COMPATIBLE STRUCTURE IN IDEAL ČECH CLOSURE SPACES

AHMAD AL-OMARI

Abstract. In Al-Omari et al., Touch points in ideal Čech closure spaces, Mathematica, **64** (2022), $(\mathcal{C}, f, \mathcal{I})$ is a Čech closure space with an ideal \mathcal{I} . For $H \subseteq \mathcal{C}$, the set $\tilde{f}(H)$, called Čech touch points, is defined by $\tilde{f}(H) = \{x \in \mathcal{C} : H \cap N \notin \mathcal{I} \text{ for every } N \in \mathcal{N}(x)\}$. Several characterizations of these sets will also be discussed through this paper. Moreover, we obtain characterizations of \tilde{f} -operator in an ideal Čech closure space $(\mathcal{C}, f, \mathcal{I})$, we investigate the notion of f-compatibility with an ideal \mathcal{I} and obtain several characterizations of the compatibility. **MSC 2020.** 54A05.

Key words. Čech closure operator, ideal Čech closure space, \tilde{f} -operator, f-compatible.

1. INTRODUCTION AND PRELIMINARIES

A non-empty collection of subsets of C is called an ideal \mathcal{I} on a space C if the following properties are satisfies:

- (1) If $H \in \mathcal{I}$ and $K \subseteq H$ then $K \in \mathcal{I}$.
- (2) If $H \in \mathcal{I}$ and $K \in \mathcal{I}$ then $H \cup K \in \mathcal{I}$.

An ideal topological space is topological space (\mathcal{C}, τ) with an ideal \mathcal{I} on \mathcal{C} and is denoted by $(\mathcal{C}, \tau, \mathcal{I})$ (see [9, 10]). First we recall several definitions.

An operator $f : \mathcal{P}(\mathcal{C}) \longrightarrow \mathcal{P}(\mathcal{C})$ defined on the power set $\mathcal{P}(\mathcal{C})$ of a set \mathcal{C} such that the following holds:

- (1) $f(\emptyset) = \emptyset;$
- (2) $H \subseteq f(H)$ for all $H \subseteq \mathcal{C}$;
- (3) $f(H \cup K) = f(H) \cup f(K)$ for every $A, B \in \mathcal{P}(\mathcal{C})$.

is called a Čech closure operator (see [7,8]) and the pair (\mathcal{C}, f) is a Čech closure space. A subset H of \mathcal{C} is said to be f-closed in (\mathcal{C}, f) if f(H) = H holds. And H is f-open if $\mathcal{C} - H$ is f-closed.

Corresponding author: Ahmad Al-Omari.

DOI: 10.24193/mathcluj.2024.1.03

By the closure operator we defined the interior operator $f^* : \mathcal{P}(\mathcal{C}) \longrightarrow \mathcal{P}(\mathcal{C})$ in the usual way: $f^*(H) = \mathcal{C} - f(\mathcal{C} - H)$.

Let $(\mathcal{C}, f, \mathcal{I})$ be a Čech closure space with an ideal \mathcal{I} . For a subset H of \mathcal{C} , the set $\tilde{f}(H)$ called touch points is defined as: $\tilde{f}(H) = \{x \in \mathcal{C} : H \cap N \notin \mathcal{I} \text{ for} every N \in \mathcal{N}(x)\}$. We investigate the properties of touch points and construct a topology on X from the touch points. Moreover, in an ideal Čech closure space $(\mathcal{C}, f, \mathcal{I})$, we define f-compatibility with the ideal \mathcal{I} and obtain several characterizations of the compatibility. Also the papers [2–6] have introduced some property related to compatible structure in ideal Čech closure spaces.

REMARK 1.1. Let (\mathcal{C}, f) be a Cech closure space.

- (1) $f^*(\emptyset) = \emptyset$.
- (2) $f^*(\mathcal{C}) = \mathcal{C}.$
- (3) $f^*(H) \subseteq H$ for every $H \subseteq \mathcal{C}$.
- (4) $f^*(H \cap K) = f^*(H) \cap f^*(K)$ for all $H, K \in \mathcal{P}(\mathcal{C})$.

A subset N is a neighborhood of a point x (respectively, subset H) in \mathcal{C} if $x \in f^*(N)$ (respectively, $H \subseteq f^*(N)$) holds. The collection of all neighborhoods of x will be denoted by \mathcal{N}_x or $\mathcal{N}(x)$.

In (\mathcal{C}, f) , a point $x \in f(H)$ if and only if for each neighborhood N of x, $N \cap A \neq \emptyset$ holds.

We set $f(H) = \cap \{N : A \subseteq N, C - N \in \mathcal{N}(x)\}$ and $f^*(H) = \cup \{U : U \subseteq H, U \in \mathcal{N}(x)\}.$

DEFINITION 1.2 ([16]). Given f and f^* be the be closure map and its dual map on \mathcal{C} . Then the neighborhood map $\mathcal{N} : \mathcal{C} \to \mathcal{P}(\mathcal{C})$ and the convergent map $\mathcal{N}^* : \mathcal{C} \to \mathcal{P}(\mathcal{C})$ assign to each $x \in \mathcal{C}$ the collections

$$\mathcal{N}(x) = \{ N \in \mathcal{P}(\mathcal{C}) : x \in f^*(N) \}$$
$$\mathcal{N}^*(x) = \{ Q \in \mathcal{P}(\mathcal{C}) : x \in f(Q) \}$$

of its neighborhoods and convergents, respectively.

