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RECURRENT SETS FOR ENDOMORPHISMS
OF TOPOLOGICAL GROUPS

SEYYED ALIREZA AHMADI and JAVAD JAMALZADEH

Abstract. This paper studies topological definitions of chain recurrence and
shadowing for continuous endomorphisms of topological groups generalizing the
relevant concepts for metric spaces. It is proved that in this case the sets of chain
recurrent points and chain transitive component of the identity are topological
subgroups. Furthermore, we show that some dynamical properties are induced by
the original system on quotient spaces. These results link an algebraic property
to a dynamical property.
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1. INTRODUCTION

One of the main problems in discrete and continuous dynamical systems is
the description of the orbit structure for a system from a topological point of
view. A discrete dynamical system usually consists of a compact metric space
X and a continuous function f from X to itself. A number of properties of
interest in such systems are defined in purely topological terms, for example
recurrence, non-wandering points and transitivity. Recently, Good and Ma-
cias [18] defined other properties for dynamical systems in purely topological
terms, for example sensitive dependence on initial conditions, chain transitiv-
ity and recurrence, shadowing, and positive expansiveness. In the presence of
compactness, existence of an unique uniformity, allows us to mimic existing
metric proofs. The uniform approach has been studied in a number of cases:
Hood [19] defined topological entropy for uniform spaces; Morales and Sir-
vent [20] considered positively expansive measures for measurable functions on
uniform spaces, extending results from the literature; Devaney chaos for uni-
form spaces is considered in [12]; Auslander et al. [6] generalized many known
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results about equicontinuity to the uniform spaces; Das et al. [13] generalized
spectral decomposition theorem to the uniform spaces; The authors of [3] gen-
eralized concepts of entropy points, expansivity and the shadowing property
for dynamical systems on uniform spaces and obtained a relation between the
topological shadowing property and the positive uniform entropy. For more
results on properties of dynamical systems in purely topological terms, one is
referred to [2, 14,22,26–28].

Motivated by these ideas we show that if the underlying set of a dynamical
system is an abelian topological group, then, surprisingly, dynamical objects of
a dynamical system exhibit some algebraic properties. Recurrence behaviour
is one of the most important concepts in topological dynamics [1, 4, 25]. We
are going to investigate the properties of recurrent sets of a continuous en-
domorphism of a topological group as a discrete dynamical system. Every
topological group is a uniform space in a natural way. Specifically, a uniform
group structure on a topological group is defined by the collection of sets{

(x, y) | xy−1 ∈ E
}
; E ∈ Be,

where Be is a system of symmetric neighbourhoods of the identity e in G. We
make a standardized assumption that all topological groups are abelian and
compact, and f is a continuous endomorphism on G, although some of the
results apply to more general settings.

A fixed point of dynamical system f , exhibits the simplest type of recur-
rence. We denote by Fix(f) the set of all fixed points of f . A point carried
back to itself by a dynamical system f exhibits the next most elementary
type of recurrence. For some m ∈ N, a point x ∈ G is called m-periodic if
fm(x) = x. We denote by Perm(f) the set of all m-periodic points of f and
we set Per(f) =

⋃∞
m=1 Perm(f). A point x ∈ G is non-wandering if for each

neighbourhood U of x, there exists n ∈ N such that U ∩fn(U) ̸= ∅. We denote
by Ω(f) the set of all non-wandering points of f .

For D ∈ Be, a D-pseudo-orbit or D-chain of f is a sequence {xn}n∈N such
that f(xn)x

−1
n+1 ∈ D for n ∈ N. We use the symbol OE(f, x, y) for the set of

E-chains {x0, x1, . . . , xn} of f with x0 = x and xn = y. For x, y ∈ G, we write

x
E
⇝ y ifOE(f, x, y) ̸= ∅ and we write x⇝ y ifOE(f, x, y) ̸= ∅ for each E ∈ Be.

We write x↭ y if x⇝ y and y ⇝ x. The set {x ∈ G | x↭ x} is called the
chain recurrent set of f and it is denoted by CR(f). Denote by CC(f) the
chain component of f containing the identity e, i.e., CC(f) = {x ∈ G | x↭ e}
[17]. Clearly,

Fix(f) ⊆ Perm(f) ⊆ Per(f) ⊆ Ω(f) ⊆ CR(f).

