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COMPATIBLE STRUCTURE IN IDEAL ČECH CLOSURE SPACES

AHMAD AL-OMARI

Abstract. In Al-Omari et al., Touch points in ideal Čech closure spaces, Math-

ematica, 64 (2022), (C, f, I) is a Čech closure space with an ideal I. For H ⊆ C,
the set f̃(H), called Čech touch points, is defined by f̃(H) = {x ∈ C : H ∩N /∈ I
for everyN ∈ N (x)}. Several characterizations of these sets will also be discussed
through this paper. Moreover, we obtain characterizations of f̃ -operator in an

ideal Čech closure space (C, f, I), we investigate the notion of f -compatibility

with an ideal I and obtain several characterizations of the compatibility.
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1. INTRODUCTION AND PRELIMINARIES

A non-empty collection of subsets of C is called an ideal I on a space C if

the following properties are satisfies:

(1) If H ∈ I and K ⊆ H then K ∈ I.
(2) If H ∈ I and K ∈ I then H ∪K ∈ I.
An ideal topological space is topological space (C, τ) with an ideal I on C

and is denoted by (C, τ, I) (see [9, 10]). First we recall several definitions.

An operator f : P(C) −→ P(C) defined on the power set P(C) of a set C
such that the following holds:

(1) f(∅) = ∅;
(2) H ⊆ f(H) for all H ⊆ C;
(3) f(H ∪K) = f(H) ∪ f(K) for every A, B ∈ P(C).

is called a Čech closure operator (see [7,8]) and the pair (C, f) is a Čech closure

space. A subset H of C is said to be f -closed in (C, f) if f(H) = H holds.

And H is f -open if C −H is f -closed.
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By the closure operator we defined the interior operator f∗ : P(C) −→ P(C)
in the usual way: f∗(H) = C − f(C −H).

Let (C, f, I) be a Čech closure space with an ideal I. For a subset H of C,
the set f̃(H) called touch points is defined as: f̃(H) = {x ∈ C : H ∩N /∈ I for

every N ∈ N (x)}. We investigate the properties of touch points and construct

a topology on X from the touch points. Moreover, in an ideal Čech closure

space (C, f, I), we define f -compatibility with the ideal I and obtain several

characterizations of the compatibility. Also the papers [2–6] have introduced

some property related to compatible structure in ideal Čech closure spaces.

Remark 1.1. Let (C, f) be a Čech closure space.

(1) f∗(∅) = ∅.
(2) f∗(C) = C.
(3) f∗(H) ⊆ H for every H ⊆ C.
(4) f∗(H ∩K) = f∗(H) ∩ f∗(K) for all H, K ∈ P(C).

A subsetN is a neighborhood of a point x (respectively, subsetH) in C if x ∈
f∗(N) (respectively, H ⊆ f∗(N)) holds. The collection of all neighborhoods

of x will be denoted by Nx or N (x).

In (C, f), a point x ∈ f(H) if and only if for each neighborhood N of x,

N ∩A ̸= ∅ holds.

We set f(H) = ∩{N : A ⊆ N, C − N ∈ N (x)} and f∗(H) = ∪{U : U ⊆
H, U ∈ N (x)}.

Definition 1.2 ([16]). Given f and f∗ be the be closure map and its dual

map on C. Then the neighborhood map N : C → P(C) and the convergent

map N ∗ : C → P(C) assign to each x ∈ C the collections

N (x) = {N ∈ P(C) : x ∈ f∗(N)}

N ∗(x) = {Q ∈ P(C) : x ∈ f(Q)}
of its neighborhoods and convergents, respectively.

Lemma 1.3. Given (C, f) be a Čech closure space. Then the properties holds

(1) Q ∈ N ∗(x) if and only if C −Q /∈ N (x).

(2) x ∈ f(A) if and only if C −A /∈ N (x).

(3) x ∈ f∗(A) if and only if C −A /∈ N ∗(x).

