(t, ε), ε).

The function f is continuous in (t, x, ε), locally Lipschitz in (x, ε) and uni-
formly in t then the standard Cauchy-Lipschitz Theorem ∀ (t0, x0, ε) ∈ R+ ×
Rn×R∗

+ asserts that there exists a unique maximal solution x(., ε) of (6) such
that x(t0, ε) = x0,ε.

Next, we prove that x(., ε) is defined on [t0,+∞). Supposed by contradiction
that there exists Tmax > t0 such that x(., ε) is defined on [t0, Tmax). Then, for
all t ∈ [t0, Tmax)

∥ẋ(t, ε)∥ ≤ (M1 +M2)∥x(t, ε)∥+M3,

where

M1 = sup
[t0,Tmax]

∥Aε(t)∥,

M2 = sup
[t0,Tmax]

∥ϕ(t)∥,

M3 = sup
[t0,Tmax]

∥λε(t)∥.

It follows that

∥
∫ t

t0

ẋ(s, ε)ds∥ ≤
∫ t

t0

((M1 +M2)∥x(s, ε)∥+M3) ds,

hence

∥x(t, ε)∥ ≤ ∥x(t0, ε)∥+
∫ t

t0

((M1 +M2)∥x(s, ε)∥+M3) ds.

Using Lemma 2.1, we obtain for all t ∈ [t0, Tmax)

∥x(t, ε)∥ ≤ ∥x(t0, ε)∥e
∫ t
t0
(M1+M2)ds + e

∫ t
t0
(M1+M2+M3)ds ≤ M4,

with

M4 = ∥x(t0, ε)∥e(M1+M2)Tmax + e(M1+M2+M3)Tmax .

Consequently, x(., ε) remains within the compact BM4 , which contradicts that
Tmax < +∞. We conclude that

Tmax = +∞.

(ii) We can write the solution x(t, ε) of (6) as

x(t, ε) = RAε(t, t0)x(t0, ε) +

∫ t

t0

RAε(t, s)h(s, x(s, ε), ε)ds,
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where RAε(t, t0) is the transition matrix of the system (7). Then, we have

∥x(t, ε)∥ ≤ ∥RAε(t, t0)∥∥x(t0, ε)∥+
∫ t

t0

∥RAε(t, s)∥∥h(s, x(s, ε), ε)∥ds.

By using the assumption (A2) and Theorem 3.5, we get

∥x(t, ε)∥ ≤ K∥x0,ε∥e−γε(t−t0) +

∫ t

t0

Ke−γε(t−s)∥∥h(s, x(s, ε), ε)∥ds.

From the inequality (12) we deduce that

eγεt∥x(t, ε)∥ ⩽ K∥x0,ε∥eγεt0 +
∫ t

t0

(Keγεsϕ(s)∥x(s, ε)∥+Keγεsλε(s)) ds.

Denote

u(t, ε) = eγεt∥x(t, ε)∥,
it follows

u(t, ε) ⩽ Ku(t0, ε) +

∫ t

t0

(Ku(s, ε)ϕ(s) +Keγεsλε(s)) ds.

Applying Lemma 2.1, we get

u(t, ε) ⩽ u(t0, ε)e
∫ t
t0

Kϕ(s)ds
+ re

∫ t
t0

K
λε(s)e

γεs

r
+Kϕ(s)ds ∀t ≥ t0, ∀r > 0.

Since ∥x(t, ε)∥ = e−γεtu(t, ε), we obtain

∥x(t, ε)∥ ⩽ K∥x0,ε∥e
∫ t
t0

Kϕ(s)ds−γε(t−t0) + re
∫ t
t0

Kϕ(s)+
Kλε(s)e

γεs

r
ds−γεt.(14)

Let

M ′ = sup
t≥0

[eγεtλε(t)] and Ms =

(∫ +∞

s
ϕp(τ)dτ

) 1
p

.

We have by the assumptions (A6) and (A7), that M
′ and Ms ∈ R+. It follows

that ∫ t

t0

Keγεsλε(s)

r
ds ⩽

KM ′

r
t ∀t ≥ t0.(15)

Moreover since ϕ ∈ Lp(R+,R+), then∫ +∞

t
ϕp(s)ds −→ 0

t→+∞
,

and hence there exists s ≥ 0 such that

Ms <
γε
K

p

p− 1
·

By using Lemma 3.7, we obtain for all t ≥ 0∫ t

t0

ϕ(s)ds ⩽
∫ s

0
ϕ(τ)dτ +

Ms

p
+Ms

p− 1

p
(t− t0).(16)
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From (15) and (16), we get∫ t

t0

Kϕ(s)ds− γε(t− t0)

≤ K

(∫ s

0
ϕ(s)ds+

Ms

p

)
+

(
KMs

p− 1

p
− γε

)
(t− t0),

and ∫ t

t0

Kϕ(s)ds+
Kλε(s)e

γεs

r
ds− γεt

≤
(
−γε +KMs

p− 1

p
+K

M ′

r

)
t+K

(∫ s

0
ϕ(τ)dτ +

Ms

p

)
,

hence

∥x(t, ε)∥ ≤ Ke
K(

∫ s
0 ϕ(τ)dτ+Ms

p
)∥x0,ε∥e−(γε−KMs

p−1
p

)(t−t0)

+ re
−
(
γε−KMs

p−1
p

−KM′
r

)
t+K(

∫ s
0 ϕ(τ)dτ+Ms

p
)
.

