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STABILITY OF BINOMIALS OVER FINITE FIELDS

MOHAMED AYAD, BOUALEM BENSEBA, and MOHAMED MADI

Abstract. A polynomial f(x) over a field K is said to be stable if all its iterates
are irreducible over K. L. Danielson and B. Fein have shown that over a large
class of fields K, if f(x) is an irreducible monic binomial, then it is stable over
K. In this paper it is proved that this result no longer holds over finite fields.
Necessary and sufficient conditions are provided under which a given binomial is
stable over Fq. These conditions are used to construct a table listing the stable
binomials over Fq of the form f(x) = xd − a, a ∈ Fq \ {0, 1}, for q ≤ 27 and
d ≤ 10. The paper ends with a brief link to Mersenne primes.
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1. INTRODUCTION

Let K be a field and f(x) be a non-constant polynomial with coefficients in

K. Set f0(x) = x, f1(x) = x and fn(x) =
(
fn−1 ◦ f

)
(x) for n ≥ 2. Following

R. W. K. Odoni [8], this polynomial is said to be stable over K if fn(x) is
irreducible over K for all n ≥ 0. The first example of such a polynomial
appears in [8], where it is proved that f(x) = x2 − x+ 1 is stable over Q. In
[9], the same author shows that any iterate of an Eiseistein polynomial is itself
Eisenstein, thus f(x) is stable. This gives a class of stable polynomials over
fraction fields of factorial domains.

This result implies that, given an integral domain A with fraction field K
and algebraically independent variables s1, s2, . . . , sn, the generic polynomial
of degree n,

G(s1, . . . , sn, x) = xn − s1x
n−1 + · · ·+ (−1)nsn ∈ A[s1, . . . , sn][x]

is stable over K(s1, . . . , sn).
Inspired by this result, the paper [2] considers the stability of the generic

polynomial of the integers of a number field. More precisely, let K be a
number field of degree n and {ω1, . . . , ωn} be an integral basis. Let u1, . . . , un
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be independent variables over Q and let

(u1, . . . , un, x) =
n∏

i=1

(
x− (u1ω

σi
1 + · · ·+ unω

σi
n

)
,

where σ1, . . . , σn are the distinct embeddings of K in C. Then under some
arithmetical conditions, this polynomial is stable over Q(u1, . . . , un). To the
best of our knowledge, the stability of the polynomial F in the general case is
still open.

The stability of quadratic polynomials over various fields was the subject
of [3] and [4].

For the stability of trinomials over finite fields, we refer to [1].
In [5], the following surprising result is proved. Let f(x) = xn − b be an

irreducible polynomial over K. Then f(x) is stable over K in the following
cases:

(i) K = Q and b ∈ Z.
(ii) K = Q(t) and b ∈ Z[t].
(iii) K = F (t) and b ∈ F [t], where F is an arbitrary algebraically closed

field.
(iv) K = F (t), b ∈ F (t) \ F , n ≥ 3 and F is an arbitrary field of charac-

teristic 0.

We will see in the last section of this paper that this result does not hold
over finite fields. We will give an algorithm which establishes the stability of
a given binomial defined over a finite field.

For fixed integer d ≥ 2, define inductively the polynomials (Pn(x))n≥1 by
P1(x) = x and Pn(x) = [Pn−1(x)]

d + (−1)d−1x for n ≥ 2.
Let a ∈ F⋆

q and let n0 and m0 be indices with n0 < m0 such that Pn0(a) =
Pm0(a). Supposing that n0 first and m0 next are chosen to be minimal with
this property, then {Pn(a), n ≥ 1} = {P1(a), . . . , Pm0−1(a)}. This set plays an
important role in the stability of f(x) = xd − a. In section 4, the following
result is proved.

Theorem 1.1. Let d ≥ 2 be an integer such that d ̸= 0 (mod 4) and let
f(x) = xd − a ∈ Fq[x]. Let n0, m0, with n0 < m0, be minimal integers such
that Pn0(a) = Pm0(a). Then f(x) is stable over Fq if and only if for any prime

number l | d and any k ∈ {1, ...,m0 − 1} , Pk(a) /∈ Fl
q. Here Pk(a) /∈ Fl

q means
in particular Pk(a) ̸= 0.

This theorem is used for the construction of the table placed at the end
of the paper. Obviously, the integer m0 defined above satisfies the condition
m0 ≤ q+1. Theorem 4.4 shows thatm0 ≤ (q−1)/δ+2, where δ = gcd(q−1, d).
There are examples where this bound is reached. Suppose that f(x) is not
stable and let r0 ≥ 1 be the smallest integer such that fr0−1(x) is irreducible
and fr0(x) is reducible over Fq. The preceding theorem implies r0 ≤ m0− 1 ≤
(q − 1)/δ + 1. Notice that this bound for r0 depends on q.
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Question 1.2. Does there exist an integer N such that for any prime power
q and any f(x) = xd − a ∈ Fq[x], if f1(x), . . . , fN (x) are irreducible over Fq;
then f(x) is stable?

The example f(x) = x2 − 12 ∈ F19[x] extracted from the table in section
4, shows that f1(x), . . . , f5(x) are irreducible while f6(x) is reducible. This
shows that if N exists, then N ≥ 6.

Notation 1.3. The following notations will be used throughout the paper.
Fq: the finite field with q elements.
lc(f): leading coefficient of f(x).
fn(x): n-th iterate of f(x).
NF/K(α): norm of α relatve to the extension F/K.
m | n: m divides n.

2. PRELIMINARY RESULTS

Lemma 2.1. Let q be a power of a prime p ̸= 2, l a prime number and δ a
positive integer such that l | q − 1 and δ ≡ 1 (mod l). Let α ∈ F∗

q . Then α is
an l-th power in F∗

q if and only if α is an l-th power in F∗
qδ
.

Proof. Let ξ be a generator of F∗
qδ
; then η = ξ(q

δ−1)/(q−1) is a generator of

F∗
q . Set α = ηu where u is a nonnegative integer; then

α = ξu(q
δ−1)/(q−1) = ξu(1+q+···+qδ−1) := ξv.

We have v = u(1+ q+ · · ·+ qδ−1) ≡ uδ (mod l) ≡ u (mod l), hence α is an
l-th power in F∗

q if and only if α is an l-th power in F∗
qδ
. □

Lemma 2.2. Let p be an odd prime number and q = pm with m ≥ 1. Let
k ≥ 1 be an integer and α ∈ F∗

qk
. The following equivalences hold.

(i)

α is a square in Fqk ⇐⇒ α(qk−1)/2 = 1.

(ii)

−1 is a square in Fqk ⇐⇒

{
k is even or,

k is odd and q ≡ 1 (mod 4).

