MATHEMATICA, 66 (89), N° 2, 2024, pp. 216229

ON KIRCHHOFF-DOUBLE PHASE PROBLEMS
WITHOUT (AR)-CONDITION

MAHMOUD EL AHMADI, ABDESSLEM AYOUJIL, and MOHAMMED BERRAJAA

Abstract. In this article, via a variational approach, we consider the existence
of weak solutions for a class of Kirchhoff-double phase type problems, namely,

—M (D(w)) div(|Vul""*Vu + a(z)|Vu|? >Vu) = Ag(z,u) in Q,
u=0 on 01,
where Q C RY (N > 2) is a smooth bounded domain, 1 < p < ¢ < N. The
aim of this article is to establish the existence of at least one nontrivial weak

solution of the above problem without (AR)-condition, by using the Mountain
Pass Theorem for an energy functional satisfying the Cerami condition.
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1. INTRODUCTION AND MAIN RESULTS

The study of differential equations and variational problems with double-
phase operators is a new and important topic. Since it sheds light on multiple
range of applications in the field of mathematical physics such as elasticity
theory, strongly anisotropic materials, Lavrentiev’s phenomenon, etc. (see
[15-H17]).

This paper is concerned with the existence of solutions to the following

problem

—M (D(u)) div (|Vu[P2Vu + a(z)|Vu|?~ 2vu) Ag( in Q,

(1) _
=0 on 01,

where Q ¢ RV(N > 2) is a smooth bounded domain, 1 < p < ¢ < N and
% <1+ %, A > 0 is a real number, a : Q — [0,400) is Lipschitz continuous,

D(u) := / <1\Vu|p + CL(x)\VuP) dz, M : Ry — R
Q\P q
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is a continuous function (a Kirchhoff-type function) and the nonlinear term
g : Q2 x R — R satisfies the Carathéodory condition.

Since the original work of A. Ambrosetti and P.H. Rabinowitz [1], criti-
cal point theory has become one of the most important tools for determining
solutions to elliptic equations of variational type. In particular, our elliptic
problem generalizes many works, since the function M can be # 1. The
main ingredient to obtaining the existence of solutions for superlinear prob-
lems is the condition proposed by A. Ambrosetti and P.H. Rabinowitz (the
(AR)-condition for short).

Many authors have recently studied problem in the case when M =1,
and a plethora of results have been obtained, see for instance B. Ge et al. [§],
W. Liu and G. Dai [12], K. Perera and M. Squassina [14] and the references
therein.

On the other hand, there are much fewer results for the case M # 1. For
example, via a variational approach, A. Fiscella and A. Pinamonti |7] obtained
a nontrivial weak solution of problem with A = 1 under the following
conditions:

(M7) There exists 6 € [1, %* [ such that for all ¢t € R,

—

tM(t) < OM(t),

where M (t) = fOtM(T)dT and p* = NN—_";) :

(M) For all 7 > 0, there exists kK = k(1) > 0 such that M(t) > &, for all
t>71.

(H{) There exists an exponent r € |gf,p*[ such that for all ¢ > 0, there
exists . > 0 and

lg(z,1)| < qelt|?® 4 ro |t for ae. z € Q and any t € R.
(AR) There exist o € g0, p*[, ¢ > 0 and ¢y > 0 such that
¢ < oG(x,t) <tg(x,t), forae. zeQandany [t| > i,

where G(z,t) = fgg(:r,s)ds.

As we know, the main role of utilizing the famous Ambrosetti-Rabinowitz
type condition is to ensure the boundedness of the Palais-Smale type sequences
of the corresponding functional. This condition sometimes can be very restric-
tive and excludes many interesting nonlinearities. Indeed, there are several
functions which are superlinear at infinity and at the origin but do not satisfy
(AR)-condition. See Remark below.

To state our main results, we first collect our assumptions on the function
M and the nonlinearity g as follows:

(Ms) M € C(Ry) satisfies tirﬁf M (t) > mgy > 0, where my is a constant.
eR+
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(Hp) There exist ¢ < s < p* and Cj > 0 such that
l9(z, ) < Co (1+ 7).

(H2) 1‘11|n 1nf%6q) +o00 uniformly a.e. z € Q, where G(x,t) fo

and 6 comes from (M;) above.

(Hs) hm|t(\: ) — 0 uniformly in x .

(Hy) There exist ¢1,71 > 0 and n > % such as
G2, )" < er|t]F(x, 1),
for all (z,t) € Q xR, [t| > r; and F(x,t) := e—lqg(x,t)t — G(z,t) > 0.
(Hs) There exist p > ¢ and > 0 such that
pG(z,t) < tg(xz,t)+ BJt|P, for all (z,t) € Q2 x R.