Lemma 1.4 ([1]). Given (C, f) be a Čech closure space, then

(1) C ∈ N (x) for every x ∈ C.
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(2) ∅ /∈ N (x) for every x ∈ C.
(3) If N ∈ N (x), then x ∈ f∗(N) ⊆ N .

(4) If N,M ∈ N (x), then we have N ∩M ∈ N (x).

(5) If N ∪M ∈ N ∗(x), then N ∈ N ∗(x) or M ∈ N ∗(x).

Definition 1.5 ([1]). Given (C, f, I) be an ideal Čech-space. For H ⊆ C,
we define the set: f̃(H) = {x ∈ C : H ∩N /∈ I for all N ∈ N (x)}. And f̃(H)

it is called touch points of H with respect to f and I.

Lemma 1.6 ([1]). Given (C, f, I) and (C, g,J ) be ideal Čech-spaces, I and

J be ideals on C, and let H and K be subsets of C. Then we have:

(1) For H ⊆ K, we have f̃(H) ⊆ f̃(K).

(2) For I ⊆ J , we have f̃(H) ⊇ g̃(H).

(3) f̃(H) = f(f̃(H)) ⊆ f(H) and f̃(H) is f -closed.

(4) For H ⊆ f̃(H), we have f̃(H) = f(f̃(H)) = f(H).

(5) For H ∈ I, we have f̃(H) = ∅.

Lemma 1.7 ([1]). Given (C, f, I) be an ideal Čech-space and x ∈ C. If

N ∈ N (x), then N ∩ f̃(H) = N ∩ f̃(N ∩A) ⊆ f̃(N ∩H) for any subset H of

C.

Theorem 1.8 ([1]). Given (C, f, I) be an ideal Čech-space and H, K ⊆ C.
Then the following hold:

(1) f̃(∅) = ∅.
(2) f̃(f̃(H)) ⊆ f̃(H).

(3) f̃(H) ∪ f̃(K) = f̃(H ∪K).

Theorem 1.9 ([1]). Given (C, f, I) be an ideal Čech-space, A = f̃(H) ∪H

and H, K be subsets of C. Then

(1) ∅ = ∅.
(2) H ⊆ H.

(3) H ∪K = H ∪K.

(4) H = H.

By Theorem 1.9, we obtain that H = H ∪ f̃(H) is a Kuratowski closure

operator. We will denote by τcl(x) the topology generated by H, that is,

τcl(x) = {U ⊆ X : C − U = C −U}. A subset H of C is said to be τcl(x)-closed

if and only if f̃(H) ⊆ H. It is said to be τcl(x)-open if the complement is

τcl(x)-closed.
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Theorem 1.10 ([1]). Given (C, f, I) be an ideal Čech-space. Then β(f, I) =
{V − I : V ∈ N (x), I ∈ I, x ∈ C} is a basis for τcl(x) and N (x) ⊆ τcl(x).

Theorem 1.11 ([1]). Given (C, f, I) be an ideal Čech-space and x ∈ C, then
the following are equivalent:

(1) N (x) ∩ I = ∅;
(2) C = f̃(C);
(3) For all N ∈ N (x), N ⊆ f̃(N);

(4) If I ∈ I, then f∗(I) = ∅.

Lemma 1.12 ([1]). Given (C, f, I) be an ideal Čech-space and H,K be sub-

sets of C. Then

(1) f̃(H)− f̃(K) = f̃(H −K)− f̃(K).

(2) f̃(H ∪K) = f̃(H) = f̃(H −K) if K ∈ I.

2. fψfψfψ-OPERATOR IN IDEAL ČECH-SPACE

Definition 2.1. Let (C, f, I) be an ideal Čech-space. An operator fψ :

P(C) → P(C) is defined as follows for every A ∈ X, fψ(H) = {x ∈ C : there

exists U ∈ N (x) such that U−H ∈ I} and observes that fψ(H) = C−f̃(C−H).