Proof. Let ξ be a generator of F∗
qk

and set α = ξu, u ≥ 0. Then

(i)

α(qk−1)/2 = 1 ⇐⇒ ξu(q
k−1)/2 = 1

⇐⇒ u(qk − 1)/2 ≡ 0 (mod qk − 1)

⇐⇒ u ≡ 0 (mod 2)

⇐⇒ α is a square in Fqk .
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(ii) By (i) we have:

−1 is a square in Fqk ⇐⇒ (−1)(q
k−1)/2 = 1

⇐⇒ (qk − 1)/2 ≡ 0 (mod 2)

⇐⇒ qk − 1 ≡ 0 (mod 4)

⇐⇒ qk ≡ 1 (mod 4)

⇐⇒ k is even or k is odd and q ≡ 1 (mod 4).

□

Lemma 2.3. Let δ ≥ 1 an integer, K = Fq and F = Fqδ .
1. The norm map NF/K : F → K is surjective and it maps F ∗ onto K∗.

2. Let ξ be a generator of F ∗ and η = ξ(q
δ−1)/(q−1). Then η is a generator

of K∗.
3. Let l be a prime number. If l ∤ q − 1, then the morphism Φl : F

∗ → K∗

such that Φl = xl is one-to-one and onto. If l | q − 1, then Ker(Φl) ={
x ∈ F ∗ | xl = 1

}
and (F ∗/Ker(Φl)) ≃ (K∗)l. Moreover, for any a ∈ F ∗,

a ∈ (F ∗)l if and only if NF/K(a) ∈ (K∗)l.

Proof. 1. See [7, Theorem 2.28].
2. Since F ∗ is cyclic of order qδ − 1 generated by ξ, it contains a unique

subgroup of order q− 1 generated by η = ξ(q
δ−1)/(q−1), namely K∗. Moreover,

ηk = ξk(q
δ−1)/(q−1) = (ξk)(q

δ−1)/(q−1) = (ξk)1+q+···+qδ−1

= (ξk)(ξk)q · · · (ξk)qδ−1
= NF/K(ξk).

3. The statements about Φl are obvious. We prove the last statement of 3.
Set a = ξk for some k ≥ 0. Then

NF/K(a) = [NF/K(ξ)]k = [ξ(q
δ−1)/(q−1)]k = ηk,

hence

a ∈ (F ∗)l ⇔ k ≡ 0 (mod l) ⇔ NF/K(a) ∈ (K∗)l.

□

We will make use of the following Lemma the proof of which is immediate.

Lemma 2.4. Let K be a field, λ ∈ K⋆ and u(x) = λx. Let f(x) ∈ K[x] \K
and g(x) =

(
u−1 ◦ f ◦ u

)
(x). Then, for any n ≥ 1, fn(x) and gn(x) have the

same number of irreducible factors over K.

3. IRREDUCIBILITY OF BINOMIALS

In this section, we study the irreducibility of binomials f(x) = xd − a with
a ∈ F⋆

q .
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Example 3.1. Let q be a power of a prime p and f(x) = xd − a, where
a ∈ F⋆

q . Suppose that p | d; then f(x) is reducible over Fq.

Proof. Set d = pm and q = pk, where m and k are positive integers. Then

f(x) = xpm−aq = (xm)p−(ap
k−1

)p=
(
xm−ap

k−1
)(

(xm)p−1+· · ·+(ap
k−1

)p−1
)
,

hence f(x) is reducible over Fq. □

The proof of the following lemma can be found in [10].

Lemma 3.2. Let K be a field and f(x), g(x) ∈ K[x]\K. Let α be a root of
f(x) in an algebraic closure of K. Then f ◦ g(x) is irreducible over K if and
only if f(x) is irreducible over K and g(x)− α is irreducible over K(α).

Lemma 3.3. Let K be a field and n ≥ 2 an integer. Let a ∈ K∗. Assume
that for all prime numbers l | d, we have a /∈ K l and if 4 | d, then a /∈ −4K4.
Then xd − a is irreducible over K. The converse is true.

Proof. For the direct implication, we refer the reader to [6][ Chapter 8,
Theorem 16]. We prove here the converse. Let l be a prime divisor of d and
a = bl, with b ∈ K∗. Set d = tl. Then

xd − a = xtl − bl

= (xt)l − bl

= (xt − b)u(xt) for some u(X) ∈ K[X].

Thus xd − a is reducible. If 4 | d, d = 4t and a = −4b4, then

xd − a = x4t + 4b4 = (x2t + 2bxt + 2b2)(x2t − 2bxt + 2b2),

hence the result. □

This result about the irreducibility of binomials is valid over any field. In
[7], the same problem of irreducibility is stated specifically over finite fields.
We state Theorem 3.75 in [7].

Lemma 3.4. Let d ≥ 2 be an integer and a ∈ F⋆
q. Then the binomial xd − a

is irreducible in Fq[x] if and only if the following two conditions are satisfied:

(i) each prime factor of d divides the order e of a in F⋆
q but not (q− 1)/e;

(ii) q ≡ 1 (mod 4) if d ≡ 0 (mod 4).

The conditions, call them (C), contained in Lemma 3.3 (resp. call them (C
′
)

contained in Lemma 3.4) are equivalent to the irreducibility of the binomial

xd − a, hence (C) and (C
′
) are equivalent. But at first glance, it is not so

obvious that they express the same meaning, so we prove the following.

Proposition 3.5. Let l be a prime number and a ∈ F⋆
q. Let e be the order

of a in F⋆
q. Then the following propositions are equivalent:

(i) l | e and l ∤ (q − 1)/e;
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(ii) a ̸∈ (F⋆
q)

l.

Proof.

• (i) ⇒ (ii). Suppose that a ∈ (F⋆
q)

l and let ξ be a generator of F⋆
q .

Then a = ξlu, where u is a nonnegative integer. Moreover, we have
e = (q − 1)/gcd(q − 1, lu). Let δ = gcd(q − 1, lu), then δ = (q − 1)/e.
We show that l ∤ e or l | (q − 1)/e. Suppose that l | e, then l | q − 1,
thus l | δ. Therefore l | (q − 1)/e.

• (ii) ⇒ (i). Suppose that a ̸∈ (F⋆
q)

l and let ξ be a generator of F⋆
q . Then

a = ξu, where u is a nonnegative integer such that u ̸= 0 (mod l). Let
δ = gcd(q − 1, u). Since u ̸= 0 (mod l), then l | q − 1; otherwise any
element of F⋆

q is an l-th power. This implies l ∤ δ and then l | (q−1)/δ.
Since e = (q − 1)/δ, then l | e. Since δ = (q − 1)/e, then l ∤ (q − 1)/e.

□

Corollary 3.6. Let q be a power of a prime.

1. Let d ≥ 2 be an integer such that d ̸= 0 (mod 4) and let a ∈ F⋆
q.

Suppose that xd − a is irreducible over Fq. Then any prime factor of

d divides q − 1. Moreover, d | qd − 1.
2. Let d ≥ 2 be an integer such that d ̸= 0 (mod 4). Let a and b ∈ F⋆

q

and let e(a) and e(b) be their respective orders. If e(a) = e(b), then
xd − a is irreducible over Fq if and only if the same holds for xd − b.