LEMMA 1.3. Given (\mathcal{C}, f) be a Čech closure space. Then the properties holds

- (1) $Q \in \mathcal{N}^*(x)$ if and only if $\mathcal{C} Q \notin \mathcal{N}(x)$.
- (2) $x \in f(A)$ if and only if $\mathcal{C} A \notin \mathcal{N}(x)$.
- (3) $x \in f^*(A)$ if and only if $\mathcal{C} A \notin \mathcal{N}^*(x)$.

LEMMA 1.4 ([1]). Given (\mathcal{C}, f) be a Čech closure space, then (1) $\mathcal{C} \in \mathcal{N}(x)$ for every $x \in \mathcal{C}$.

- (2) $\emptyset \notin \mathcal{N}(x)$ for every $x \in \mathcal{C}$.
- (3) If $N \in \mathcal{N}(x)$, then $x \in f^*(N) \subseteq N$.
- (4) If $N, M \in \mathcal{N}(x)$, then we have $N \cap M \in \mathcal{N}(x)$.
- (5) If $N \cup M \in \mathcal{N}^*(x)$, then $N \in \mathcal{N}^*(x)$ or $M \in \mathcal{N}^*(x)$.

DEFINITION 1.5 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. For $H \subseteq \mathcal{C}$, we define the set: $\tilde{f}(H) = \{x \in \mathcal{C} : H \cap N \notin \mathcal{I} \text{ for all } N \in \mathcal{N}(x)\}$. And $\tilde{f}(H)$ it is called touch points of H with respect to f and \mathcal{I} .

LEMMA 1.6 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ and $(\mathcal{C}, g, \mathcal{J})$ be ideal Čech-spaces, \mathcal{I} and \mathcal{J} be ideals on \mathcal{C} , and let H and K be subsets of \mathcal{C} . Then we have:

- (1) For $H \subseteq K$, we have $\widetilde{f}(H) \subseteq \widetilde{f}(K)$.
- (2) For $\mathcal{I} \subseteq \mathcal{J}$, we have $\widetilde{f}(H) \supseteq \widetilde{g}(H)$.
- (3) $\widetilde{f}(H) = f(\widetilde{f}(H)) \subseteq f(H)$ and $\widetilde{f}(H)$ is f-closed.
- (4) For $H \subseteq \tilde{f}(H)$, we have $\tilde{f}(H) = f(\tilde{f}(H)) = f(H)$.
- (5) For $H \in \mathcal{I}$, we have $f(H) = \emptyset$.

LEMMA 1.7 ([1]). Given (C, f, \mathcal{I}) be an ideal Čech-space and $x \in \mathcal{C}$. If $N \in \mathcal{N}(x)$, then $N \cap \tilde{f}(H) = N \cap \tilde{f}(N \cap A) \subseteq \tilde{f}(N \cap H)$ for any subset H of \mathcal{C} .

THEOREM 1.8 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space and $H, K \subseteq \mathcal{C}$. Then the following hold:

(1) $\widetilde{f}(\emptyset) = \emptyset$. (2) $\widetilde{f}(\widetilde{f}(H)) \subseteq \widetilde{f}(H)$. (3) $\widetilde{f}(H) \cup \widetilde{f}(K) = \widetilde{f}(H \cup K)$.

THEOREM 1.9 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space, $\overline{A} = \widetilde{f}(H) \cup H$ and H, K be subsets of \mathcal{C} . Then

(1) $\overline{\emptyset} = \emptyset$. (2) $H \subseteq \overline{H}$. (3) $\overline{H \cup K} = \overline{H} \cup \overline{K}$. (4) $\overline{H} = \overline{\overline{H}}$.

By Theorem 1.9, we obtain that $\overline{H} = H \cup f(H)$ is a Kuratowski closure operator. We will denote by $\tau_{cl}(x)$ the topology generated by \overline{H} , that is, $\tau_{cl}(x) = \{U \subseteq X : \overline{\mathcal{C} - U} = \mathcal{C} - U\}$. A subset H of \mathcal{C} is said to be $\tau_{cl}(x)$ -closed if and only if $\tilde{f}(H) \subseteq H$. It is said to be $\tau_{cl}(x)$ -open if the complement is $\tau_{cl}(x)$ -closed. THEOREM 1.10 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. Then $\beta(f, \mathcal{I}) = \{V - I : V \in \mathcal{N}(x), I \in \mathcal{I}, x \in \mathcal{C}\}$ is a basis for $\tau_{cl}(x)$ and $\mathcal{N}(x) \subseteq \tau_{cl}(x)$.

THEOREM 1.11 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space and $x \in \mathcal{C}$, then the following are equivalent:

- (1) $\mathcal{N}(x) \cap \mathcal{I} = \emptyset;$
- (2) $\mathcal{C} = f(\mathcal{C});$
- (3) For all $N \in \mathcal{N}(x), N \subseteq \widetilde{f}(N);$
- (4) If $I \in \mathcal{I}$, then $f^*(I) = \emptyset$.

LEMMA 1.12 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space and H, K be subsets of \mathcal{C} . Then

(1) $\widetilde{f}(H) - \widetilde{f}(K) = \widetilde{f}(H - K) - \widetilde{f}(K).$ (2) $\widetilde{f}(H \cup K) = \widetilde{f}(H) = \widetilde{f}(H - K)$ if $K \in \mathcal{I}$.

2. f_{ψ} -OPERATOR IN IDEAL ČECH-SPACE

DEFINITION 2.1. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. An operator f_{ψ} : $\mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{C})$ is defined as follows for every $A \in X$, $f_{\psi}(H) = \{x \in \mathcal{C} : \text{there}$ exists $U \in \mathcal{N}(x)$ such that $U - H \in \mathcal{I}\}$ and observes that $f_{\psi}(H) = \mathcal{C} - \widetilde{f}(\mathcal{C} - H)$.