Several basic behavior of the operator fψ are included in the below theorem.

Theorem 2.2. Given (C, f, I) be an ideal Čech-space. Then the following

hold:

(1) For H ⊆ C, we have fψ(H) is f -open

(2) For H ⊆ K, we have fψ(H) ⊆ fψ(K).

(3) For H,K ∈ P(C), we have fψ(H ∩K) = fψ(H) ∩ fψ(K).

(4) For U ∈ τcl(x), we have U ⊆ fψ(U).

(5) For H ⊆ C, we have fψ(H) ⊆ fψ(fψ(H)).

(6) For H ⊆ C, we have fψ(H) = fψ(fψ(H)) if and only if f̃(X −H) =

f̃(f̃(C −H)).

(7) For H ∈ I, we have fψ(H) = C − f̃(C).
(8) For H ⊆ C, we have H ∩ fψ(H) = int(H).

(9) For H ⊆ C, I ∈ I, we have fψ(H − I) = fψ(H).

(10) For H ⊆ C, I ∈ I, we have fψ(H ∪ I) = fψ(H).

(11) For (H −K) ∪ (K −H) ∈ I, we have fψ(H) = fψ(K).

Proof. (1) Follows by Lemma 1.6 (3).

(2) Follows by Lemma 1.6 (1).
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(3) By (2) that fψ(H ∩ K) ⊆ fψ(H) and fψ(H ∩ K) ⊆ fψ(K). Hence

fψ(H ∩ K) ⊆ fψ(H) ∩ fψ(K). Now let x ∈ fψ(H) ∩ fψ(K). There exist

U, V ∈ N (x) such that U −H ∈ I and V −K ∈ I. Let G = U ∩ V ∈ N (x)

and we have G − H ∈ I and G −K ∈ I by heredity. Thus G − (H ∩K) =

(G − H) ∪ (G − K) ∈ I by additivity, and hence x ∈ fψ(H ∩ K). We have

fψ(H) ∩ fψ(K) ⊆ fψ(H ∩K) and the proof is complete.

(4) If U ∈ τcl(x), then X−U is τcl(x)-closed then we have f̃(C−U) ⊆ C−U

and hence U ⊆ C − f̃(C − U) = fψ(U).

(5) Follows by (4).

(6) Follows by the facts:

(i) fψ(H) = C − f̃(C −H).

(ii) fψ(fψ(H)) = C − f̃ [C − (C − f̃(C −H))] = C − f̃(f̃(C −H)).

(7) By Lemma 1.12 we obtain that f̃(C −H) = f̃(X) if H ∈ I.
(8) If x ∈ H ∩ fψ(H), then x ∈ H and there exists a Ux ∈ N (x) such that

Ux−H ∈ I. Then by Theorem 1.10, Ux− (Ux−H) is an τcl(x)-open of x and

x ∈ int(H). On the other hand, if x ∈ int(H), there exists a basic τcl(x)-open

Vx − I of x, where Vx ∈ N (x) and I ∈ I, such that x ∈ Vx − I ⊆ H which

implies Vx −H ⊆ I and hence Vx −H ∈ I. Hence x ∈ H ∩ fψ(C).
(9) By Lemma 1.12 and fψ(H−I) = C−f̃ [C−(H−I)] = C−f̃ [(C−H)∪I] =

C − f̃(C −H) = fψ(H).

(10) By Lemma 1.12 and fψ(H∪I) = X−f̃ [C−(H∪I)] = C−f̃ [(C−H)−I] =

C − f̃(C −H) = fψ(H).

(11) Let (H − K) ∪ (K − H) ∈ I. Let H − K = I and K − H = J .

Observe that I, J ∈ I by heredity. Also clear that K = (H − I) ∪ J . Hence

fψ(H) = fψ(H − I) = fψ[(H − I) ∪ J ] = fψ(K) by (9) and (10). □

Corollary 2.3. Given (C, f, I) be an ideal Čech-space. We have U ⊆
fψ(U) for all U ∈ N (x).