This paper is organized as follows. Section 2 describes which recurrent
sets are topological subgroups. In Section 3 we prove that some recurrent
subgroups are invariant under canonical map. In Section 4 we prove a corol-
lary of the addition theorem which states that the entropy is additive in the
appropriate sense with respect to invariant subgroups.
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2. RECURRENT SUBGROUPS

This section is devoted to the algebraic properties of recurrent sets. Our
following results show that when the underlying set of a dynamical system
is a topological group, then most of the well-known recurrent sets are also
topological subgroups of the underlying topological group. We seek a definition
of recurrence so that the set R(f) of recurrent points with respect to an
endomorphism f has the following desirable properties:

(R1) R(f) is a subgroup;
(R2) The setR(f) is forward invariant with respect to f , i.e., f(R(f)) ⊆ R(f).
(R3) R(f) is closed;
(R4) R(f) is invariant under topological conjugacy, i.e., if f : G → G and

g : H → H are two continuous endomorphisms on topological groups
and ϕ : G → H is a continuous isomorphism with continuous inverse
such that ϕ ◦ f = g ◦ ϕ, then R(g) = ϕ(R(f));

(R5) R(f) is invariant under canonical mapping, i.e., if f̃ : G/H → G/H is

the canonical mapping induced by f , then R(f̃) = {R(f)}.

Definition 2.1. We say that a subset R(f) of G with respect to an endo-
morphism f is a recurrent subgroup if it satisfies properties (R1)–(R4).

Closely related to fixed points are the eventually fixed points, which are the
points that reach a fixed point after finitely many iterations. More explicitly,
a point x is said to be an eventually fixed point of a map f if there exists
some k ∈ N such that fk(x) ∈ Fix(f). A point x is said to be an eventually
m-periodic point if fk(x) ∈ Perm(f) for some k ∈ N. Denote by EFix(f)
and EPerm(f), the set of all eventually fixed point and the set of eventually
m-periodic points of f , respectively. Also we set EPer(f) =

⋃∞
m=1 EPerm(f).

Proposition 2.2. Let f be a continuous endomorphism of a topological
group G. Then

(i) Fix(f) is a recurrent subgroup.
(ii) Perm(f) is a recurrent subgroup.

(iii) Per(f) is a recurrent subgroup.

(iv) EFix(f) is a recurrent subgroup.

(v) EPerm(f) is a recurrent subgroup.

(vi) EPer(f) is a recurrent subgroup.

Proof. (i) For any x, y ∈ Fix(f), it can be verified that

f(xy−1) = f(x)f(y−1) = xy−1,

implying that Fix(f) is a subgroup. Clearly, Fix(f) is closed, f -invariant and
invariant under algebraic topological conjugacy.

(ii) The proof is similar to part (i).
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(iii) For any x, y ∈ Per(f), there exist m,n ∈ N such that fm(x) = x and
fn(y) = y, implying that fmn(xy−1) = (fm)n(x)(fn)m(y−1) = xy−1. Then,

xy−1 ∈ Per(f). This implies that Per(f) is a subgroup, and so is Per(f).

Clearly, Per(f) is f -invariant, and so is Per(f) by continuity. Let f : G → G
and g : H → H be two continuous endomorphisms and let ϕ : G → H be
a continuous automorphism with continuous inverse such that ϕ ◦ f = g ◦ ϕ.
Clearly, ϕ(Per(f)) ⊂ Per(g). This implies that ϕ(Per(f)) ⊂ ϕ(Per(f)) ⊂
Per(g). For the reverse inclusion, let x ∈ Per(g). Then there exists a net xλ in
Per(g) = ϕ(Per(f)) with xλ → x. For each λ, there exists a point zλ ∈ Per(f)
such that xλ = ϕ(zλ). This, together with xλ → x, implies that zλ → ϕ−1(x).

Therefore, ϕ−1(x) ∈ Per(f). This implies that ϕ(Per(f)) = Per(g).