Several basic behavior of the operator f_{ψ} are included in the below theorem.

THEOREM 2.2. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. Then the following hold:

- (1) For $H \subseteq C$, we have $f_{\psi}(H)$ is f-open
- (2) For $H \subseteq K$, we have $f_{\psi}(H) \subseteq f_{\psi}(K)$.
- (3) For $H, K \in \mathcal{P}(\mathcal{C})$, we have $f_{\psi}(H \cap K) = f_{\psi}(H) \cap f_{\psi}(K)$.
- (4) For $U \in \tau_{cl}(x)$, we have $U \subseteq f_{\psi}(U)$.
- (5) For $H \subseteq \mathcal{C}$, we have $f_{\psi}(H) \subseteq f_{\psi}(f_{\psi}(H))$.
- (6) For $H \subseteq \mathcal{C}$, we have $f_{\psi}(H) = f_{\psi}(f_{\psi}(H))$ if and only if $\tilde{f}(X H) = \tilde{f}(\tilde{f}(\mathcal{C} H))$.
- (7) For $H \in \mathcal{I}$, we have $f_{\psi}(H) = \mathcal{C} \tilde{f}(\mathcal{C})$.
- (8) For $H \subseteq C$, we have $H \cap f_{\psi}(H) = int(H)$.
- (9) For $H \subseteq \mathcal{C}$, $I \in \mathcal{I}$, we have $f_{\psi}(H I) = f_{\psi}(H)$.
- (10) For $H \subseteq \mathcal{C}$, $I \in \mathcal{I}$, we have $f_{\psi}(H \cup I) = f_{\psi}(H)$.
- (11) For $(H K) \cup (K H) \in \mathcal{I}$, we have $f_{\psi}(H) = f_{\psi}(K)$.

Proof. (1) Follows by Lemma 1.6 (3).

(2) Follows by Lemma 1.6 (1).

(3) By (2) that $f_{\psi}(H \cap K) \subseteq f_{\psi}(H)$ and $f_{\psi}(H \cap K) \subseteq f_{\psi}(K)$. Hence $f_{\psi}(H \cap K) \subseteq f_{\psi}(H) \cap f_{\psi}(K)$. Now let $x \in f_{\psi}(H) \cap f_{\psi}(K)$. There exist $U, V \in \mathcal{N}(x)$ such that $U - H \in \mathcal{I}$ and $V - K \in \mathcal{I}$. Let $G = U \cap V \in \mathcal{N}(x)$ and we have $G - H \in \mathcal{I}$ and $G - K \in \mathcal{I}$ by heredity. Thus $G - (H \cap K) = (G - H) \cup (G - K) \in \mathcal{I}$ by additivity, and hence $x \in f_{\psi}(H \cap K)$. We have $f_{\psi}(H) \cap f_{\psi}(K) \subseteq f_{\psi}(H \cap K)$ and the proof is complete.

(4) If $U \in \tau_{cl}(x)$, then X - U is $\tau_{cl}(x)$ -closed then we have $\tilde{f}(\mathcal{C} - U) \subseteq \mathcal{C} - U$ and hence $U \subseteq \mathcal{C} - \tilde{f}(\mathcal{C} - U) = f_{\psi}(U)$.

- (5) Follows by (4).
- (6) Follows by the facts:

(i)
$$f_{\psi}(H) = \mathcal{C} - \tilde{f}(\mathcal{C} - H).$$

(ii) $f_{\psi}(f_{\psi}(H)) = \mathcal{C} - \tilde{f}[\mathcal{C} - (\mathcal{C} - \tilde{f}(\mathcal{C} - H))] = \mathcal{C} - \tilde{f}(\tilde{f}(\mathcal{C} - H)).$

(7) By Lemma 1.12 we obtain that $\widetilde{f}(\mathcal{C} - H) = \widetilde{f}(X)$ if $H \in \mathcal{I}$.

(8) If $x \in H \cap f_{\psi}(H)$, then $x \in H$ and there exists a $U_x \in \mathcal{N}(x)$ such that $U_x - H \in \mathcal{I}$. Then by Theorem 1.10, $U_x - (U_x - H)$ is an $\tau_{cl}(x)$ -open of x and $x \in int(H)$. On the other hand, if $x \in int(H)$, there exists a basic $\tau_{cl}(x)$ -open $V_x - I$ of x, where $V_x \in \mathcal{N}(x)$ and $I \in \mathcal{I}$, such that $x \in V_x - I \subseteq H$ which implies $V_x - H \subseteq I$ and hence $V_x - H \in \mathcal{I}$. Hence $x \in H \cap f_{\psi}(\mathcal{C})$.

(9) By Lemma 1.12 and $f_{\psi}(H-I) = \mathcal{C} - \tilde{f}[\mathcal{C} - (H-I)] = \mathcal{C} - \tilde{f}[(\mathcal{C} - H) \cup I] = \mathcal{C} - \tilde{f}(\mathcal{C} - H) = f_{\psi}(H).$

(10) By Lemma 1.12 and $f_{\psi}(H \cup I) = X - \widetilde{f}[\mathcal{C} - (H \cup I)] = \mathcal{C} - \widetilde{f}[(\mathcal{C} - H) - I] = \mathcal{C} - \widetilde{f}(\mathcal{C} - H) = f_{\psi}(H).$

(11) Let $(H - K) \cup (K - H) \in \mathcal{I}$. Let H - K = I and K - H = J. Observe that $I, J \in \mathcal{I}$ by heredity. Also clear that $K = (H - I) \cup J$. Hence $f_{\psi}(H) = f_{\psi}(H - I) = f_{\psi}[(H - I) \cup J] = f_{\psi}(K)$ by (9) and (10).