Proof. Since fψ(U) = C− f̃(C−U) is true. Now f̃(C−U) ⊆ C − U = C−U ,

since U ∈ N (x). Hence, U = C − (C − U) ⊆ C − f̃(C − U) = fψ(U). □

Theorem 2.4. Given (C, f, I) be an ideal Čech-space and H ⊆ C. Then the

following hold:

(1) fψ(H) = ∪{U ∈ N (x) : U −H ∈ I}.
(2) fψ(H) ⊇ ∪{U ∈ N (x) : (U −H) ∪ (H − U) ∈ I}.
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Proof. (1) This follows by the definition of fψ-operator.

(2) Since I is heredity, it is clear that ∪{U ∈ N (x) : (U − H) ∪ (A − U) ∈
I} ⊆ ∪{U ∈ N (x) : U −H ∈ I} = fψ(H) for every H ⊆ C. □

Theorem 2.5. Assume that (C, f, I) be an ideal Čech-space. If ϱ = {H ⊆
X : H ⊆ fψ(H)}. Then ϱ is a topology for C and ϱ = τcl(x).

Proof. Assume that ϱ = {H ⊆ C : H ⊆ fψ(H)}. First, we prove that ϱ

is a topology. Clear that ∅ ⊆ fψ(∅) and C ⊆ fψ(C) = C, and thus ∅ and

C ∈ ϱ. Now if H,K ∈ ϱ, then H ∩ K ⊆ fψ(H) ∩ fψ(K) = fψ(H ∩ K) then

H ∩ K ∈ ϱ. If {Hα : α ∈ ∆} ⊆ ϱ, then Hα ⊆ fψ(Hα) ⊆ fψ(∪Hα) for all α

and hence ∪Hα ⊆ fψ(∪Hα). This shows ϱ is a topology. Now if U ∈ τcl(x)

and x ∈ U , then by Theorem 1.10 there exist V ∈ N (x) and I ∈ I such that

x ∈ V − I ⊆ U . Clearly V − U ⊆ I so that V − U ∈ I by heredity and then

x ∈ fψ(U). Thus U ⊆ fψ(U) and we shown τcl(x) ⊆ ϱ. Now let H ∈ ϱ, we

have H ⊆ fψ(H), that is, H ⊆ C − f̃(C − H) and f̃(C − H) ⊆ C − H. This

shows that C −H is τcl(x)-closed and then H ∈ τcl(x). Thus ϱ ⊆ τcl(x) and

hence ϱ = τcl(x). □

3. SOME PROPERTIES OF fff -COMPATIBLE IN IDEAL ČECH-SPACES

Definition 3.1 ([1]). Given (C, f, I) be an ideal Čech-space. Then f is

f -compatible with respect to ideal I, denoted f ∼= I, if the following holds for

all H ⊆ C: For all x ∈ H and U ∈ N (x), and if U ∩H ∈ I, then H ∈ I.

Theorem 3.2. Given (C, f, I) be an ideal Čech-space, f be f -compatible

with respect to I such that N (x)∩I = ∅. Let G be a τcl(x)-open set such that

G = U −H, where U ∈ N (x) and H ∈ I. Then f(f̃(G)) = f(G) = f̃(G) =

f̃(U) = f(U) = f(f̃(U)).

Proof. (1) Let G = U−H, where U ∈ N (x) and H ∈ I. Since N (x)∩I = ∅,
by Theorem 1.11 we have U ⊆ f̃(U). Hence by Lemma 1.6, f̃(U) = f(f̃(U)) =

f(U).