Taking

r >
M ′

γε
K − p−1

p Ms

,

L = K e
K
(

Ms
p

+
∫ s
0 ϕ(τ)dτ

)
,

N = r e
K
(

Ms
p

+
∫ s
0 ϕ(τ)dτ

)
=

r L

K
,

δ = γε −K
p− 1

p
Ms ∈ (0, γε],

θ = γε −K
p− 1

p
Ms −

KM ′

r
∈ (0, δ).

We deduce

∥x(t, ε)∥ ≤ L ∥x0,ε∥ e−δ(t−t0) +Ne−θt ∀t ≥ t0.

□

Corollary 3.8. Under the same assumptions of Theorem 3.6, we have
∀r > M ′

γε
K

− p−1
p

Ms
, ∀t ⩾ t0, ∀x0,ε ∈ Rn \Br:

∥x(t, ε)∥ ⩽ P ∥x0,ε∥ e−θ(t−t0),

where P > 0 and θ ∈ (0, γε).

Proof. Theorem 3.6 implies

∥x(t, ε)∥ ≤ L ∥x0,ε∥ e−δ(t−t0) +Ne−θt ∀t ≥ t0.
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Let r > 0, then for all x0,ε ∈ Rn \Br we have

∥x(t, ε)∥ ≤ L∥x0,ε∥e−δ(t−t0) +
N

r
re−θ(t−t0)

≤ (L+
N

r
)∥x0,ε∥e−θ(t−t0).

Take P = L+ N
r > 0, we obtain

∥x(t, ε)∥ ≤ P ∥x0,ε ∥e−θ(t−t0).

□

Remark 3.9. Take the limit when r → M ′
γε
K

− p−1
p

Ms
in Theorem 3.6, we obtain

∥x(t, ε)∥ ⩽ L∥x0,ε∥e−θ(t−t0) +N ∀t ≥ t0 ≥ 0,(17)

with

N =
M ′

γε
K − p−1

p Ms

e
K
(

Ms
p

+
∫ s
0 ϕ(τ)dτ

)
.

In particular, if we choose p = 1, we find

∥x(t, ε)∥ ⩽ L∥x0,ε∥e−θ(t−t0) +N ∀t ≥ t0 ≥ 0,(18)

with

L = K eK∥ϕ∥1

and

N =
KM

γε
eK ∥ϕ∥1 .

The estimates (17) and (18) imply that the system (6) is globally uniformly
practically asymptotically stable in the sense that the ball BN is globally
uniformly asymptotically stable.

4. NUMERICAL RESULTS

In what follows, we give some numerical examples to illustrate our theoreti-
cal study. The first example deals with the system (7) and the second example
is in concern with the system (6). All the illustrations have been performed
with the software Matlab.

Example 4.1. Consider the following system
ẋ1 = −x1 − tx2 + ε (x1 − x2)

ẋ2 = −x2 + tx1 + ε (x1 + x2)

x0,ε = (1, 2).

(19)

The system (19) can be written as

ẋ = Aε(t)x,
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Fig. 4.1 – Time evolution of the states x1 and x2 of the system (19) with t0 = 0 and various
values of ε. From left to right and top to bottom: ε = 0.01, ε = 0.5, ε = 1.1 and ε = 2.

where

x =

(
x1
x2

)
and Aε(t) = A0 + εF (t)

with

A0 =

(
−1 −t
t −1

)
and F (t) =

(
1 −1
1 1

)
.

A straightforward computation shows that the transition matrix RA0 is given
by

RA0(t, t0) = e−(t−t0)

cos
(
1
2(t

2 − t20)
)

− sin
(
1
2(t

2 − t20)
)

sin
(
1
2(t

2 − t20)
)

cos
(
1
2(t

2 − t20)
)
 .

Hence, we have

∥RA0(t, t0)∥ = c e−γ(t−t0)

with γ = c = 1 and ∥ · ∥ denotes the Euclidean norm. Since F (·) is bounded,
then we deduce using Theorem 3.5 that for any ε ∈ [0, 1) the system (19) is
globally uniformly exponentially stable. Figure 4.1 shows the time evolution
of the states x1 and x2 of system (19) with t0 = 0 and for various values of
ε. One can notice that the solutions are stable if ε ∈ [0, 1) as predicted by
theory.
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Example 4.2. Consider the following system
ẋ1 = −x1 + εx2 +

1
(1+t2)2

x2
1

1+
√

x2
1+x2

2

+ εe−2t

1+x2
1

ẋ2 = −x2 +
ε

1+tx1 +
t

(1+t2)2
x2
2

1+
√

x2
1+x2

2

x0,ε = (1, 2),

(20)

which can be written as

ẋ = Aε(t)x+ h(t, x, ε),

where

x =

(
x1
x2

)
and Aε(t) = A0 + εF (t)

with

A0 =

(
−1 0
0 −1

)
and F (t) =

(
0 1
1

1+t 0

)
and

h(t, x, ε) =

(
h1(t, x, ε)
h2(t, x, ε)