COROLLARY 2.3. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. We have $U \subseteq f_{\psi}(U)$ for all $U \in \mathcal{N}(x)$.

Proof. Since $f_{\psi}(U) = \mathcal{C} - \tilde{f}(\mathcal{C} - U)$ is true. Now $\tilde{f}(\mathcal{C} - U) \subseteq \overline{\mathcal{C} - U} = \mathcal{C} - U$, since $U \in \mathcal{N}(x)$. Hence, $U = \mathcal{C} - (\mathcal{C} - U) \subseteq \mathcal{C} - \tilde{f}(\mathcal{C} - U) = f_{\psi}(U)$.

THEOREM 2.4. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Cech-space and $H \subseteq \mathcal{C}$. Then the following hold:

(1) $f_{\psi}(H) = \bigcup \{ U \in \mathcal{N}(x) : U - H \in \mathcal{I} \}.$ (2) $f_{\psi}(H) \supseteq \bigcup \{ U \in \mathcal{N}(x) : (U - H) \cup (H - U) \in \mathcal{I} \}.$ Proof. (1) This follows by the definition of f_{ψ} -operator. (2) Since \mathcal{I} is heredity, it is clear that $\cup \{U \in \mathcal{N}(x) : (U - H) \cup (A - U) \in \mathcal{I}\} \subseteq \cup \{U \in \mathcal{N}(x) : U - H \in \mathcal{I}\} = f_{\psi}(H)$ for every $H \subseteq \mathcal{C}$. \Box

THEOREM 2.5. Assume that $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. If $\varrho = \{H \subseteq X : H \subseteq f_{\psi}(H)\}$. Then ϱ is a topology for \mathcal{C} and $\varrho = \tau_{cl}(x)$.

Proof. Assume that $\varrho = \{H \subseteq \mathcal{C} : H \subseteq f_{\psi}(H)\}$. First, we prove that ϱ is a topology. Clear that $\emptyset \subseteq f_{\psi}(\emptyset)$ and $\mathcal{C} \subseteq f_{\psi}(\mathcal{C}) = \mathcal{C}$, and thus \emptyset and $\mathcal{C} \in \varrho$. Now if $H, K \in \varrho$, then $H \cap K \subseteq f_{\psi}(H) \cap f_{\psi}(K) = f_{\psi}(H \cap K)$ then $H \cap K \in \varrho$. If $\{H_{\alpha} : \alpha \in \Delta\} \subseteq \varrho$, then $H_{\alpha} \subseteq f_{\psi}(H_{\alpha}) \subseteq f_{\psi}(\cup H_{\alpha})$ for all α and hence $\cup H_{\alpha} \subseteq f_{\psi}(\cup H_{\alpha})$. This shows ϱ is a topology. Now if $U \in \tau_{cl}(x)$ and $x \in U$, then by Theorem 1.10 there exist $V \in \mathcal{N}(x)$ and $I \in \mathcal{I}$ such that $x \in V - I \subseteq U$. Clearly $V - U \subseteq I$ so that $V - U \in \mathcal{I}$ by heredity and then $x \in f_{\psi}(U)$. Thus $U \subseteq f_{\psi}(U)$ and we shown $\tau_{cl}(x) \subseteq \varrho$. Now let $H \in \varrho$, we have $H \subseteq f_{\psi}(H)$, that is, $H \subseteq \mathcal{C} - \tilde{f}(\mathcal{C} - H)$ and $\tilde{f}(\mathcal{C} - H) \subseteq \mathcal{C} - H$. This shows that $\mathcal{C} - H$ is $\tau_{cl}(x)$ -closed and then $H \in \tau_{cl}(x)$. Thus $\varrho \subseteq \tau_{cl}(x)$ and hence $\varrho = \tau_{cl}(x)$.

3. SOME PROPERTIES OF *f*-COMPATIBLE IN IDEAL ČECH-SPACES

DEFINITION 3.1 ([1]). Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. Then f is f-compatible with respect to ideal \mathcal{I} , denoted $f \cong \mathcal{I}$, if the following holds for all $H \subseteq \mathcal{C}$: For all $x \in H$ and $U \in \mathcal{N}(x)$, and if $U \cap H \in \mathcal{I}$, then $H \in \mathcal{I}$.

THEOREM 3.2. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space, f be f-compatible with respect to \mathcal{I} such that $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. Let G be a $\tau_{cl}(x)$ -open set such that G = U - H, where $U \in \mathcal{N}(x)$ and $H \in \mathcal{I}$. Then $f(\tilde{f}(G)) = f(G) = \tilde{f}(G) =$ $\tilde{f}(U) = f(U) = f(\tilde{f}(U))$.

Proof. (1) Let G = U - H, where $U \in \mathcal{N}(x)$ and $H \in \mathcal{I}$. Since $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$, by Theorem 1.11 we have $U \subseteq \tilde{f}(U)$. Hence by Lemma 1.6, $\tilde{f}(U) = f(\tilde{f}(U)) = f(U)$.