REMARK 1.1. (a) Hypotheses (Hy) and (Hs), which are important in
obtaining a compactness condition of Palais-Smale type, can be found

in [10,{11] with © is replaced by the entire space R,
(b) Let g(x,t) = alt|P~2tIn(1 + |t|) with a > 0. It is easy to see that the
function g does not satisfy (AR)-condition, but it satisfies (Hy)—(Hs).

Now we can state our main results.

THEOREM 1.2. Assume that (My),(Mz), (Hy),(H2), (Hs) and (Hy) hold.
Then, for all A > 0, problem has at least one nontrivial solution in WOI’H

THEOREM 1.3. Assume that (M), (Ms), (H1),(H2),(H3) and (Hs) hold.
Then, for all A > 0, problem has at least one montrivial solution in

1,H
Wet(Q).
2. PRELIMINARIES

To study problem , we need some definitions and basic properties of WO1 H
which form the so-called Musielak—Orlicz—Sobolev space. For more details, see
[3,/56,/13] and the references therein.

Denote by N(2) the set of all generalized N-functions (NN stands for nice).
Let us denote by H : 2 x [0, 4+00[ — [0, +00[ the functional defined as

H(z,t) =P + a(z)t?, for a.e. x € Q and for any ¢ € [0, +o0],
with 1 < p < gand 0 < a(.) € LY(Q). It is clear that H is a generalized
N-function, locally integrable and

H(x,2t) < 29H(x,t), for a.e. z € Q and for any ¢ € [0, +o0[,

which is called condition (Ag).
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We designate the Musielak—Orlicz space by
LQ) = {u :  — R is measurable and / H(z, |ul)dx < +oo},
Q

equipped with the so-called Luxembourg norm

\u]H—mf{)\>0 /7—[ \)x<1}
The Musielak—Orlicz—Sobolev space W1 () is defined as
WIH(Q) = {u e L*(Q) : [Vl € LH(Q)},
with the norm
[wll= luln + [Vuly.

We denote by WOIH(Q) the closure of C$°(2) in WH*(Q). With these

norms, the spaces L(Q), W(Q) and VVO1 H(Q) are separable reflexive Ba-
nach spaces [5},9].
On L*(Q), we consider the function py; : L*(Q) — R defined by

pu(w) = [ (P + a(a)luf do
The relationship between py and | - | is established by the next result.
PrOPOSITION 2.1 ([12]). For u € L*(Q), (u,) C L7(Q) and A > 0, we
have
(i) Foru#0, [uly =\ <= pu(%) =
(i) |uly <1(=1,>1) <= pp(u)
(ifi) [uly > 1= |uly < prlu) < |ulj;
(iv) Julu <1 = lulj; < pu(u) < fuly;
)

(v) lim |uply = 0 & lim py(uy) = 0 and lim |uy|y = +oo &
n—> o] n—+00 n——+oo
ProprosITION 2.2 ([5]). (i) If 1 < r < p*, then there is a continuous

embedding Wol’H(Q) — L"(Q). In particular, if 1 < r < p*, then the
embedding Wol’H(Q) — L"(92) is compact.

(ii) In Wol’H(Q), the following Poincaré-type inequality holds, that is, there
is a constant Cy > 0 independent of u such that

luly < ColVuly  forallu e WOIH(Q)

By the above Proposition, there exists ¢, > 0 such that
luly < cpllul|  for all u € W&’H(Q),

where |- | denotes the usual norm in L"(£2). It follows from (ii) of Proposition
that |Vuly and ||u|| are equivalent norms on VV1 Q). In the following
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discussion, we equip the space VVO1 Q) with the equivalent norm |Vu|y and
write [Ju|| = |[Vu|y for simplicity.
Let J : WhH(Q) — <W01’H(Q)> be defined by

) (T (u),0) = /Q (Va2 + a(e)|Val?~?) Va. Vodz,

for all u,v € Wol’H(Q), where (WOIH(Q))* denotes the dual space of WolH(Q)
and (-,-) stands for the duality pairing between W&’H(Q) and (WOIH(Q))*
ProposITION 2.3 ([12]).
(i) J is a continuous, bounded and strictly monotone operator.
(ii) J is a mapping of type (Sy), i.€, if up — u in WOIH(Q) and
lm (J(up) — J(u), un —u) <0,

n——4o0o

then u, — u in W&H(Q)

(iii) J is a homeomorphism.