(iv) For any x, y ∈ EFix(f), there exist m,n ∈ N such that fm(x), fn(y) ∈
Fix(f), implying that fmn(xy−1) = fm(x)fn(y−1) ∈ Fix(f). Then, xy−1 ∈
EFix(f). This implies that EFix(f) is a subgroup, and so is EFix(f). Clearly,

EFix(f) is f -invariant, and so is EFix(f) by continuity. Let f : G → G and
g : H → H be two continuous endomorphisms and let ϕ : G → H be a
continuous automorphism with continuous inverse such that ϕ ◦ f = g ◦ ϕ. If
ϕ(x) ∈ ϕ(EFix(f)), then there exists positive integer m such that fm(x) ∈
Fix(f). Thus, ϕ(fm(x)) ∈ ϕ(Fix(f)) = Fix(g), implying that gm(ϕ(x) ∈
Fix(g). Therefore, ϕ(EFix(f)) ⊂ EFix(g). This implies that ϕ(EFix(f)) ⊂
ϕ(EFix(f)) ⊂ EFix(g). For the reverse inclusion, let x ∈ EFix(g). Then there
exists a net xλ in EFix(g) = ϕ(EFix(f)) with xλ → x. For each λ, there exists
a point zλ ∈ EFix(f) such that xλ = ϕ(zλ). This, together with xλ → x,

implies that zλ → ϕ−1(x). Therefore, ϕ−1(x) ∈ EFix(f). This implies that

ϕ(EFix(f)) = EFix(g).

(v) For any x, y ∈ EPerm(f), there exist k, l ∈ N such that fm+k(x) = fk(x)
and fm+l(y) = f l(y), implying that fm+k+l(x) = fk+l(x) and fm+k+l(y) =
fk+l(y). Then, fm+k+l(xy−1) = fk+l(xy−1). This implies that EPerm(f) is a

subgroup, and so is EPerm(f). Similarly, one can prove the properties (R3)
and (R4) by adapting the proof of part (iii).

(vi) For any x, y ∈ EPer(f), there exist k, l,m ∈ N and n ∈ N such that
fm+k(x) = fk(x) and fn+l(y) = f l(y), implying that fm+k+l(x) = fk+l(x)
and fn+k+l(y) = fk+l(y). Applying induction yields that

f2m+k+l(x) = fm(fm+k+l(x)) = fm+k+l(x) = fk+l(x),
...

fmn+k+l(x) = fm(n−1)+k+l(x) = fk+l(x),

and
f2n+k+l(y) = fn(fn+k+l(y)) = fn+k+l(y) = fk+l(y),

...

fmn+k+l(y) = fn(m−1)+k+l(y) = fk+l(y).
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Thus, fmn+k+l(xy−1) = fk+l(xy−1). This implies that EPer(f) is a sub-

group, and so is EPer(f). Similarly, one can prove the properties (R3) and
(R4) by adapting the proof of part (iii) . □

Remark 2.3 (Categorical point of view). Let C be a category and let C[X]
be the category of functors Funct(N, C) where N is the obvious posetal category.
Objects in C[X] can be identified with a pair (C, f), where C is an object C
and f : C → C a morphism in C[X]. A morphism ϕ : (C, f) → (D, g) in C[X]
is just a morphism ϕ : C → D, such that g ◦ ϕ = ϕ ◦ f . In this paper, the
category Ab.Comp[X] is studied, where Ab.Comp is the category of compact
Hausdorff Abelian topological groups, and continuous endomorphisms among
them. More precisely, an object in Ab.Comp[X] is a pair (G, f), where G is a
compact T2 abelian group, and f is a continuous endomorphism of G. Also, a
morphism ϕ : (G, f) → (G′, f ′) in Ab.Comp[X] is a continuous endomorphism
ϕ : G → G′ such that it commutes with the actions, that is, f ′ ◦ ϕ = ϕ ◦ f .

It is well-known that continuous maps among compact T2 spaces are closed
(and proper). Hence, also in view of the above lemma, a subobject of an object
(G, f) in Ab.Comp[X] is given by a closed (and, thus a compact) subgroup
H of G such that f(H) ⊂ H, with action given by f |H : H → H. In view
of this, a subfunctor R : Ab.Comp[X] → Ab.Comp[X] of the identity functor
id : Ab.Comp[X] → Ab.Comp[X] is given by a correspondence that sends an
object (G, f) → R such that (R1), (R2), (R3) and (R4) hold.

Note that if there is subfunctor of the subfunctor

R : Ab.Comp[X] → Ab.Comp[X]

and we take an object (G, f), then Rf ⊂ G is a recurrent subgroup of G.

The following proposition shows that a chain recurrent set, which includes
all the types of returning trajectories: periodic, eventually-periodic, non-
wandering and so on, is a subgroup of G.