3. Let a ∈ F⋆
q and let d ̸= 0 (mod 4). Suppose that q ̸≡ −1 (mod 4), in

the case d even. Then xd − a is irreducible over Fq if and only if the

same property holds for xd + a.
4. Let d and e be positive integers such that d ≥ 2, d ̸= 0 (mod 4) and

gcd(d, e) ̸= 1. Let a ∈ F⋆
q; then xd − ae is reducible over Fq

5. Let d and e be positive integers such that d ≥ 2, d ̸= 0 (mod 4) and
gcd(d, e) = 1. Let a ∈ F⋆

q; then xd−a is irreducible over Fq if and only

if xd − ae satisfies the same property.
6. Let d be a positive integer such that d ̸= 0 (mod 4). Let d̂ be the

squarefree part of d. Let a ∈ F⋆
q and b ∈ F⋆d̂

q ; then xd − a is irreducible

over Fq if and only if xd − ab satisfies the same property.
7. If d1 and d2 have the same prime factors with d1 and d2 ̸= 0 (mod 4),

then xd1 − a is irreducible over Fq if and only if xd2 − a is.
8. Let d1, d2 be integers at least equal to 2, (gcd(d1, d2) = 1, both not

0 modulo 4. Let f1(x) = xd1 − a1, f2(x) = xd2 − a2 and f(x) =

xd1d1 −ad21 ad12 , where a1 and a2 ∈ F⋆
q. Then f(x) is irreducible over Fq

if and only if f1(x) and f2(x) have the same property.

Proof.

1. Suppose that some prime factor l of d does not divide q − 1; then any
element a ∈ F⋆

q is an l-th power, hence xd−a is reducible over Fq which
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is a contradiction. For the second part, let α be a root of xd − a and

let A = {n ∈ Z, αn ∈ Fq}. Since αqd−1 = 1; then A ̸= ∅. Obviously, A
is an ideal of Z. Let δ be a generator of A, then δ | d. On the other
hand, xd − a is the minimal polynomial of α over Fq, hence xd − a

divides xδ − b for some b ∈ F⋆
q . This implies d ≤ δ and then d = δ.

Now since qd − 1 ∈ A, then d | qd − 1.
2. Obvious from Lemma 3.4.
3. By symmetry, we may just prove the necessity of the condition. Sup-

pose that xd − a is reducible over Fq and let l be a prime number

dividing d such that a = bl with b ∈ Fq. If l = 2 and 2 | q − 1, then
q ≡ 1 (mod 4) and then, by Lemma 2.2, −1 is a square in F⋆

q . This

implies −a is a square, hence xd+a is reducible. If l = 2 and 2 ∤ q− 1,
then any element of F⋆

q is a square. In particular −a is a square and

then xd + a is reducible. If l ̸= 2, then −a = −bl = (−b)l and we get
the same conclusion as before.

4. Let l be a prime factor of gcd(d, e). Set d = ld1 and e = le1. Then

xd − ae = xld1 − ale1

= (xd1)l − (ae1)l =
(
xd1 − ae1

)(
(xd1)l−1 + . . .+ (ae1)l−1

)
,

hence xd − a is reducible over Fq.

5. • Suppose that xd − a is reducible over Fq and let l be a prime

number such that l | d and a = bl with b ∈ F⋆
q ; then ae = (be)l,

thus xd − ae is reducible over Fq.

• Conversely, suppose that xd − ae is reducible over Fq and let l be

a prime number such that l | d and ae = bl with b ∈ F⋆
q . Let u

and v ∈ Z such that ud + ve = 1 and let δ be such that d = lδ;
then

a = aud+ve = audave =
(
auδ

)l(
bv
)l

=
(
auδbv

)l
,

hence xd − a is reducible over Fq.

6. • Suppose that xd − a is reducible over Fq and let l be a prime
number dividing d such that a is an l-power; then ab is also an
l-th power. This implies xd − ab is reducible over Fq.

• Suppose that xd − ab is reducible over Fq and let l be a prime
number dividing d such that ab is an l-th power. Multiplying by
b−1, which is an l-th power, shows that a is an l-th power, hence
xd − a is reducible over Fq.

7. Suppose that xd1 − a is reducible over Fq and let l | d be a prime such

that a = bl with b ∈ F⋆
q . Since l | d2, then xd2 − a is reducible over Fq.

8. • Sufficiency of the condition. Suppose by contadiction that f(x)
is reducible over Fq and let l be a prime number dividing d1d2
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and b ∈ F⋆
q such that ad21 ad12 = bl. We may suppose that l | d1

and l ∤ d2 since the proof is similar for the other case. Let ξ
be a generator of F⋆

q . Set a1 = ξu1 , a2 = ξu2 and b = ξv; then

ξu1d2+u2d1 = ξvl, hence u1d2 + u2d1 ≡ vl (mod q − 1). Let w ∈ Z
be such that u1d2+u2d1 = vl+w(q−1). If l ∤ q−1; then f1(x) is
reducible by item 1. of this corollary . Suppose next that l | q−1,
then l | u1, thus a1 is an l-th power for a prime factor of d1. This
implies f1(x) is reducible.

• Necessity of the condition. Suppose that one of f1(x), f2(x), say
f1(x), is reducible over Fq. Let l be a prime number such that

l | d1 and a1 = bl with b ∈ F⋆
q . Let δ1 ∈ Z be such that d1 = lδ1;

then ad21 ad12 = bld2alδ12 =
(
bd2aδ12

)l
, hence f(x) is reducible over

Fq.

□

Notice that the assumptions in 1. of Corollary 3.6 hold if gcd(d, q − 1) = 1.

4. STABILITY OF BINOMIALS

Let d ≥ 2 be an integer. Define inductively the polynomials (Pn(x))n≥1 by
P1(x) = x and Pn(x) = [Pn−1(x)]

d + (−1)d−1x for n ≥ 2. These polynomials
will be used in what follows.

Lemma 4.1. Let d ≥ 2 be an integer such that d ̸= 0 (mod 4) and let
f(x) = xd − a, where a ∈ Fq

∗.
1. Suppose that fn−1(x) is irreducible and fn(x) is reducible over Fq for

some n ≥ 2. Then there exists a prime number l | d such that Pn(a) is an l-th
power in F⋆

q .
2. If Pn(a) = 0 for some n ≥ 2, then f(x) is reducible over Fq. If for some

n ≥ 1, Pn(a) is an l-th power in F⋆
q for some prime divisor l of d, then fn(x)

is reducible over Fq.

Proof. 1. Let (αn)n≥1 be elements of Fq such that f(α1) = 0 and f(αn) =

αn−1 for n ≥ 2. Set βk = αk+Pn−k(a). We have f(αn) = αd
n−a = αn−1, hence

αn is a root of xd − a−αn−1. By Lemma 3.2 this polynomial is reducible over
Fq(αn−1), hence by Lemma 3.3, there exists a prime number l | d such that

a+αn−1 = bl1 for some b1 ∈ Fq(αn−1). Thus P1(a)+αn−1 = bl1, b1 ∈ Fq(αn−1).
We prove by induction on k ∈ {1, ..., n− 1} that

(1) Pk(a) + αn−k = blk, with bk ∈ Fq(αn−k).