(2) Since G is τcl(x)-open, C − G = C −G and hence f̃(C − G) ⊆ C − G. By

Lemma 1.12, f̃(C) − f̃(G) ⊆ f̃(C − G). But N (x) ∩ I = ∅ and by Theorem

1.11, f̃(C) = C and hence C− f̃(G) ⊆ f̃(C−G) ⊆ C−G. Therefore, G ⊆ f̃(G).

Hence, f(G) ⊆ f(f̃(G)). Hence by Lemma 1.6, f̃(G) = f(G) = f(f̃(G)).

(3) Again, G ⊆ U implies that f̃(G) ⊆ f̃(U). By Lemma 1.12, f̃(G) =

f̃(U −H) ⊇ f̃(U)− f̃(H) = f̃(U) since H ∈ I. Thus f̃(U) = f̃(G).

By (1), (2) and (3), we obtain the result. □
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Lemma 3.3 ([1]). Let (C, f, I) be an ideal Čech-space, then f ∼= I iff H −
f̃(A) ∈ I for all H ⊆ C.

Theorem 3.4. Given (C, f, I) be an ideal Čech-space. Then f ∼= I if and

only if fψ(H)−H ∈ I for all H ⊆ C.

Proof. Necessity. Let f ∼= I and let H ⊆ C. clearly that x ∈ fψ(H)−H ∈ I
if and only if x /∈ H and x /∈ f̃(C −H) if and only if x /∈ H and there exists

Ux ∈ N (x) such that Ux − H ∈ I if and only if there exists Ux ∈ N (x)

such that x ∈ Ux − H ∈ I. Now, for each x ∈ fψ(H) − H and Ux ∈ N (x),

Ux ∩ (fψ(H)−H) ∈ I by heredity and hence fψ(H)−H ∈ I by assumption

that f ∼= I.
Sufficiency. Let H ⊆ C and assume that for each x ∈ H there exists

Ux ∈ N (x) such that Ux ∩H ∈ I. Observe that fψ(C −H)− (C −H) = {x :

there exists Ux ∈ N (x) such that x ∈ Ux ∩ H ∈ I}. Thus we have A ⊆
fψ(C −H)− (C −H) ∈ I and hence H ∈ I by heredity of I. □

Lemma 3.5. Let (C, f, I) be an ideal Čech-space such that f ∼= I and H ⊆ C,
then H is a τcl(x)-closed iff H = K ∪ I such that K is f -closed and I ∈ I.

Proof. If H is a τcl(x)-closed set, then f̃(H) ⊆ H. Hence H = H ∪ f̃(H) =

(H − f̃(H))∪ f̃(H). Then by Lemma 1.6 f̃(H) is f -closed set and by Lemma

3.3 A− f̃(H) ∈ I. Conversely, if H = K ∪ I such that K is f -closed set and

I ∈ I, then by Lemma 1.12 we get that f̃(H) = f̃(K ∪ I) = f̃(K) ∪ f̃(I) =

f̃(K) ⊆ f(K) = K ⊆ H. Implies that H is a τcl(x)-closed. □

Corollary 3.6. Given (C, f, I) be an ideal Čech-space such that f ∼= I.
Then β(f, I) is a topology on C and hence β(f, I) = τcl(x).

Proof. Let H ∈ τcl(x). Then by Lemma 3.5, C −H = F ∪ I, where F is f -

closed and I ∈ I. ThenH = C−(F∪I) = (C−F )∩(C−I) = (C−F )−I = V −I,

where V = C − F ∈ N (x). Thus every τcl(x)-open set is form of the V − I,

where V ∈ N (x) and I ∈ I. Hence by by Theorem 1.10 the result follows. □

Proposition 3.7. Given (C, f, I) be an ideal Čech-space such that f ∼= I,
H ⊆ C. If N ∈ N (x) and N ⊆ f̃(A)∩fψ(H), then N−H ∈ I and N ∩H /∈ I.