Proposition 2.4. Let f be a continuous endomorphism of a topological
group G. Then CR(f) is a recurrent subgroup.

Proof. For any x ∈ CR(f) and any E ∈ Be, there exists an E-chain
{x1, x2, . . . , xn} with x1 = xn = x such that f(xn)x

−1
n+1 ∈ E for all 1 ≤

i ≤ n− 1, implying that f(x−1
i )xi+1 ∈ E−1 = E. Then, x−1 ∈ CR(f).

For any x, y ∈ CR(f), we show that xy ∈ CR(f). In fact, for any E ∈ Be,
take some W ∈ Be such that W 2 ⊂ E. Since x, y ∈ CR(f), there exist
E-chains {x1, x2, . . . , xm} and {y1, y2, . . . , yn} with x1 = xm = x and y1 =
yn = y such that f(xi)x

−1
i+1 ∈ W for 1 ≤ i ≤ m − 1 and f(yj)yj+1 ∈ W for

1 ≤ j ≤ n−1. Choose two extended sequences {xi}mn
i=1 and {yj}mn

j=1 as follows:

xi+kn = xi for 1 ≤ i ≤ m, 0 ≤ k ≤ n− 1;

yj+kn = yj for 1 ≤ j ≤ n, 0 ≤ k ≤ m− 1.
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Clearly, x1y1 = xmnymn = xy and

f(xiyi)(xi+1yi+1)
−1 = f(xi)x

−1
i+1f(yi)y

−1
i+1 ∈ W 2 ⊂ E.

Therefore, xy ∈ CR(f), implying that CR(f) is a subgroup.

Next assume that E ∈ Be and choose Ê ∈ Be such that Ê2 ⊂ E. By
the uniform continuity there exists D ∈ Be such that xy−1 ∈ D implies
f(x)f(y)−1 ∈ Ê. Choose D̂ ∈ Be with D̂2 ⊂ D. Assume that x(λ) is a net in

CR(f) such that x(λ) → x. Then for some λ, x(λ)x−1 ∈ D. Since x(λ) ∈ CR(f),

there exists a D̂-pseudo-orbit {x0, x1, . . . , xn} with x0 = xn = x(λ). Thus
{x, x1, . . . , xn−1, x} is an E-pseudo-orbit and hence x ∈ CR(f). Therefore,
CR(f) is closed.

Fix any E ∈ Be. Then, {x, f(x)} is an E-pseudo-orbit from x to f(x).
Choose U, V ∈ Be such that U2 ⊂ E and V ⊂ U ∩ f−1(U). Since x ∈
CR(f), there exists a V -pseudo-orbit {x0 = x, x1, . . . , xn−1, xn = x} from x
to itself. Then {f(x), x2, x3, . . . , xn = x} is an E-pseudo-orbit from f(x) to x
and hence {f(x), x2, x3, . . . , xn−1, x, f(x)} is an E-pseudo-orbit from f(x) to
itself. Therefore, f(x) ∈ CR(f), implying that f(CR(f)) ⊂ CR(f). □

The relation ‘↭’ is an equivalence relation on CR(f). The equivalence
classes of this relation are called chain components. These are compact in-
variant sets and cannot be decomposed into two disjoint non-empty compact
invariant sets, hence serve as building blocks of the dynamics. The topology
of chain recurrent set and chain components have been always in particular
interest [8, 9, 21,24].

Proposition 2.5. Let f be a continuous endomorphism of topological group
G. Then CC(f) is a recurrent subgroup.

Proof. Suppose that x, y ∈ CC(f) and E ∈ Be. Choose W ∈ Be such that

W 2 ⊂ E. Then, x
W
⇝ e and y

W
⇝ e, implying that there exist W -chains

{x = x0, x1, . . . , xm = e} and {y = y0, y1, . . . , yn = e}.

Without loss of generality, assume that m ≤ n. Clearly,

{x−1
0 y0, x

−1
1 y1, . . . x

−1
m ym, ym+1, . . . , yn = e}

is an E-chain from x−1y to e. It follows from x, y ∈ CC(f) that e
W
⇝ x and

e
W
⇝ y. Then, there exist W -chains

{e = x̂0, x̂1, . . . , x̂p = x} and {e = ŷ0, ŷ1, . . . , ŷq = y}.