Let k ∈ {1, ..., n− 2} and suppose that (1) holds. Denote by N the norm map
NFq(αn−k)/Fq(αn−(k+1)). Then

N(Pk(a) + αn−k) = N(βn−k)

= [N(bk)]
l := blk+1,
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with bk+1 ∈ Fq(αn−(k+1)). Since αd
n−k − a− αn−(k+1) = 0, then

(2) [βn−k − Pk(a)]
d − a− αn−(k+1) = 0,

hence

N(Pk(a) + αn−k) = N(βn−k)

= (−1)d
{
[−Pk(a)]

d − a− αn−(k+1)

}
= [Pk(a)]

d + (−1)d−1a+ (−1)d−1αn−(k+1)

= Pk+1(a) + (−1)d−1αn−(k+1).

If d ≡ 1 (mod 2) we immediately obtain Pk+1(a) + αn−(k+1) = blk+1 with
bk+1 ∈ Fq(αn−(k+1)). If d ≡ 0( (mod 2), since αn−(k+1) and −αn−(k+1) are

conjugate over Fq(αn−(k+2)) then Pk+1(a) + αn−(k+1) = bk+1
l
where bk+1 is

a conjugate of bk+1 over Fq(αn−(k+2)), so our claim is proved. Applying the

result for k = n − 1 we get Pn−1(a) + α1 = bln−1 with bn−1 ∈ Fq(α1). This
implies

NFq(α1)/Fq
(Pn−1(a) + α1) = NFq(α1)/Fq

(β1)

= [NFq(α1)/Fq
(bn−1)]

l

= bln with bn ∈ Fq.

Since αd
1 − a = 0; then [β1 − Pn−1(a)]

d − a = 0, hence

NFq(α1)/Fq
(Pn−1(a) + α1) = NFq(α1)/Fq

(β1)

= (−1)d
{
[−Pn−1(a)]

d − a
}

= [Pn−1(a)]
d + (−1)d−1a

= Pn(a).

Thus, Pn(a) = bln where bn ∈ Fq.

2. Suppose that Pn(a) = 0 for some n ≥ 2; then
(
Pn−1(a)

)d
+(−1)d−1a = 0,

hence Pn−1(a) is a root of xd +(−1)d−1a in Fq. By Lemma 3.3 and item 3. of

Corollary 3.6, we get xd − a is reducible over Fq.
Suppose that for some n ≥ 1, Pn(a) is an l-th power in F⋆

q for some prime
divisor l of d.

If n = 1, then according to Lemma 3.3, f(x) is reducible over Fq. Suppose
that n ≥ 2. We may suppose that f1(x), ..., fn−1(x) are irreducible over Fq. We
have Pn(a) = NFq(α1)/Fq

(Pn−1(a) + α1), hence by Lemma 2.3, Pn−1(a) + α1 is
an l-th power in Fq(α1). Suppose by induction that Pn−k(a) + αk is an l-th
power in Fq(αk). Since Pn−k(a) + αk = NFq(αk+1)/Fq(αk)(Pn−(k+1)(a) + αk+1);
then by Lemma 2.3 again , Pn−(k+1)(a) + αk+1 is an l-th power in Fq(αk+1).
In particular for k = n − 1, we get that P1(a) + αn−1 which is a + αn−1 is
an l-th power in Fq(αn−1). Since αd

n − a − αn−1 = 0 then by Lemma 3.3,

the polynomial αd
n − (a + αn−1) is reducible over Fq(αn−1). Thus, fn(x) is

reducible over Fq by Lemma 2.2. □
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For fixed a ∈ F∗
q , the family (Pn(a))n≥1 is finite. More precisely, let n0 and

m0 be indices such that n0 < m0 and Pn0(a) = Pm0(a). Suppose that n0 first
and m0 next are chosen to be minimal with this property, then

(3) {Pn(a), n ≥ 1} = {P1(a), ..., Pm0−1(a)} .
Moreover, we have m0 ≤ q + 1.

Theorem 4.2. Let d ≥ 2 be an integer such that d ̸= 0 (mod 4) and let
f(x) = xd − a ∈ Fq[x]. Let n0, m0, with n0 < m0, be the minimal integers
such that Pn0(a) = Pm0(a). Then f(x) is stable over Fq if and only if for any

prime number l | d and any k ∈ {1, ...,m0 − 1} , Pk(a) /∈ Fl
q. Here Pk(a) /∈ Fl

q

means in particular Pk(a) ̸= 0.

Proof. If for some l | d and some k ∈ {1, ...,m0 − 1}, Pk(a) is an l-th power,
trivial or not; then by the preceding lemma, f(x) is not stable. Conversely
suppose that f(x) is not stable over Fq and let n be the smallest positive
integer such that fn(x) is reducible over Fq. If n = 1, that is f(x) is reducible,
then a = P1(a) is an l-th power in F⋆

q for some prime divisor l of d. Suppose
that n ≥ 2, then by Lemma 4.1, there exists a prime number l | d such that
Pn(a) is an l-th power in F⋆

q . Since Pn(a) = Pk(a) for some k ∈ {1, ...,m0 − 1},
then Pk(a) is an l-th power in F⋆

q as desired. □

Theorem 4.3. Let d ≥ 2 be an integer such that d ̸= 0 (mod 4) and let
f(x) = xd − a ∈ Fq[x] with a ̸= 0. Suppose that Pn(a) is an l-th power for
some postive integer n and some prime number l | d. Let n0 be the smallest
positive integer satisfying this property. If Pn0(a) = 0 or n0 = 1 then f(x) is
reducible over Fq. If n0 ≥ 2, then fn0 is reducible while fn0−1 is irreducible

over Fq. In any case xd − Pn0(a) is reducible over Fq.

Proof. If Pn0(a) = 0 or n0 = 1 then, by the preceding lemma, f(x) is
reducible over Fq. Supposing that n0 ≥ 2, the preceding lemma shows that
fn0(x) is reducible over Fq. Since f(x) is irreducible over Fq (otherwise n0 = 1),
then we may consider the greatest integer m ∈ {1, . . . , n0−1} such that fm(x)
is irreducible over Fq, which in turn implies fm+1(x) is reducible over Fq.
Lemma 4.1 shows that Pm+1(a) is an l-th power in Fq. Since m+ 1 ≤ n0 and
n0 is minimal, then m + 1 = n0, hence fn0−1(x) is irreducible over Fq. The
last statement is obvious and its proof will be omitted. □

Corollary 4.4. Let f(x) = xd − a ∈ Fq[x] with a ̸= 0 and d ̸≡ 0 (mod 4).
Let δ be a positive integer such that δ ≡ 1 (mod l) for any prime factor l of
d. Then f(x) is stable over Fq if and only if it is stable over Fqδ .