Proof. If N ⊆ f̃(H) ∩ fψ(H), then N −H ⊆ fψ(H) −H ∈ I by Theorem

3.4 and hence N − H ∈ I by heredity. Since N ∈ N (x) and N ⊆ f̃(H), we

get N ∩H /∈ I by the definition of f̃(H). □

As a consequence of proposition, we have.
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Corollary 3.8. Let (C, f, I) be an ideal Čech-space such that f ∼= I. Then
fψ(fψ(H)) = fψ(H) for all H ⊆ C.

Proof. fψ(H) ⊆ fψ(fψ(H)) follows from Theorem 2.2 (5). Since f ∼= I,
it follows from Theorem 3.4 that fψ(H) ⊆ H ∪ I for some I ∈ I and hence

fψ(fψ(H)) = fψ(H) by Theorem 2.2 (10). □

Theorem 3.9. Let (C, f, I) be an ideal Čech-space such that f ∼= I. Then

fψ(H) = ∪{fψ(U) : U ∈ N (x), fψ(U)−H ∈ I}.

Proof. Let Φ(H) = ∪{fψ(U) : U ∈ N (x), fψ(U)−A ∈ I}. Clearly, Φ(H) ⊆
fψ(H). Now let x ∈ fψ(H). Then there exists U ∈ N (x) such that U−H ∈ I.
By Corollary 2.3, U ⊆ fψ(U) and fψ(U) − H ⊆ [fψ(U) − U ] ∪ [U − H]. By

Theorem 3.4, fψ(U)−U ∈ I and hence fψ(U)−H ∈ I. Hence x ∈ Φ(H) and

Φ(H) ⊇ fψ(H). Consequently, we obtain Φ(H) = fψ(H). □

In [12], Newcomb defines H = K [mod I] if (H −K) ∪ (K −H) ∈ I and

observes that = [mod I] is an equivalence relation. By Theorem 2.2 (11), we

have that if H = K [mod I], then fψ(H) = fψ(K).

Definition 3.10. Let (C, f, I) be an ideal Čech-space. A subset H of X is

called a Baire set with respect to N (x) and I, denoted H ∈ Wr(X, f, I), if
there exists U ∈ N (x) such that H = U [mod I].

Lemma 3.11. Let (C, f, I) be an ideal Čech-space such that f ∼= I. If U ,

V ∈ N (x) and fψ(U) = fψ(V ), then U = V [mod I].

Proof. Since U ∈ N (x), we have U ⊆ fψ(U) and hence U−V ⊆ fψ(U)−V =

fψ(V )−V ∈ I by Theorem 3.4. Similarly V−U ∈ I. Now (U−V )∪(V−U) ∈ I
by additivity. Hence U = V [mod I]. □

Theorem 3.12. Let (C, f, I) be an ideal Čech-space such that f ∼= I. If H,

K ∈ Wr(C, f, I), and fψ(H) = fψ(K), then H = K [mod I].

Proof. Let U, V ∈ N (x) such that H = U [mod I] and K = V [mod

I]. Now fψ(H) = fψ(U) and fψ(K) = fψ(V ) by Theorem 2.2(11). Since

fψ(H) = fψ(U) implies that fψ(U) = fψ(V ) and hence U = V [mod I] by
Lemma 1.11. Hence H = K [mod I] by transitivity. □

4. MORE PROPERTIES OF AN IDEAL ČECH-SPACES

Lemma 4.1. Given (C, f, I) be an ideal Čech-space. If A ∈ N (x) then

N (x) ∩ I = ∅ if and only if f̃(H) = f(H).
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Proof. Let H ∈ N (x) then by Lemma 1.6 we have f̃(H) ⊆ f(H). Let

x ∈ f(H), then for all Ux ∈ N (x) containing x we have Ux ∩H ̸= ϕ. Again

Ux∩A ∈ N (x), so Ux∩H /∈ I, sinceN (x)∩I = ∅. Hence x ∈ f̃(H). Therefore,

f̃(H) = f(H). Conversely, for any A ∈ N (x) we have f̃(H) = f(H). Then

C = f̃(C) and then N (x) ∩ I = ∅ by Theorem 1.11. □

Proposition 4.2. Let (C, f, I) be an ideal Čech-space.