(2) Since G is $\tau_{cl}(x)$ -open, $\mathcal{C} - G = \overline{\mathcal{C} - G}$ and hence $\tilde{f}(\mathcal{C} - G) \subseteq \mathcal{C} - G$. By Lemma 1.12, $\tilde{f}(\mathcal{C}) - \tilde{f}(G) \subseteq \tilde{f}(\mathcal{C} - G)$. But $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$ and by Theorem 1.11, $\tilde{f}(\mathcal{C}) = \mathcal{C}$ and hence $\mathcal{C} - \tilde{f}(G) \subseteq \tilde{f}(\mathcal{C} - G) \subseteq \mathcal{C} - G$. Therefore, $G \subseteq \tilde{f}(G)$. Hence, $f(G) \subseteq f(\tilde{f}(G))$. Hence by Lemma 1.6, $\tilde{f}(G) = f(G) = f(\tilde{f}(G))$. (3) Again, $G \subseteq U$ implies that $\tilde{f}(G) \subseteq \tilde{f}(U)$. By Lemma 1.12, $\tilde{f}(G) = \tilde{f}(U - H) \supseteq \tilde{f}(U) - \tilde{f}(H) = \tilde{f}(U)$ since $H \in \mathcal{I}$. Thus $\tilde{f}(U) = \tilde{f}(G)$. By (1), (2) and (3), we obtain the result. LEMMA 3.3 ([1]). Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space, then $f \cong \mathcal{I}$ iff $H - \widetilde{f}(A) \in \mathcal{I}$ for all $H \subseteq \mathcal{C}$.

THEOREM 3.4. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. Then $f \cong \mathcal{I}$ if and only if $f_{\psi}(H) - H \in \mathcal{I}$ for all $H \subseteq \mathcal{C}$.

Proof. Necessity. Let $f \cong \mathcal{I}$ and let $H \subseteq \mathcal{C}$. clearly that $x \in f_{\psi}(H) - H \in \mathcal{I}$ if and only if $x \notin H$ and $x \notin \tilde{f}(\mathcal{C} - H)$ if and only if $x \notin H$ and there exists $U_x \in \mathcal{N}(x)$ such that $U_x - H \in \mathcal{I}$ if and only if there exists $U_x \in \mathcal{N}(x)$ such that $x \in U_x - H \in \mathcal{I}$. Now, for each $x \in f_{\psi}(H) - H$ and $U_x \in \mathcal{N}(x)$, $U_x \cap (f_{\psi}(H) - H) \in \mathcal{I}$ by heredity and hence $f_{\psi}(H) - H \in \mathcal{I}$ by assumption that $f \cong \mathcal{I}$.

Sufficiency. Let $H \subseteq \mathcal{C}$ and assume that for each $x \in H$ there exists $U_x \in \mathcal{N}(x)$ such that $U_x \cap H \in \mathcal{I}$. Observe that $f_{\psi}(\mathcal{C} - H) - (\mathcal{C} - H) = \{x :$ there exists $U_x \in \mathcal{N}(x)$ such that $x \in U_x \cap H \in \mathcal{I}\}$. Thus we have $A \subseteq f_{\psi}(\mathcal{C} - H) - (\mathcal{C} - H) \in \mathcal{I}$ and hence $H \in \mathcal{I}$ by heredity of \mathcal{I} . \Box

LEMMA 3.5. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space such that $f \cong \mathcal{I}$ and $H \subseteq \mathcal{C}$, then H is a $\tau_{cl}(x)$ -closed iff $H = K \cup I$ such that K is f-closed and $I \in \mathcal{I}$.

Proof. If H is a $\tau_{cl}(x)$ -closed set, then $\tilde{f}(H) \subseteq H$. Hence $H = H \cup \tilde{f}(H) = (H - \tilde{f}(H)) \cup \tilde{f}(H)$. Then by Lemma 1.6 $\tilde{f}(H)$ is f-closed set and by Lemma 3.3 $A - \tilde{f}(H) \in \mathcal{I}$. Conversely, if $H = K \cup I$ such that K is f-closed set and $I \in \mathcal{I}$, then by Lemma 1.12 we get that $\tilde{f}(H) = \tilde{f}(K \cup I) = \tilde{f}(K) \cup \tilde{f}(I) = \tilde{f}(K) \subseteq f(K) = K \subseteq H$. Implies that H is a $\tau_{cl}(x)$ -closed.

COROLLARY 3.6. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Cech-space such that $f \cong \mathcal{I}$. Then $\beta(f, \mathcal{I})$ is a topology on \mathcal{C} and hence $\beta(f, \mathcal{I}) = \tau_{cl}(x)$.

Proof. Let $H \in \tau_{cl}(x)$. Then by Lemma 3.5, $\mathcal{C} - H = F \cup I$, where F is fclosed and $I \in \mathcal{I}$. Then $H = \mathcal{C} - (F \cup I) = (\mathcal{C} - F) \cap (\mathcal{C} - I) = (\mathcal{C} - F) - I = V - I$, where $V = \mathcal{C} - F \in \mathcal{N}(x)$. Thus every $\tau_{cl}(x)$ -open set is form of the V - I, where $V \in \mathcal{N}(x)$ and $I \in \mathcal{I}$. Hence by by Theorem 1.10 the result follows. \Box

PROPOSITION 3.7. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space such that $f \cong \mathcal{I}$, $H \subseteq \mathcal{C}$. If $N \in \mathcal{N}(x)$ and $N \subseteq \tilde{f}(A) \cap f_{\psi}(H)$, then $N - H \in \mathcal{I}$ and $N \cap H \notin \mathcal{I}$.

Proof. If $N \subseteq \tilde{f}(H) \cap f_{\psi}(H)$, then $N - H \subseteq f_{\psi}(H) - H \in \mathcal{I}$ by Theorem 3.4 and hence $N - H \in \mathcal{I}$ by heredity. Since $N \in \mathcal{N}(x)$ and $N \subseteq \tilde{f}(H)$, we get $N \cap H \notin \mathcal{I}$ by the definition of $\tilde{f}(H)$.

As a consequence of proposition, we have.