Proof. It is not hard to see that the sufficiency of the condition follows.
Let us now prove that the condition in the hypothesis is necessary. By

contradiction, suppose that f(x) is not stable over Fqδ . By Theorem 4.2, there

exist an index n and a prime number l | d such that Pn(a) = 0 or Pn(a) ∈ Fl
qδ
.

In the first case f(x) is not stable over Fq, a contradiction. Now we consider
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the second possibility. Since f(x) is stable over Fq, then in particular f(x) is
irreducible, hence by item 1. of corollary 3.6, any prime factor of d divides
q − 1 thus, l | q − 1. Now Lemma 2.1 implies Pn(a) ∈ Fl

q contradicting the
stability of f(x) over Fq. □

Theorem 4.5. Let d ≥ 2 be an integer such that d ̸= 0 (mod 4) and let
f(x) = xd−a ∈ Fq[x] with a ̸= 0. Let δ = gcd(q−1, d). Suppose that Pn(a) ̸= 0
for any positive integer n. If f1(x), . . . , f(q−1)/δ+1(x) are irreducible over Fq

then, f(x) is stable.

Proof. Let H = F⋆(q−1)/δ
q and A = {P1(a), . . . , P (q−1)

δ
+1

}. H is a subgroup

of F⋆
q , so its index is equal to (q−1)/δ. Since the multiset A contains (q−1)

δ +1
elements, there exist i and j with i < j such that Pj(a) ≡ Pi(a) (mod H),

that is Pj(a) = b(q−1/d)Pi(a) with b ∈ F⋆
q . Moreover, we may suppose that

i and j are minimal with this property. This implies Pj(a)
d = Pi(a)

d and
then, by definition of the polynomials Pk(x), Pj+1(a) = Pi+1(a). From the
definition of n0 and m0, we deduce that i + 1 = n0 and j + 1 = m0. Since

j ≤ (q−1)
δ + 1, then m0 − 1 = j ≤ (q−1)

δ + 1. Now the stability follows from
Theorem 4.3. □

Remark 4.6. The preceding theorem shows that m0 ≤ (q− 1)/δ+2. Here
are two examples for which the bound is reached.

• q = 7, d = 2, a = −2, δ = 2 and f(x) = x2+2. We have P1(−2) = −2,
P2(−2) = −1, P3(−2) = 3, P4(−2) = −3 and P5(−2) = −3, hence
m0 = 5 = (7− 1)/2 + 2.

• q = 7, d = 3, a = 2, δ = 3 and f(x) = x2 − 2. We have P1(2) = 2,
P2(2) = 3, P3(2) = 1 and P4(2) = 3, hence m0 = 4 = (7− 1)/3 + 2.

Corollary 4.7. Let a ∈ F⋆
q. If d is odd, then xd − a is stable over Fq if

and only if the same property holds for xd + a

Proof. By induction on n, we show that Pn(−a) = −Pn(a). Then the
conclusion follows immediately from the preceding theorem and from item 3.
of Corollary 3.6. This identity is true by assumption. Suppose it is true for
the step n− 1. Then

Pn(−a) =
(
Pn−1(−a)

)d
+ (−a) = −

(
Pn−1(a)

)d
− a = −Pn(a).

□

Remark 4.8. One verifies easily that

fn(0) =

{
−Pn(a) for n ≥ 1 if d is odd

−P1(a) if n = 1 and Pn(a) for n ≥ 2 if d is even.

Here we consider the case where the binomials are not monic.



12 Stability of binomials over finite fields 55

Proposition 4.9. Let g(x) = bxd − c ∈ Fq[x], with b and c ̸= 0. If some
prime factor l of d does not divide q−1, then g(x) is reducible over Fq. Suppose
that any prime factor of d divides q − 1. Then there exist a and λ ∈ F⋆

q such

that g(x) =
(
u−1 ◦ f ◦ u

)
(x), where u(x) = λx and f(x) = xd − a. Moreover,

g(x) is stable over Fq if and only if f(x) is.

Proof. If l | d and l ∤ q − 1, then cb−1 ∈ F⋆l
q , hence xd − cb−1 is reducible

over Fq and then the same holds for g(x). Suppose that any prime factor
of d divides q − 1. The condition that there exist a and λ ∈ F⋆

q such that

g(x) =
(
u−1 ◦ f ◦ u

)
(x) is equivalent to b = λd−1 and c = aλ−1. Since

gcd(d−1, q−1) = 1, then the first equation determines λ. The second equation
determines a. The statement about stability follows from Lemma 2.4

□

Example 4.10. 1. f(x) = x2 + 1 ∈ F3[x]. So a = −1 and d = 2. P1(a) =
P2(a) = −1. −1 is not a square in F3, hence x2 + 1 is stable over F3.

2. f(x) = x2 − 2 ∈ F5[x]. So a = 2 and d = 2. P1(a) = P2(a) = 2 which is
not a square in F5, hence the stability of x2 − 2 over F5.

3. f(x) = x2 + 2 ∈ F5[x]. So a = −2 and d = 2. P1(a) = −2 and P2(a) = 1
which is a square in F5. x

2 + 2 is not stable over F5.
4. We have F9 = F3(i) where i2 = −1.

• f1(x) = x2 − (1 + i) ∈ F9[x].
So a = (1+ i) and d = 2. P3(a) = −1 which is a square in F9, hence

x2 − (1 + i) is not stable over F9.
• f2(x) = x2 + (1 + i) ∈ F9[x].

So a = −(1+ i) and d = 2. P2(a) = 1 which is a square in F9, hence
x2 + (1 + i) is not stable over F9.

• f3(x) = x2 − (1− i) ∈ F9[x].
So a = 1− i and d = 2. P3(a) = −1 which is a square in F9, hence

x2 − (1− i) is not stable over F9.
• f4(x) = x2 − (i− 1) ∈ F9[x].

So a = i − 1 and d = 2. P2(a) = 1 which is a square in F9, hence
x2 − (i− 1) is not stable over F9.

A Mersenne number is a positive integer of the form 2m − 1, where m is
an integer at least equal to 2. Set q = 2m. When q − 1 is prime, this prime
is called a Mersenne prime. It is well known that if q − 1 is a Mersenne
prime then m is prime. The converse is false, the first counterexample being
211 − 1 = 2047 = 23× 89. We prove the following.

Theorem 4.11.

1. Let q be a non-trivial prime power and α ∈ F⋆
q. Then xq−1 − α is

irreducible over Fq if and only if α generates F⋆
q.

2. Suppose that q = 2m, where m ≥ 2 is an integer. Then the following
conditions are equivalent.
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(i) For any α ∈ Fq \ {0, 1}, xq−1 − α is stable over Fq

(ii) For any α ∈ Fq \ {0, 1}, xq−1 − α is irreducible over Fq

(iii) q − 1 is a Mersenne prime.

Proof.

1. Necessity of the condition. Let e be the order of α in F⋆
q . Obviously

e ≤ q − 1. On the other hand, let l be a prime divisor of q − 1. Sup-
pose, by contradiction, that the l-adic valuations satisfy the condition
νl(a) < νl(q−1); then l | (q−1)/e, which contradicts the irreducibility
of xq−1 − α (see Lemma 3.4). Therefore, νl(a) = νl(q − 1), and then
e = q − 1.