(1) If K ∈ Wr(C, f, I)− I, then there exists H ∈ N (x) such that K = H

[mod I].
(2) If N (x) ∩ I = ∅, then K ∈ Wr(C, f, I) − I if and only if there exists

H ∈ N (x) such that K = H [mod I].

Proof. (1) If K ∈ Wr(C, f, I)− I, then K ∈ Wr(C, f, I). Now if there does

not exist H ∈ N (x) such that K = H [mod I], we have K = ∅ [mod I]. Then
K ∈ I which is a contradiction.

(2) If there exists H ∈ N (x) such that K = H [mod I]. Then H = (K−J)∪I,
where J = K − H, I = H − K ∈ I. If K ∈ I, then H ∈ I by heredity and

additivity, which contradicts that N (x) ∩ I = ∅. □

Proposition 4.3. Let (C, f, I) be an ideal Čech-space with N (x) ∩ I = ∅.
If K ∈ Wr(C, f, I)− I, then fψ(K) ∩ f(f̃(K)) ̸= ∅.

Proof. Let K ∈ Wr(C, f, I) − I, then by Proposition 4.2(1), there exists

H ∈ N (x) such that K = H [mod I]. This implies that ∅ ̸= H ⊆ f̃(H) =

f̃((K − J) ∪ I) = f̃(K) = f(f̃(K)), where J = K − H, I = H − K ∈ I by

Theorem 1.8 and Lemma 1.12. Also ∅ ̸= H ⊆ fψ(H) = fψ(K) by Theorem

2.2 (11), so that H ⊆ fψ(K) ∩ f(f̃(K)). □

Given an ideal Čech-space (C, f, I), let U(C, f, I) denote {H ⊆ C : there

exists K ∈ Wr(C, f, I)− I such that K ⊆ H}.

Proposition 4.4. Let (C, f, I) be an ideal Čech-space with N (x) ∩ I = ∅.
The following are equivalent:

(1) H ∈ U(C, f, I);
(2) fψ(H) ∩ f(f̃(H)) ̸= ∅;
(3) fψ(H) ∩ f̃(H) ̸= ∅;
(4) fψ(H) ̸= ∅;
(5) f(H) ̸= ∅;
(6) There exists N ∈ N (x) such that N −H ∈ I and N ∩H /∈ I.
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Proof. (1) ⇒ (2): Let K ∈ Wr(C, f, I) − I such that K ⊆ H. Then

f(f̃(K)) ⊆ f(f̃(H)) and fψ(K) ⊆ fψ(H) and hence f(f̃(K)) ∩ fψ(K) ⊆
f(f̃(H)) ∩ fψ(H). By Proposition 4.3, we have fψ(H) ∩ f(f̃(H)) ̸= ∅.

(2) ⇒ (3): It is obvious.

(3) ⇒ (4): It is obvious.

(4) ⇒ (5): If fψ(H) ̸= ∅, then there exists U ∈ N (x) such that U −H ∈ I.
Since U /∈ I and U = (U−H)∪(U ∩H), we have U ∩H /∈ I. By Theorem 2.2,

∅ ≠ (U ∩H) ⊆ fψ(U) ∩H = fψ((U −H) ∪ (U ∩H)) ∩H = fψ(U ∩H) ∩H ⊆
fψ(H) ∩H = f(H). Hence f(H) ̸= ∅.