)
with h1(t, x, ε) =

1
(1+t2)2

x2
1

1+
√

x2
1+x2

2

+ εe−2t

1+x2
1

h2(t, x, ε) =
t

(1+t2)2
x2
2

1+
√

x2
1+x2

2

·

The system

ẋ = Aε(t)x

is globally uniformly asymptotically stable. Indeed, F (·) is bounded and the
the transition matrix RA0 satisfies:

RA0(t, t0) =

(
e−(t−t0) 0

0 e−(t−t0)

)
,

thus

∥RA0(t, t0)∥ = e−(t−t0).

On the other hand,

∥h(t, x, ε)∥2 = h21(t, x, ε) + h22(t, x, ε)

≤ 1

(1 + t2)3
(x21 + x22) + ε (2 + ε) e−2t.

By using the classic inequality√
a2 + b2 ≤ a+ b,
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we get

∥h(t, x, ε)∥2 ≤ ϕ(t)∥x(t)∥+ λ(t, ε),

where

ϕ(t) =
1

(1 + t2)
3
2

and

λ(t, ε) =
√
ε (2 + ε) e−t.

The functions ϕ and λ are continuous, positive and bounded on [0,+∞). More-
over

ϕ ∈ Lp(R+,R+) ∀ p ∈ [1,+∞).

To estimate ∥ϕ∥p, we use the inequality:

ϕp(t) ≤ ϕ(t) ∀ t ≥ 0,

since ∥ϕ∥∞ = 1, then ∫ +∞

0
ϕp(t)dt ≤

∫ +∞

0
ϕ(t)dt = 1,

hence

∥ϕ∥p ≤ 1 ∀p ≥ 1.

Consequently, one can apply Theorem 3.6 to prove the following results:

(i) there exist a unique maximal solution x(., ε) of (20) defined on [0,+∞).
(ii) ∀ p ≥ 1, ∀ ε ∈ (0, 1p), ∀ t ≥ t0

∥x(t, ε)∥ ≤ e
1
p ∥x0,ε∥e−( 1

p
−ε)(t−t0) + r e

−( 1
p
−ε− 1

r
) t+ 1

p ,

where r > 1/(1/p− ε) is any arbitrary real number. In particular, we have for
p = 1 and r → 1/(1− ε)

∥x(t, ε)∥ ⩽ e∥x0,ε∥e−(1−ε)(t−t0) +
e

1− ε
·(21)

The estimate (21) implies that the system (20) is globally uniformly practically
asymptotically stable in the sense that the ball B e

1−ε
is globally uniformly

asymptotically stable. Figure 4.2 shows the time evolution of the states x1
and x2 of the system (20) for t0 = 0 and ε = 0.1.
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Fig. 4.2 – Time evolution of the states x1 and x2 of system (20) with t0 = 0 and ε = 0.1.

REFERENCES

[1] A. Abdeldaim, Nonlinear retarded integral inequalities of Gronwall–Bellman type and
applications, J. Math. Inequal., 10 (2016), 285–299.

[2] A. Benabdallah, I. Ellouze and M. A. Hammami, Practical stability of nonlinear time-
varying cascade systems, J. Dyn. Control Syst., 15 (2009), 45–62.

[3] A. Benabdallah, I. Ellouze and M. A. Hammami, Practical exponential stability of per-
turbed triangular systems and a separation principle, Asian J. Control, 13 (2011), 445–
448.

[4] M. Benjemaa, W. Gouadri and M. A. Hammami, New results on the uniform exponential
stability of non-autonomous perturbed dynamical systems, Internat. J. Robust Nonlinear
Control, 31 (2021), 1–17.

[5] T. Caraballo, M.A. Hammami and L. Mchiri, On the practical global uniform asymptotic
stability of stochastic differential equations, Stochastics, 88 (1) (2016), 45–56.

[6] T. Caraballo, M. A. Hammami and L. Mchiri, Practical exponential stability of impulsive
stochastic functional differential equations, Systems Control Lett., 109 (2017), 43–48.

[7] W.A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, Vol. 629,
Springer, Berlin-New York, 1978.

[8] M. Corless and L. Glielmo, New converse Lyapunov theorems and related results on
exponential stability, Math. Control Signals Systems, 11 (1998), 79–100.

[9] M. Corless and G. Lietmann, Bounded controllers for robust exponential convergence,
J. Optim. Theory Appl., 76 (1993), 1–12.

[10] B. Ghanmi, N. Hadjtaieb and M. A. Hammami, Growth conditions for exponential
stability of time-varying perturbed systems, Internat. J. Control, 86 (2013), 1086–1097.

[11] W. Hahn, Stability of Motion, Springer, New York, (1967).
[12] Z. HajSalem, M.A. Hammami and M. Mabrouk, On the global uniform asymptotic

stability of time-varying dynamical systems, Stud. Univ. Babeş-Bolyai Math., 59 (2014),
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