Sufficiency of the condition. Since e = q − 1, then, by Lemma
3.4 , xq−1 − α is irreducible over Fq.

2. • (i) ⇒ (ii). Obvious.
• (ii) ⇒ (iii). By 1., for any α ∈ Fq \ {0, 1}, α generates F⋆

q . This
implies that the order of this cyclic group is a prime number thus,
q − 1 is prime.

• (iii) ⇒ (i). By 1., for any α ∈ Fq \ {0, 1}, xq−1 − α is irreducible
over Fq. To get the stability, since (F⋆

q)
q−1 = {1}, we must show

that Pn(α) /∈ {0, 1} for any n ≥ 1. For n = 1, this is proved
above. Suppose, by induction, that it is true for n ≥ 1. We have
Pn+1(α) = Pn(α)

q−1 + (−1)q−2α = 1 + α. If Pn+1(α) = 0 then,
α = 1. If Pn+1(α) = 1 then, α = 0. In both cases we reach a
contradiction. Therefore, xq−1 − α is stable over Fq.

□

In [7] a table of irreducible polynomials over Fq, of degree d, for small q and

small d is given. The following table lists the stable binomials f(x) = xd − a
for 3 ≤ q ≤ 27, 2 ≤ d ≤ 10, d ̸= 0 (mod 4) and a ∈ Fq \ {0, 1}. The values
of d for which there exists a prime number l | d and l ∤ q − 1 are omitted
since in this case f(x) is reducible over Fq(see Corollary 3.6). The values of
d which are congruent to 0 modulo 4 are also omitted. For given q, d and a,
the table lists the sequence [P1(a)], . . . , Pm0(a)] (see the begining of section 4
for the definition of this sequence). One and only one of this list, say Pn(a), is
possibly underlined. This means that Pn(a) is an l-th power for some prime
divisor l of d and n is the smallest positive integer satisfying this property.
This implies that n is the smallest positive integer such that fn(x) is reducible
over Fq. If no element is underlined then f(x) is stable.

The elements of Fq \ {0, 1} are enumerated in the following way. If q = p is
a prime number, then a = 2, . . . , p− 1. If q = pe with e ≥ 2, then a generator
α of F⋆

q is chosen and its minimal polynomial over Fp, M(x), is mentioned.

In this case a = α, . . . , αq−2. If a binomial f(x) of degree d is revealed to be
stable over Fq by this table, then we have an infinite list of polynomials having
the same property.
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Table of stable polynomials

q = 3 q = 4,M(X) = X2 +X + 1
d = 2 d = 3 d = 9

a List a List a List
2 [2, 2]s. α [α, α2, α2]s. α [α, α2, α2]s.

α2 [α2, α, α]s. α2 [α2, α, α]s.
q = 5
d = 2

2 [2, 2]s. 3 [3, 1, 3]ns. 4 [4, 2, 0, 1]ns.
q = 7

d = 2 d = 3 d = 6
2 [2, 2]s. 2 [2, 3, 1, 3]s. 2 [2, 6, 6]s.
3 [3, 6, 5, 1, 5]s. 3 [3, 2, 4, 4]s. 3 [3, 5, 5]s.
4 [4, 5, 0, 3, 5]ns. 4 [4, 5, 3, 3]s. 4 [4, 4]ns.
5 [5, 6, 3, 4, 4]ns. 5 [5, 4, 6, 4]ns. 5 [5, 3, 3]s.
6 [6, 2, 5, 2]ns. 6 [6, 5, 5]ns. 6 [6, 2, 2]ns.

q = 7 q = 8, q = 9,
M(X) = X3 +X + 1 M(X) = X2 + 2X + 2

d = 9 d = 7 d = 2
2 [2, 3, 1, 3]ns. α [α, α3, α3]s. α [α, 1, α3, α]ns.
3 [3, 2, 4, 4]s. α2 [α2, α6, α6]s. α2 [α2, α3, α2]ns.
4 [4, 5, 3, 3]s. α3 [α3, α, α]s. α3 [α3, 1, α, α5, α6]ns.
5 [5, 4, 6, 4]ns. α4 [α4, α5, α5]s. α4 [α4, α4]ns.
6 [6, 4, 4]ns. α5 [α5, α4, α4]s.. α5 [α5,α3,α4,α2,α7,α4]ns.

α6 [α6, α2, α2]s. α6 [α6, α, α6]ns.
α7 [α7,α,α4,α6,α5,α4]ns.

q = 11
d = 2 d = 5 d = 10

2 [2, 2]s. 2 [2, 1, 3, 3]ns. 2 [2, 10, 10]ns.
3 [3, 6, 0, 8, 6]ns. 3 [3, 4, 4]s. 3 [3, 9, 9]ns.
4 [4, 1, 8, 5, 10, 8]ns. 4 [4, 5, 5]s. 4 [4, 8, 8]ns.
5 [5, 9, 10, 7, 0, 6, 9]ns. 5 [5, 6, 4, 6]s. 5 [5, 7, 7]ns.
6 [6, 8, 3, 3]ns 6 [6, 5, 7, 5]s. 6 [6, 6]s.
7 [7, 9, 8, 2, 8]ns. 7 [7, 6, 6]s. 7 [7, 9, 8, 2, 8]ns.
8 [8, 1, 4, 8]ns. 8 [8, 7, 7]s. 8 [8, 4, 4]ns.
9 [9, 6, 5, 5]ns. 9 [9, 10, 8, 8]ns. 9 [9, 3, 3]ns.
10 [10, 2, 5, 4, 6, 4]ns. 10 [10, 9, 0, 10]ns. 10 [10, 2, 2]ns.

q = 13
d = 2 d = 3 d = 6

2 [2, 2]s. 2 [2, 10, 1, 3, 3]ns. 2 [2, 10, 12, 12]ns.
3 [3, 6, 7, 7]ns. 3 [3,4,2, 11, 8, 8]ns. 3 [3, 11, 9, 11]ns.
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4 [4, 12, 10, 5, 8, 8]ns. 4 [4, 3, 5, 12, 3]ns. 4 [4, 10, 10]ns.
5 [5, 7, 5]s. 5 [5, 0, 5]ns. 5 [5, 7, 7]ns.
6 [6, 4, 10, 3, 3]ns. 6 [6, 1, 7, 1]ns. 6 [6, 6]s.
7 [7, 3, 2, 10, 2]ns. 7 [7, 12, 6, 2, 2]ns. 7 [7, 5, 5]ns.
8 [8, 4, 8]ns. 8 [8, 0, 8]ns. 8 [8, 4, 6, 4]ns.
9 [9, 7, 1, 5, 3, 0, 4, 7]ns. 9 [9, 10, 8, 1, 10]ns. 9 [9, 5, 3, 5]ns.
10 [10, 12, 4, 6, 0, 3,12]ns. 10 [10, 9, 11, 1, 11]ns. 10 [10, 4, 4]ns.
11 [11, 6, 12, 3, 11]ns. 11 [11, 3, 12, 10,10]ns. 11 [11, 1, 3, 3]ns.
12 [12, 2, 5, 0, 1, 2]ns. 12 [12, 11, 4, 11]ns. 12 [12, 2, 0, 2]ns.

q = 13
d = 9

2 [2, 7, 10, 1, 3, 3]ns. 3 [3,4,2,8,11,11]ns. 4 [4, 3, 5, 9, 5]ns.
5 [5, 10, 4, 4]ns. 6 [6, 11, 1, 7, 1]ns. 7 [7, 2, 12, 6, 12]ns.
8 [8, 3, 9, 9]ns. 9 [9, 10, 8, 4, 8]ns. 10 [10, 9, 11, 5, 2, 2]ns.