Without loss of generality, assume that p ≤ q. Then, the sequence

{ŷ0, ŷ1, . . . , ŷq−p−1, ŷq−px̂
−1
0 , ŷq−p+1x̂

−1
1 , . . . , ŷqx̂

−1
p }

is an E-chain from e to x−1y. Therefore, x−1y ∈ CC(f), implying that CC(f)
is a subgroup.
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Let E ∈ Be and choose W ∈ Be such that W 2 ⊂ E. By uniform continuity
there exists W ⊃ D ∈ Be such that xy−1 ∈ D implies f(x)f(y−1) ∈ W . Let

z ∈ CC(f). Then, there exists x ∈ CC(f) such that xz−1 ∈ D. Clearly, x
D
⇝ e

and e
D
⇝ x. This implies that there exist D-chains

{x = x0, x1, . . . , xn = e} and {e = x′0, x
′
2, . . . , x

′
m = x}.

Clearly, {z, x1, x2, . . . , e} and {e = x′0, x
′
1, . . . , x

′
m−1, z} are E-chains. Then,

z
E
⇝ e and e

E
⇝ z. Therefore, z ∈ CC(f), implying that CC(f) is closed.

Suppose that x ∈ CC(f) and E ∈ Be. Choose U, V ∈ Be such that U2 ⊂ E
and V ⊂ U ∩f−1(U). It follows from x ∈ CC(f) that there exists a V -pseudo-
orbit {x0 = x, x1, . . . , xn−1, xn = e} from x to e. Then,

{f(x), x2, x3, . . . , xn = e}

is an E-pseudo-orbit from f(x) to e. Again from x ∈ CC(f), it follows that
there exists a V -pseudo-orbit {x0 = e, x1, . . . , xn−1, xn = x} from e to x.
Then, {x0, x1, x2, x3, . . . , xn = x, f(x)} is an E-pseudo-orbit from e to f(x).
Thus, f(x) ∈ CC(f), implying that f(CC(f)) ⊂ CC(f). □

Remark 2.6. It is not difficult to check that if f is an automorphism, then
f(CC(f)) = CC(f).

3. DYNAMICS INDUCED ON QUOTIENT SPACES BY ENDOMORPHISMS

Suppose that G is a topological group with identity e, and H is a closed
subgroup of G. Denote by G/H the set of all left cosets aH of H in G, and
endow it with the quotient topology with respect to the canonical mapping
π : G → G/H defined by π(x) = xH for any x ∈ G. Then, the family
{π(xE) | x ∈ G, E ∈ Be} is a local base of the space G/H at the point
xH ∈ G/H, the mapping π is open, and G/H is a homogeneous T1-space.

Let f : G → G be an endomorphism such that f(H) ⊂ H. Then f induces

a map f̃ : G/H → G/H such that the following diagram is commutative:

G
f //

π
��

G

π
��

G/H
f̃

// G/H

This mapping is called a canonical map [5].
In the last section we introduce several recurrent subgroups R(f) for a

dynamical system f , which leads us to investigate the dynamic of induced
mapping f̃ : G/R(f) → G/R(f). We are interested in cases that R(f) is

invariant under canonical mapping, i.e., R(f̃) = {R(f)}.
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Proposition 3.1. Let f : G → G be a continuous automorphism and
f̃ : G/CC(f) → G/CC(f) be the map induced by f . Then, CC(f̃) = {CC(f)}.

Proof. Denote H = CC(f). Let xH ∈ CC(f̃) and E ∈ Be. Then, xH
π(E)
⇝

H, implying that there exist points x0, x1, . . . , xn ∈ G such that x0 = x,
xn ∈ H and f̃(π(xi))π(xi+1)

−1 ∈ π(H) for all 0 ≤ i ≤ n − 1. Thus, for any
1 ≤ i ≤ n, there exist ei ∈ E and hi ∈ H such that f(xi)x

−1
i+1 = ei+1hi+1.

Choose yi = xih
′
i with

h′0 = e, h′i+1 = f(h′i)hi+1.

Then, y0 = x, yn = h′n, and

f(yi)y
−1
i+1 = f(xi)x

−1
i+1f(h

′
i)(h

′
i+1)

−1 = f(xi)x
−1
i+1h

−1
i+1 = ei+1 ∈ E,

implying that x
E
⇝ h′n. From h′n ∈ H = CC(f), it follows that h′n

E
⇝ e. Then,

x
E
⇝ e. This implies that x⇝e due to the arbitrariness of E.