38

COROLLARY 3.8. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space such that $f \cong \mathcal{I}$. Then $f_{\psi}(f_{\psi}(H)) = f_{\psi}(H)$ for all $H \subseteq \mathcal{C}$.

Proof. $f_{\psi}(H) \subseteq f_{\psi}(f_{\psi}(H))$ follows from Theorem 2.2 (5). Since $f \cong \mathcal{I}$, it follows from Theorem 3.4 that $f_{\psi}(H) \subseteq H \cup I$ for some $I \in \mathcal{I}$ and hence $f_{\psi}(f_{\psi}(H)) = f_{\psi}(H)$ by Theorem 2.2 (10).

THEOREM 3.9. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space such that $f \cong \mathcal{I}$. Then $f_{\psi}(H) = \bigcup \{ f_{\psi}(U) : U \in \mathcal{N}(x), f_{\psi}(U) - H \in \mathcal{I} \}.$

Proof. Let $\Phi(H) = \bigcup \{ f_{\psi}(U) : U \in \mathcal{N}(x), f_{\psi}(U) - A \in \mathcal{I} \}$. Clearly, $\Phi(H) \subseteq f_{\psi}(H)$. Now let $x \in f_{\psi}(H)$. Then there exists $U \in \mathcal{N}(x)$ such that $U - H \in \mathcal{I}$. By Corollary 2.3, $U \subseteq f_{\psi}(U)$ and $f_{\psi}(U) - H \subseteq [f_{\psi}(U) - U] \cup [U - H]$. By Theorem 3.4, $f_{\psi}(U) - U \in \mathcal{I}$ and hence $f_{\psi}(U) - H \in \mathcal{I}$. Hence $x \in \Phi(H)$ and $\Phi(H) \supseteq f_{\psi}(H)$. Consequently, we obtain $\Phi(H) = f_{\psi}(H)$.

In [12], Newcomb defines $H = K \pmod{\mathcal{I}}$ if $(H - K) \cup (K - H) \in \mathcal{I}$ and observes that = $[\mod{\mathcal{I}}]$ is an equivalence relation. By Theorem 2.2 (11), we have that if $H = K \pmod{\mathcal{I}}$, then $f_{\psi}(H) = f_{\psi}(K)$.

DEFINITION 3.10. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. A subset H of X is called a Baire set with respect to $\mathcal{N}(x)$ and \mathcal{I} , denoted $H \in \mathcal{W}_r(X, f, \mathcal{I})$, if there exists $U \in \mathcal{N}(x)$ such that $H = U \mod \mathcal{I}$].

LEMMA 3.11. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space such that $f \cong \mathcal{I}$. If U, $V \in \mathcal{N}(x)$ and $f_{\psi}(U) = f_{\psi}(V)$, then $U = V \mod \mathcal{I}$.

Proof. Since $U \in \mathcal{N}(x)$, we have $U \subseteq f_{\psi}(U)$ and hence $U - V \subseteq f_{\psi}(U) - V = f_{\psi}(V) - V \in \mathcal{I}$ by Theorem 3.4. Similarly $V - U \in \mathcal{I}$. Now $(U - V) \cup (V - U) \in \mathcal{I}$ by additivity. Hence $U = V \pmod{\mathcal{I}}$.

THEOREM 3.12. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space such that $f \cong \mathcal{I}$. If H, $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I})$, and $f_{\psi}(H) = f_{\psi}(K)$, then $H = K \pmod{\mathcal{I}}$.

Proof. Let $U, V \in \mathcal{N}(x)$ such that $H = U \mod \mathcal{I}$ and $K = V \mod \mathcal{I}$. \mathcal{I} . Now $f_{\psi}(H) = f_{\psi}(U)$ and $f_{\psi}(K) = f_{\psi}(V)$ by Theorem 2.2(11). Since $f_{\psi}(H) = f_{\psi}(U)$ implies that $f_{\psi}(U) = f_{\psi}(V)$ and hence $U = V \mod \mathcal{I}$ by Lemma 1.11. Hence $H = K \mod \mathcal{I}$ by transitivity.

4. MORE PROPERTIES OF AN IDEAL ČECH-SPACES

LEMMA 4.1. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. If $A \in \mathcal{N}(x)$ then $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$ if and only if $\tilde{f}(H) = f(H)$.

Proof. Let $H \in \mathcal{N}(x)$ then by Lemma 1.6 we have $\tilde{f}(H) \subseteq f(H)$. Let $x \in f(H)$, then for all $U_x \in \mathcal{N}(x)$ containing x we have $U_x \cap H \neq \phi$. Again $U_x \cap A \in \mathcal{N}(x)$, so $U_x \cap H \notin \mathcal{I}$, since $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. Hence $x \in \tilde{f}(H)$. Therefore, $\tilde{f}(H) = f(H)$. Conversely, for any $A \in \mathcal{N}(x)$ we have $\tilde{f}(H) = f(H)$. Then $\mathcal{C} = \tilde{f}(\mathcal{C})$ and then $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$ by Theorem 1.11.

PROPOSITION 4.2. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space.

- (1) If $K \in W_r(\mathcal{C}, f, \mathcal{I}) \mathcal{I}$, then there exists $H \in \mathcal{N}(x)$ such that K = H[mod \mathcal{I}].
- (2) If $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$, then $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I}) \mathcal{I}$ if and only if there exists $H \in \mathcal{N}(x)$ such that $K = H \pmod{\mathcal{I}}$.

Proof. (1) If $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I}) - \mathcal{I}$, then $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I})$. Now if there does not exist $H \in \mathcal{N}(x)$ such that $K = H \pmod{\mathcal{I}}$, we have $K = \emptyset \pmod{\mathcal{I}}$. Then $K \in \mathcal{I}$ which is a contradiction.