11 [11, 6, 3, 12, 10, 10]ns. 12 [12, 11, 7, 7]ns.
q = 16,M(x) = X4 +X + 1

d = 9
α [α, α3, α13, α13]ns. α2 [α2, α6, α11,α11]ns. α3 [α3, α10, α14, α2, .

0, α3]ns.
α4 [α4, α12, α7, α11, . α5 [α5, α10, α10]s. α6 [α6, α5, α13, α4,
. α14, α12]ns. 0, α6]ns
α7 [α7, α4, α10, α9, α8 [α8, α9, α14,α14]ns. α9 [α9, α5, α7, α, 0,

α10]ns. α9]ns.
α10 [α10, α5, α5]s. α11 [α11, α2, α5, α12, α12 [α12, α10, α11, α8,

α5]ns 0, α12]ns
α13 [α13α, α10,α6,α10]ns. α14 [α14,1,α6,α10,α6]ns.

q = 17
d = 2

2 [2, 2]ns. 3 [3, 6, 16, 15, 1, 15]ns. 4 [4, 12, 4]ns.
5 [5, 3, 4, 11, 14, 13, 4]ns. 6 [6, 13, 10, 9, 7, 9]ns. 7 [7, 8, 6, 12, 1, 11, 12]ns.

8 [8, 5, 0, 9, 5]ns. 9 [9, 4, 7, 6, 10, 6]ns. 10 [10, 5, 15, 11, 9, 3,
16, 3 ]ns

11 [11, 8, 2, 10, 4, 5, 12 [12, 13, 4, 4]ns. 13 [13, 3, 13]ns.
14, 15, 10]ns.

14 [14, 12, 11, 5, 11]s. 15 [15, 6, 4, 1, 3, 11, 4]ns. 16 [16, 2, 6, 4, 1, 2]ns.
q = 19
d = 2

2 [2, 2]s. 3 [3, 6, 14, 3]ns. 4 [4, 12, 7, 7]ns.
5 [5, 1, 15, 11, 2, 18, 6 [6, 11, 1, 14, 0, 13, 7 [7, 4, 9, 17, 16, 2, 16]

15]ns 11]ns. ns
8 [8, 18, 12, 3, 1, 12]ns. 9 [9, 15, 7, 2, 14, 16, 0, 10 [10, 14, 15, 6, 7, 1,

10, 15]ns. 10]ns.



16 Stability of binomials over finite fields 59

12 [12, 18, 8, 14, 13, 5, 11 [11, 15, 5, 14, 14]ns. 13 [13, 4, 3, 15, 3]ns.
13]

14 [14, 11, 12, 16, , 14] 15 [15, 1, 5, 10, 9, 9]ns. 16 [16, 12, 14, 9, 8, 10, .
ns. 8]ns.

17 [17, 6, 0, 2]ns. 18 [18, 2, 5,7,12, 12]ns.
d = 3 d = 6 d = 9
2 [2, 10, 14, 10]s. 2 [2, 5, 5]ns. 2 [2, 1, 3, 1]ns.
3 [3, 11, 4, 10, 15, 15]ns. 3 [3, 4, 8, 17, 8]ns. 3 [3, 2, 2]s.
4 [4, 11, 5, 15, 16, 15]ns. 4 [4, 7, 0, 15, 7]ns 4 [4, 5, 5]s.
5 [5, 16, 16]s. 5 [5, 2, 2]ns. 5 [5, 6, 6]s.
6 [6, 13, 18, 5, 17, 17] 6 [6, 5, 1, 14, 1]ns. 6 [6, 7, 7]ns.
7 [7, 8, 6, 14, 15, 0, 7]ns. 7 [7, 16, 0, 8, 8]ns 7 [7, 8, 8]ns.
8 [8, 7, 9, 15, 1, 9]ns. 8 [8, 7, 15, 3, 18, 12 8 [8, 9, 9]ns.
9 [9, 16, 1, 19, 2, 17, 9 [9, 2, 17, 17]ns. 9 [9, 10, 8, 8]ns.

1]ns.
10 [10, 3, 18, 9, 17, 2, . 10 [10, 1, 10]ns 10 [10, 9, 11, 11]ns.

18]ns.
11 [11, 12, 10, 4, 18, 10]ns. 11 [11, 9, 0, 8, 9]ns. 11 [11, 10, 10]ns.
12 [12, 11, 13, 5, 4, 0, 12 [12, 11, 8, 8]ns. 12 [12, 11, 11]ns.

12]ns.
13 [13, 6, 1, 14, 5, 14]ns. 13 [13, 17, 13]ns. 13 [13, 12, 12]ns.
14 [14, 3, 3]s. 14 [14, 12, 6, 16, 12]ns. 14 [14, 13, 13]s.
15 [15, 8, 14, 4, 3, 4]ns. 15 [15, 15]s. 15 [15, 14, 14]s.
16 [16, 4, 4]s. 16 [16, 10, 14, 10]ns. 16 [16, 11, 4, 10, 15, 15]

ns.
17 [17, 9, 5, 9]s. 17 [17, 9, 13, 13]ns. 17 [17, 18, 16, 18]ns.
18 [18, 17, 10, 11, 0, 18]ns. 18 [18, 2, 8, 2]ns. 18 [18, 17, 0, 18]ns.

q = 23
d = 2

2 [2, 2]ns. 3 [3, 6, 10, 5, 22, 21, 1, 4 [4, 12, 2, 0, 19, 12]ns.

21]ns.
5 [5, 20, 4, 11, 1, 19, 11]ns. 6 [6, 7, 20, 3, 3]ns. 7 [7, 19, 9, 5, 18, 18]ns.

8 [8, 10, 0, 15, 10]ns. 9 [9, 3, 0, 14, 3]ns. 10 [10, 21, 17, 3, 22, 14,
2, 17]ns.

11 [11, 18, 14, 1, 13, 20, 12 [12, 17, 1, 12]ns. 13 [13, 18, 12, 15, 13]ns.