From xH ∈ CC(f̃) and H
π(H)
⇝ xH, it follows that there exist points

x0, x1, . . . , xn ∈ G such that x0 ∈ H, xn = x and f̃(π(xi))π(xi+1)
−1 ∈ π(H)

for all 0 ≤ i ≤ n − 1. This implies that there exist ei ∈ E and hi ∈ H such
that f(xi)x

−1
i+1 = ei+1hi+1.

For any 0 ≤ i ≤ n, choose yi = xih
′
i with

h′n = e, h′i−1 = f−1(h′i)h
−1
i+1.

Then, y0 = h′0, yn = x, and

f(yi)y
−1
i+1 = f(xi)x

−1
i+1f(h

′
i)(h

′
i+1)

−1 = f(xi)x
−1
i+1h

−1
i+1 = ei+1 ∈ E,

implying that h′0 ⇝ x. From h′0 ∈ H = CC(f), it follows that e
E
⇝ h′0.

Therefore, e
E
⇝ x, implying that e⇝x due to the arbitrariness of E. Hence,

x ∈ CC(f). □

The shadowing property provides tools for fitting real trajectories nearby to
approximate trajectories [11]. The following definition generalizes the relevant
concept for metric spaces to topological groups.

Definition 3.2. We say that a D-pseudo orbit of f is E-shadowed by a
point x in G if fn(x)x−1

n ∈ E for any n ∈ N. A continuous endomorphism
f : G → G has the shadowing property if for any E ∈ Be, there exists some
D ∈ Be such that every D-pseudo orbit of f can be E-shadowed by some
point in G.

Lemma 3.3. Let f : G → G be a continuous endomorphism with the shad-
owing property. If H is an f -invariant subgroup of G, then for any E ∈ Be,
there exists D ∈ Be such that every DH-pseudo-orbit can be EH-shadowed by
some point in G.
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Proof. Fix any E ∈ Be. The shadowing property implies that there exists
D ∈ Be such that every D-pseudo-orbit can be E-shadowed by some point in
G.

Given any fixed DH-pseudo-orbit {yn}, then f(yn)y
−1
n+1 ∈ DH for all n ∈ N.

This implies that for any n ∈ N, there exists dn ∈ D and hn ∈ H such that
f(yn)y

−1
n+1h

−1
n = dn.

Choose the sequence h′nwith h′n+1 = f(h′n)hn and take xn = ynh
′
n. Then,

f(xn)xn+1 = f(ynh
′
n)(yn+1h

′
n+1)

−1

= f(yn)y
−1
n+1f(h

′
n)(h

′
n+1)

−1

= f(yn)yn+1h
−1
n = dn ∈ D,

implying that {xn} is a D-pseudo-orbit of f . Thus, there exists y ∈ G such
that fn(y)x−1

n ∈ E for n = 0, 1, 2, . . . . Therefore, fn(y)(ynh
′
n)

−1 ∈ E. This
implies that fn(y)y−1

n ∈ EH. □

Theorem 3.4. Let f : G → G be a continuous endomorphism with the
shadowing property and let H be a an f -invariant subgroup of G. Then, the
canonical mapping f̃ : G/H → G/H has the shadowing property.

Proof. Fix any E ∈ Be and take D ∈ Be such that every D-pseudo-orbit
can be E-shadowed by some point inG. Assume that {π(xn)}∞n=1 = {xnH}∞n=1

is a π(D)-pseudo-orbit of f̃ . Then, f̃(xnH)(xn+1H)−1 ∈ π(D), implying that
f(xn)x

−1
n+1H ∈ DH. Thus, f(xn)x

−1
n+1 ∈ DH. This implies that {xn}∞n=1

is a DH-pseudo-orbit of f and by Lemma 3.3 there exists x ∈ G such that
fn(x)x−1

n ∈ EH. This implies that f̃n(π(x))π(xn)
−1 ∈ π(E). □

Corollary 3.5. Let f : G → G be a continuous automorphism with the
shadowing property. Then f̃ : G/H → G/H has the shadowing property for
any choice of H as a recurrent subgroup from Proposition 2.2.

Proposition 3.6. Let f : G → G be a continuous automorphism with the
shadowing property. Then, Ω(f) = CR(f).