(2) If there exists $H \in \mathcal{N}(x)$ such that $K = H \mod \mathcal{I}$. Then $H = (K-J) \cup I$, where $J = K - H, I = H - K \in \mathcal{I}$. If $K \in \mathcal{I}$, then $H \in \mathcal{I}$ by heredity and additivity, which contradicts that $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$.

PROPOSITION 4.3. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space with $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. If $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I}) - \mathcal{I}$, then $f_{\psi}(K) \cap f(\widetilde{f}(K)) \neq \emptyset$.

Proof. Let $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I}) - \mathcal{I}$, then by Proposition 4.2(1), there exists $H \in \mathcal{N}(x)$ such that $K = H \pmod{\mathcal{I}}$. This implies that $\emptyset \neq H \subseteq \widetilde{f}(H) = \widetilde{f}((K-J) \cup I) = \widetilde{f}(K) = f(\widetilde{f}(K))$, where $J = K - H, I = H - K \in \mathcal{I}$ by Theorem 1.8 and Lemma 1.12. Also $\emptyset \neq H \subseteq f_{\psi}(H) = f_{\psi}(K)$ by Theorem 2.2 (11), so that $H \subseteq f_{\psi}(K) \cap f(\widetilde{f}(K))$.

Given an ideal Čech-space $(\mathcal{C}, f, \mathcal{I})$, let $\mathcal{U}(\mathcal{C}, f, \mathcal{I})$ denote $\{H \subseteq \mathcal{C} : \text{there}$ exists $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I}) - \mathcal{I}$ such that $K \subseteq H\}$.

PROPOSITION 4.4. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space with $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. The following are equivalent:

- (1) $H \in \mathcal{U}(\mathcal{C}, f, \mathcal{I});$
- (2) $f_{\psi}(H) \cap f(f(H)) \neq \emptyset;$
- (3) $f_{\psi}(H) \cap \widetilde{f}(H) \neq \emptyset;$
- (4) $f_{\psi}(H) \neq \emptyset;$
- (5) $f(H) \neq \emptyset$;
- (6) There exists $N \in \mathcal{N}(x)$ such that $N H \in \mathcal{I}$ and $N \cap H \notin \mathcal{I}$.

Proof. (1) \Rightarrow (2): Let $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I}) - \mathcal{I}$ such that $K \subseteq H$. Then $f(\tilde{f}(K)) \subseteq f(\tilde{f}(H))$ and $f_{\psi}(K) \subseteq f_{\psi}(H)$ and hence $f(\tilde{f}(K)) \cap f_{\psi}(K) \subseteq f(\tilde{f}(H)) \cap f_{\psi}(H)$. By Proposition 4.3, we have $f_{\psi}(H) \cap f(\tilde{f}(H)) \neq \emptyset$.

 $(2) \Rightarrow (3)$: It is obvious.

 $(3) \Rightarrow (4)$: It is obvious.

 $(4) \Rightarrow (5): \text{ If } f_{\psi}(H) \neq \emptyset, \text{ then there exists } U \in \mathcal{N}(x) \text{ such that } U - H \in \mathcal{I}.$ Since $U \notin \mathcal{I}$ and $U = (U - H) \cup (U \cap H)$, we have $U \cap H \notin \mathcal{I}$. By Theorem 2.2, $\emptyset \neq (U \cap H) \subseteq f_{\psi}(U) \cap H = f_{\psi}((U - H) \cup (U \cap H)) \cap H = f_{\psi}(U \cap H) \cap H \subseteq f_{\psi}(H) \cap H = f(H).$ Hence $f(H) \neq \emptyset$.

(5) \Rightarrow (6): If $f(H) \neq \emptyset$, then by Theorem 1.10 there exists $N \in \mathcal{N}(x)$ and $I \in \mathcal{I}$ such that $\emptyset \neq N - I \subseteq H$. We have $N - H \in \mathcal{I}$, $N = (N - H) \cup (N \cap H)$ and $N \notin \mathcal{I}$. Hence $N \cap H \notin \mathcal{I}$.

(6) \Rightarrow (1): Let $K = N \cap H \notin \mathcal{I}$ with $N \in \mathcal{N}(x)$ and $N - H \in \mathcal{I}$. Then $K \in \mathcal{W}_r(\mathcal{C}, f, \mathcal{I}) - \mathcal{I}$ since $K \notin \mathcal{I}$ and $(K - N) \cup (N - K) = N - H \in \mathcal{I}$. \Box

THEOREM 4.5. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space, where $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. Then for $H \subseteq \mathcal{C}, f_{\psi}(H) \subseteq \widetilde{f}(H)$.

Proof. Let $x \in f_{\psi}(H)$ and $x \notin f(H)$. Then there exists a nonempty $U_x \in \mathcal{N}(x)$ such that $U_x \cap H \in \mathcal{I}$. Since $x \in f_{\psi}(H)$, by Theorem 2.4, $x \in \bigcup \{U \in \mathcal{N}(x) : U - H \in \mathcal{I}\}$ and there exists $V \in \mathcal{N}(x)$ such that $x \in V$ and $V - H \in \mathcal{I}$. Now we have $U_x \cap V \in \mathcal{N}(x), U_x \cap V \cap H \in \mathcal{I}$ and $(U_x \cap V) - H \in \mathcal{I}$ by heredity. Then by finite additivity we get $(U_x \cap V \cap H) \cup (U_x \cap V - H) = (U_x \cap V) \in \mathcal{I}$. Since $(U_x \cap V) \in \mathcal{N}(x)$, this is contrary to $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. Therefore, $x \in \tilde{f}(H)$. Hence $f_{\psi}(H) \subseteq \tilde{f}(H)$.