21, 16, ]
14 [14, 21, 13, 17, 22, 10, . 15 [15, 3, 17, 21, 12, 14, 16 [16, 10, 15, 2, 11, 13,

20, 17]ns. 15 ]ns
17 [17, 19, 22, 7, 9, 18, 8, 18 [18, 7, 8, 0, 5, 7]ns. 19 [19, 20, 13, 12, 10, 12

1, 7]ns. ]ns
20 [20, 12, 9, 15, 21, 7, 21 [21, 6, 15, 20, 11, 8, 22 [22, 2, 5, 3, 9, 13, 9]ns.

6, 16, 6]ns 20]ns.
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q = 25,M (X) = X2 + 4X + 2
d = 2 d = 3 d = 6

α [α, α18, α10, α21, α [α, α18, α15, α20, α [α, α14, α5, α14]ns.
α3, α14, α15,α14]ns. α17, α18]ns

α2 [α2, α17, α9, α, 0, α2 [α2, α, 1, α17, 1]ns. α2 [α2, α5, α10α5]ns.
α14, α17]ns.

α3 [α3, α17, 1, α2, α20, α3 [α3, α21,0,α3
]ns. α3 [α3, α, α17, α17]ns.

α13, α7, α12, α2]ns.

α4 [α4, α12, α20, α22, α4 [α4, α8, α23, α5, α20 α4 [α4, α20, α20]ns.
α15, α19, α7, α7]ns. α8]s.

α5 [α5, α18, α2, α9, [α5, α18, α3, α4, α13, α5 [α5, α22, α2, α2]ns.

α15, α22, α5.α9, ]ns. α18]ns.
α6 [α6, α6]ns. α6 [α6, 0, α6]ns. α6 [α6, α6]ns.
α7 [α7, α4, α24, α9, α16, α7 [α7, α10, α4, α21, α11, α7 [α7, α16, α9, α11α16]

α24]ns. α24, α8, α8]ns. ns.
α8 [α8, α15, α9, α13, α8 [α8, α4, α7, α13, α16, α8 [α8, α19, α11, α11]ns.

α14, α24] α4]s.
α9 [α9, α4, α13, α11, α19, α9 [α9,α21,α3,α21]ns. α9 [α9, α8, α7, α4, α7]ns.

α22]
α10 [α10, α13, α8, α10]ns. α10 [α10,α5,1,α13,α24]ns. α10 [α10, α, α2, α]ns.
α11 [α11, α20, α24, α8, α24] α11 [α11, α2, α20, α9, α7, α11 [α11, α8, α21, α7, α8]

α24, α16, α16]ns. ns.
α12 [α12, α6, 0, α24, α6]ns α12 [α12, α18, α24, α12]ns. α12 [α12, α6, 0, α24, α6]ns.

α13 [α13,α23,α8,α3,α15]ns α13 [α13, α6, α3, α8, α5] α13 [α13,α15,α2,α17,α15

]ns.

α15 [α15,α13,1,α10 α15 [α15, α9, 0, α15]ns. α15 [α15, α5, α13, α13]ns.

α4,α17]ns

α16 [α16,α3,α21,α7, α16 [α16,α20,α11,α17, α16 [α16, α23, α7, α7]ns.

α17,α22]. α8,α20]s
α17 [α17,α19,α16, α17 [α17,α6,α15, α17 [α17, α3, α10, α13,

α15,α3,]ns α16,α,α6]ns α3]ns.

α18 [α18, 1, α18]ns. α18 [α18, 0, α18]ns. α18 [α18, α24, α18]ns.
α19 [α19, α15, α4, α5, α17, α19 [α19,α22;α16;α19;α9]ns. α19 [α19, α23, α23]s.
α20 [α20,α12,α4,α14,α3,α23] α20 [α20α16,α19,α,α4,α16]s. α20 [α20α4, α4]ns.
α21 [α21,α16,α11,α20,α11]ns. α21 [α21,α3,α15,α9,0,α21]ns. α21 [α21, α23, α10, α10]ns.

α22 [α22,α23,0,α10,α23]ns. α22 [α22,α17,α12,α,α12]ns. α22 [α22, α3, α14, α3]ns.

α23 [α23, α3, α20, α, α13, α23 [α23, α14, α8, α21, α19, α23 [α23, α19, α19]s.

α13]ns. α12, α4, α4]

q = 25,M(X) = X2 + 4X + 2
d = 9

α [α, α5, α]s. α9 [α9,α15,α3,α23,α3]ns. α17 [α17, α7, α8, α, α7]s.

α2 [α2, α, α10, α]s. α10 [α10,α14,α5,α2,α14]s. α18 [α18,α24,α12,α6,0,α18

]ns.
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α3 [α3,α9,α21,α15,0,α3 α11 [α11,α7,α10,α19,α7]s. α19 [α19,α23,α14,α11,α23

]ns. ]s.

α4 [α4, α8, α23, α20, α8]s. α12 [α12,α18,α6,α24,0,α12 α20 [α20,α16,α19,α4,α16]s.
]ns.

α5 [α5, α, α4, α13, α]s. α13 [α13,α17,α8,α5,α17]s. α21 [α21,α3,α15,α9,0,α21]ns.

α6 [α6,α12,α24,α18,0,α6] α14 [α14,α10,α13,α12,α10]ns. α22 [α22,α2,α17,α14,α2]s.
α7 [α7, α11, α2, α23, α11]s. α15 [α15,α21,α9,α3,0,α15]ns.

α8 [α8, α4, α7, α16, α4]s. α16 [α16,α20,α11,α8,α20]s.
q = 27, M (X) = X3 +X + 1

d = 2

α [α, α4, α13, α7, α]ns. α10 [α10,α21,α20,α17,α7, α18 [α18,α22,0,α5,α12]ns.
α17]ns

α2 [α2,α14, 0,α15, α14]ns. α11 [α11, α17, α4, α4]ns. α19 [α19,α17,α,α20,α21,α12,

α13,α11,α2,α25,α13]ns.

α3 [α3,α12,α5,α21,α3]ns. α12 [α12, α7, α7]ns. α20 [α20,α11,α6,α24,α6]ns.

α4
[α4,α11,α8,α25,α21,α25 α13 [α13, α13]s. α21 [α21, α23, α10, α10]ns.

]ns

α5 [α5, α25, α3,α8,α11,α10, α14 [α14, α10, α24, α9, α21, α22 [α22, α12, α8, α13, α3,

α4, α14, α24, α10]ns. 1, α9, ]ns. α7, α3]ns.

α6 [α6, α16, 0,α19,α16]ns. α15 [α15,α23,α9,α24, α7, α4, α23 [α23, α16, α24, α12, 1,

α13,α21,α18,α17,α13]ns. α6, α5, α23]ns.

α7 [α7, α25, α12, α12]ns. α16 [α16, α4, α20, α13, α, α24 [α24,α21,α2,α8,α2]ns.

α11, 1, α]ns.

α8 [α8,α7,α18,α20,α18]ns. α17 [α17, α22, α20, α10, 1, α25 [α25, α14, α8, α4, 1,

α9. [α9,α10,α15,α11,α9]ns. α18, α15, α17]ns. α2, α19, α25]ns.
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