(5) ⇒ (6): If f(H) ̸= ∅, then by Theorem 1.10 there exists N ∈ N (x) and

I ∈ I such that ∅ ≠ N −I ⊆ H. We have N −H ∈ I, N = (N −H)∪ (N ∩H)

and N /∈ I. Hence N ∩H /∈ I.
(6) ⇒ (1): Let K = N ∩ H /∈ I with N ∈ N (x) and N − H ∈ I. Then

K ∈ Wr(C, f, I)− I since K /∈ I and (K −N) ∪ (N −K) = N −H ∈ I. □

Theorem 4.5. Given (C, f, I) be an ideal Čech-space, where N (x)∩I = ∅.
Then for H ⊆ C, fψ(H) ⊆ f̃(H).

Proof. Let x ∈ fψ(H) and x /∈ f̃(H). Then there exists a nonempty Ux ∈
N (x) such that Ux ∩H ∈ I. Since x ∈ fψ(H), by Theorem 2.4, x ∈ ∪{U ∈
N (x) : U−H ∈ I} and there exists V ∈ N (x) such that x ∈ V and V −H ∈ I.
Now we have Ux∩V ∈ N (x), Ux∩V ∩H ∈ I and (Ux∩V )−H ∈ I by heredity.

Then by finite additivity we get (Ux ∩V ∩H)∪ (Ux ∩V −H) = (Ux ∩V ) ∈ I.
Since (Ux∩V ) ∈ N (x), this is contrary to N (x)∩I = ∅. Therefore, x ∈ f̃(H).

Hence fψ(H) ⊆ f̃(H). □

Corollary 4.6. Given (C, f, I) be an ideal Čech-space, where N (x)∩I = ∅.
Then for H ⊆ C, fψ(H) ⊆ f(f̃(H)).

Theorem 4.7. Given (C, f, I) be an ideal Čech-space. Then the following

are equivalent:

(1) N (x) ∩ I = ∅;
(2) fψ(∅) = ∅;
(3) If H ⊆ C is τcl(x)-closed, then fψ(H)−H = ∅;
(4) If I ∈ I, then fψ(I) = ∅.

Proof. (1) ⇒ (2): Since N (x) ∩ I = ∅, by Theorem 2.4 we obtain fψ(∅) =
∪{U ∈ N (x) : U ∈ I} = ∅.
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(2) ⇒ (3): Suppose x ∈ fψ(H) − H, then there exists a Ux ∈ N (x) such

that x ∈ Ux −H ∈ I and Ux −H ∈ N (x). But Ux −H ∈ {U ∈ N (x) : U ∈
I} = fψ(∅) which implies that fψ(∅) = ∅. Hence fψ(H)−H = ∅.

(3) ⇒ (4): Let I ∈ I then fψ(I) = fψ(I ∪ ∅) = fψ(∅) = ∅.
(4) ⇒ (1): Let H ∈ N (x) ∩ I, then H ∈ I and by (4) fψ(H) = ∅. Since

H ∈ N (x), by Corollary 2.3 we get H ⊆ fψ(H) = ∅. Hence N (x)∩I = ∅. □

Theorem 4.8. Let (C, f, I) be an ideal Čech-space. Then N (x) ∩ I = ∅ if

and only if f̃ [fψ(H)] = f [fψ(H)] for all H ⊆ C.

Proof. Let N (x) ∩ I = ∅. It is clear that f̃ [fψ(H)] ⊆ f [fψ(H)]. For the

reverse inclusion, let x ∈ f [fψ(H)]. Then for every Ux ∈ N (x), Ux∩fψ(H) ̸= ∅
and Ux ∩ fψ(H) ∈ N (x) implies that Ux ∩ fψ(H) /∈ I, since N (x) ∩ I = ∅.
Hence x ∈ f̃ [fψ(H)]. Hence f̃ [fψ(H)] = f [fψ(H)]. Conversely, suppose that

f̃ [fψ(H)] = f [fψ(H)], for every H ⊆ C. Then for C ⊆ C, f̃ [fψ(C)] = f [fψ(C)].
Hence f̃ [C − f̃(C −C)] = f [C − f̃(C −C)], implies that f̃(C) = f(C) = C. Hence
N (x) ∩ I = ∅. □
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