Proof. Clearly, Ω(f) ⊂ CR(f). Suppose that x ∈ CR(f) and U is an
open neighbourhood of x. Choose some E ∈ Be such that Ex ∈ U . By
the shadowing property there exists D ∈ B such that every D-pseudo-orbit
is E-shadowed by some point in G. From x ∈ CR(f), it follows that there
exists a D-pseudo-orbit {x0 = x, x1, . . . , xn = x} from x to itself. If we extend
this sequence to an infinite D-pseudo-orbit, then this full pseudo-orbit is E-
shadowed by some point z ∈ G. Thus, zx−1, f(z)x−1

1 , . . . , fn(z)x−1 ∈ E,
implying that z, fn(z) ∈ Ex ⊂ U . Therefore, fn(U) ∩ U ̸= ∅ and so x ∈
Ω(f). □
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4. TOPOLOGICAL ENTROPY

Let f be a continuous endomorphism on the topological group G and K be
a compact subset of G. Given E ∈ Be and n ∈ N, a subset A ⊆ K is called
an (n,E, f)-spanning set for K if

K ⊆
⋃
x∈A

(
n−1⋂
i=0

F−i(E)

)
x,

or equivalently, if for any x ∈ K, there exists y ∈ A such that f i(x)f i(y−1) ∈ E
for all i = 0, 1, 2, . . . , n− 1.

By compactness, there exists a finite (n,E, f)-spanning set for K. Let
span(n,E,K) be the minimum cardinality of all (n,E, f)-spanning sets for K.

A subset A ⊆ K is called an (n,E, f)-separated set for K if for any pair of
distinct points x and y in A, there exists 0 ≤ i ≤ n−1 such that f i(x)f i(y−1) /∈
E. Again by compactness of K, every (n,E, f)-separated set for K is finite.

Let sep(n,E,K) be the maximum cardinality of all (n,E, f)-separated set
for K.

For any U ∈ Be, define

span(E,K) = lim sup
n→∞

1

n
log span(n,E,K);

sep(E,K) = lim sup
n→∞

1

n
log sep(n,E,K).

Then, define the following quantities for a uniformly continuous map f :

hspan(f,K) = sup {span(E,K) | E ∈ Be} ;
hspan(f) = sup {hspan(f,K) | K ∈ K(G)} ;
hsep(f,K) = sup {sep(E,K) | E ∈ Be} ;
hsep(f) = sup {hsep(f,K) | K ∈ K(G)} ;

where K(G) is the set of all nonempty compact subsets of G.

Theorem 4.1 ([16]). Let f : G → G be a continuous map on a topological
group G. Then, hspan(f) = hsep(f) = htop(f).

The entropy-carrying sets of a continuous map on a compact space is always
of particular interest. Adapting the techniques in [23], the following is proved.

Theorem 4.2. Let f be a continuous endomorphism on a Hausdorff com-
pact topological group G. Then, htop(f |Ω(f)) = htop(f).

Proof. Fix any m ∈ N and E ∈ Be, and let F (m,E,Ω(f)) be an (m,E, f)-
spanning set for Ω(f) with cardinality span(m,E,Ω(f)).

Let

U =

{
x ∈ G | ∃y ∈ F (m,E,Ω(f)) such that f i(x)f i(y−1) ∈ E

for all 0 ≤ i ≤ m

}
.
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Claim 1. U is an open neighborhood of Ω(f).
Choose W ∈ Be such that W 2 ⊂ E. Then, there exists D ∈ Be such that

xy−1 ∈ D implies f i(x)f i(y−1) ∈ W for all 0 ≤ i ≤ m. For any fixed x ∈ U
and any y ∈ Dx, it is clear that x−1y ∈ D, implying that f i(x−1)f i(y) ∈ W
for all 0 ≤ i ≤ m.

From x ∈ U , it follows that there exists z ∈ F (m,E,Ω(f)) such that
f i(x)f i(z−1) ∈ W for all 0 ≤ i ≤ m. Therefore, f i(y)f i(z−1) ∈ E. This
implies that Dx ⊂ U .

Since U c = G\U is compact and all points in U c are wandering, there exists
V ⊂ E such that for any y ∈ U c and any n ∈ N,

fn(V y) ∩ V y = ∅.