COROLLARY 4.6. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space, where $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. Then for $H \subseteq \mathcal{C}$, $f_{\psi}(H) \subseteq f(\widetilde{f}(H))$.

THEOREM 4.7. Given $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. Then the following are equivalent:

- (1) $\mathcal{N}(x) \cap \mathcal{I} = \emptyset;$
- (2) $f_{\psi}(\emptyset) = \emptyset;$
- (3) If $H \subseteq \mathcal{C}$ is $\tau_{cl}(x)$ -closed, then $f_{\psi}(H) H = \emptyset$;
- (4) If $I \in \mathcal{I}$, then $f_{\psi}(I) = \emptyset$.

Proof. (1) \Rightarrow (2): Since $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$, by Theorem 2.4 we obtain $f_{\psi}(\emptyset) = \bigcup \{U \in \mathcal{N}(x) : U \in \mathcal{I}\} = \emptyset$.

(3) \Rightarrow (4): Let $I \in \mathcal{I}$ then $f_{\psi}(I) = f_{\psi}(I \cup \emptyset) = f_{\psi}(\emptyset) = \emptyset$.

(4) \Rightarrow (1): Let $H \in \mathcal{N}(x) \cap \mathcal{I}$, then $H \in \mathcal{I}$ and by (4) $f_{\psi}(H) = \emptyset$. Since $H \in \mathcal{N}(x)$, by Corollary 2.3 we get $H \subseteq f_{\psi}(H) = \emptyset$. Hence $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. \Box

THEOREM 4.8. Let $(\mathcal{C}, f, \mathcal{I})$ be an ideal Čech-space. Then $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$ if and only if $\widetilde{f}[f_{\psi}(H)] = f[f_{\psi}(H)]$ for all $H \subseteq \mathcal{C}$.

Proof. Let $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. It is clear that $\widetilde{f}[f_{\psi}(H)] \subseteq f[f_{\psi}(H)]$. For the reverse inclusion, let $x \in f[f_{\psi}(H)]$. Then for every $U_x \in \mathcal{N}(x), U_x \cap f_{\psi}(H) \neq \emptyset$ and $U_x \cap f_{\psi}(H) \in \mathcal{N}(x)$ implies that $U_x \cap f_{\psi}(H) \notin \mathcal{I}$, since $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$. Hence $x \in \widetilde{f}[f_{\psi}(H)]$. Hence $\widetilde{f}[f_{\psi}(H)] = f[f_{\psi}(H)]$. Conversely, suppose that $\widetilde{f}[f_{\psi}(H)] = f[f_{\psi}(H)]$, for every $H \subseteq \mathcal{C}$. Then for $\mathcal{C} \subseteq \mathcal{C}, \ \widetilde{f}[f_{\psi}(\mathcal{C})] = f[f_{\psi}(\mathcal{C})]$. Hence $\widetilde{f}[\mathcal{C} - \widetilde{f}(\mathcal{C} - \mathcal{C})] = f[\mathcal{C} - \widetilde{f}(\mathcal{C} - \mathcal{C})]$, implies that $\widetilde{f}(\mathcal{C}) = f(\mathcal{C}) = \mathcal{C}$. Hence $\mathcal{N}(x) \cap \mathcal{I} = \emptyset$.

REFERENCES

- A. Al-Omari, R. Gargouri and T. Noiri, Touch points in ideal Cech closure spaces, Mathematica, 64 (87) (2022), 164–172.
- [2] A. Al-Omari and T. Noiri, A Topology generated by ψ-operation and ideal spaces, Iran.
 J. Math. Sci. Inform., accepted (2022), to appear.
- [3] A. Al-Omari and T. Noiri, On operators in ideal minimal spaces, Mathematica, 58 (81) (2016), 3–13.
- [4] A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61 (84) (2019), 101–110.
- [5] A. Al-Omari and T. Noiri, Properties of γH-compact spaces with hereditary classes, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., 98 (2020), A4, 1–11.
- [6] A. Al-Omari and T. Noiri, Generalizations of Lindelöf spaces via hereditary classes, Acta Univ. Sapientiae Math., 13 (2021), 281–291.
- [7] D. Andrijević, M. Jelić and M. Mrěvić, Some properties of hyperspaces of Čech closure spaces, Filomat, 24 (2010), 53–61.
- [8] D. Andrijević, M. Jelić and M. Mršević, On function space topologies in the setting of Čech closure spaces, Topology Appl., 158 (2011), 1390–1395.
- [9] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [10] K. Kuratowski, Topology: Volume I, Warszawa, 1933.
- [11] H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.

- [12] R. L. Newcomb, Topologies which are compact modulo an ideal, M.S. thesis, University of California, Santa Barbara, California, 1967.
- [13] O. B. Ozbakir and E. D. Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125 (2009), 227–235.
- [14] V. Popa and T. Noiri, On M-continuous functions, An. Univ. Dunărea de Jos Galați Fasc. II Mat. Fiz. Mec. Teor., 18 (23) (2000), 31–41.
- [15] J. P. Porter and J. D. Thomas, On H-closed and minimal Hausdorff spaces, Amer. Math. Soc. Transl., 138 (1969), 159–170.
- [16] B. M. R. Stadler and P. F. Stadler, Basic properties of closure spaces, J. Chem. Inf. Comput. Sci., 42 (2002), 577–585.

Received October 30, 2022 Accepted Jun 18, 2023

Al al-Bayt University Faculty of Sciences Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan E-mail: omarimutah1@yahoo.com https://orcid.org/0000-0002-6696-1301