Now let F (m,V, U c) be an (m,V, f)-spanning set for U c with cardinality
span(m,V, U c) and let Fm = F (m,E,Ω(f)) ∪ F (m,V, U c). Since Fm is an
(m,E, f)-spanning set for G, we obtain that |Fm| ≥ span(m,E,G).

For any l ∈ N, define ϕl : G → F i
m by ϕl(x) = (y0, y1, . . . , yl−1), where

yj ∈

{
F (m,E,Ω(f)) ∩ E−1f jm(x), f jm(x) ∈ U,

F (m,V, U c) ∩ V −1f jm(x), f jm(x) ∈ U c.

If ϕl(x) = (y0, y1, . . . , yl−1) for some x ∈ G, then a point yj ∈ F (m,V, U c)
can not be repeated in this l-tuple. Because Eyj ’s are wandering for any choice
of yj ∈ F (m,V, U c).

Choose n > span(m,V, U c). Let H(n,E2, G) be an (n,E2, f)-separated
set for G with cardinality sep(n,E2, G) and let l be a positive integer with
(l − 1)m < n ≤ lm.

Claim 2. The map ϕl is one to one on H(n,E2, G).
Suppose that there exists x, y ∈ H(n,E2, G) such that ϕl(x) = ϕl(y) =

(y0, y1, . . . , yl−1). For 0 ≤ i < m and 0 ≤ j < l, we have

f i+jm(x)f i+jm(y−1) = f i+jm(x)f i(y−1
j )f i+jm(y−1)f i(yj) ∈ E2.

By the choice of l, it follows that for any 0 ≤ i < n, f i(x)f i(y−1) ∈ E2. This,
together with x, y ∈ H(n,E2, G), implies that x = y.

Claim 3. Let p = span(m,E,Ω(f)) and q = span(m,V, U c). Then,

|ϕl(H(n,E2, G))| ≤ (q + 1)!lqpl.

Let Ik be the set of l-tuples in ϕl(H(n,E2, G)) such that the numbers of
components ys which belongs to F (m,V, U c) is k. Since yk ∈ F (m,V, U c) can
not be repeated in ϕl(x), then k ≤ q.
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For Ik, there exist
(
q
k

)
ways of picking these k points yk ∈ F (m,V, U c), there

exist l!
(l−k)! ways of arranging these choice among the points in the ordered l-

tuples. Meanwhile, there exist at most pl−k ways of picking the remaining ys
from F (m,E,Ω). Thus,

|Ik| ≤
(
q

k

)
l!

(l − k)!
pl.

From
(
q
k

)
≤ q! and l!

(l−k)! ≤ lk, it follows that

|ϕl(H(n,E2, G))| ≤
q∑

k=0

(
q

k

)
l!

(l − k)!
pl ≤ (q + 1)!lqpl.

Now, applying Claims 2 and 3 yields that

sep(n,E2, G) = |ϕl(H(n,E2, G))| ≤ (q + 1)!lqpl,

where p = span(n,E,Ω(f)) and q = span(m,V, U c). This implies that

hsep(f) ≤ lim sup
E∈Be

lim sup
n→∞

1

n
log sep(n,E2, G)

≤ lim sup
E∈Be

lim sup
l→∞

1

(l − 1)m
[log((q + 1)!) + q log(l) + l log(p)]

≤ lim sup
E∈Be

1

m
lim sup
n→∞

log p

= lim sup
E∈Be

1

m
log span(n,E,Ω).

Therefore, htop(f) = hsep(f) ≤ htop(f |Ω(f)). □

Corollary 4.3. Let f : G → G be a continuous endomorphism. Then,
htop(f |CR(f)) = htop(f).

The Addition Theorem states that the entropy is additive in appropriate
sense with respect to invariant subgroups [15]. Bruno and Virili [10] proved
the addition theorem in the case of locally compact totally disconnected topo-
logical groups.

Theorem 4.4 ([10]). Let G be a locally compact totally disconnected group,
and f : G → G be a continuous endomorphism, and H be a compact f -
invariant subgroup of G. Then,

htop(f) ≥ htop(f̃) + htop(f |H).

Corollary 4.5. Let G be a locally compact totally disconnected group,
and f : G → G a continuous endomorphism such that htop(f) < ∞. Let

f̃ : G/CR(f) → G/CR(f) be the map induced by f . Then, htop(f̃) = 0.
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