In this paper, we denote by ¥ = I/VOLH7 Y* = (WOIH) the dual space. We

notice that problem has a variational structure, in fact, its solutions can
be searched as critical points of the energy functional I : ¥ — R given by

Ix(u) = o(u) = Mp(u),

where

— 1

o(u) =M (/ <\Vu|p + CL($)|Vu]q> dx) and Y(u) = / G(z,u)dx.
Q \P q Q

Then, it follows from assumption (H;) that I, € C*(Y,R), and its Fréchet

derivative is

(I(w), v)
=M (/Q <;|Vu]p + a(qx)Wu]q) d:z;) /Q (|IVulP~2 + a(z)|Vu|?™?) VuVudr
—/\/Qg(:v,u)vdx,

for any u,v € Y.
Let u € Y. We say that u is a weak solution of the problem if

M </Q (;Wu\p + “(qm)wu\q) da:) /ﬂ (IVulP~2 + a(z)|Vu|?™?) VuVudzr
= )\/Qg(:):,u)vdx,

forallveY.
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Next we give the definition of the Cerami condition which was introduced
by G. Cerami in [4].

DEFINITION 2.4. Let (X, ||-||) be a real Banach space and let J € C1(X,R).
Given ¢ € R, we say that J satisfies the (C').-Cerami condition if any sequence
(up) C X such that

J(un) = ¢ and | (un)[[x+ (1 + [Junl)) = 0

has a convergent subsequence. If this condition is satisfied at every level ¢ € R,
then we say that J satisfies the (C')-condition.

REMARK 2.5. It is clear from the above definition that if J satisfies the
(PS)-condition, then it satisfies the (C')-condition. However, there are func-
tionals that satisfy the (C)-condition but do not satisfy the condition (P.S)-
condition (see [4]). Consequently, the (C')-condition is weaker than the (PS)-
condition.

Now, we present the following theorem which will play a fundamental role
in the proof of main theorems.

THEOREM 2.6 ([2]). Let X be a real Banach space, let J : X — R be a
functional of class C1(X,R) that satisfies (C)-condition, J(0) = 0 and the
following conditions hold:

(i) There exist positive constants p and a such that J(u) > « for any
u € X with ||ul| = p.
(ii) There exists a function e € X such that ||e|]| > p and J(e) < 0.

Then, the functional J has a critical value ¢ > «, that is, there exists u € X
such that J(u) = ¢ and J'(u) =0 in X*.

3. PROOFS OF MAIN RESULTS

First of all, we begin by showing that the (C)-condition holds.

LEMMA 3.1. Assume that (M), (Ms),(H1),(Hs) and (Hy4) hold. Then, for
all A > 0, I satisfies the (C)-condition.

Proof. Let (u,) CY be a Cerami sequence for I, namely,
(3) D\(un) = ¢ and  [I3(un)[ly+(1 + [[un]]) = 0.

We need to prove the boundedness of the sequence (uy) in Y. To this end,
by contradiction, it is assumed that ||u,| — 400 as n — +o00. For n large
enough, by (M), we obtain

1
c+ 1> I(up) — ?q<13(un)aun>
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:1\7(/( Vur + A )|v e dx) /Ga:un
_ ;qM (/Q(pwunw + (q)|Vun|q)d:L‘> </Q(|wn|p +a(x)|Vun|q)dx>

A
+/g(xaun)undx
Q

> ¢ ([ GIvur + “2vumae) [ CIvu + “vu ma)

- 1qM (/Q(;Wum 4 C‘f)\vun\q)dx> (/Q(wunv? 4 a(x)\Vun\q)dx>

9
A
—)\/ G(m,un)dx—i-/g(x,un)undx
Q 0q Jo

> glqM (/Q(;wunm a(;)\vun\q)dx> </Q(|Vun|p+a(x)wun\q)dx>
- quM (/Q(;|Vun|p + ‘ﬁ@\vun\q)da (/Q(wunyp + a(x)\Vun\q)dx>

A
xaun)dx+/g(x7un)undx
0q Jo

|
>
Q

> )\/ F(x,up)dz.
Q
Therefore
(4) c+1> )\/ F(x,up)dz.
Q

Because ||u,|| > 1 for n large enough, using (M;) and (Msz), we obtain

¢ = I\(up) 4+ o(1)

:]\/4\</Q( Vun|” + al )|v n|q)dx> —/\/QG(a:,un)dx—i-o(l)

> %M (/Q(;wunv? + “(q“")\wmdx) (/Q(;wunw + “(qx)mnw)dx)

—)\/QG(x,un)dx—l—o(l)

> T - )\/ G, 1y )dz + o(1),
q Q
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which implies that

mo
5 —<hmsup —_—
(5) Ag = P fo

For 0 < a' <V, put

Ap(ad' V) = {x €Q:d <Juy(z)] < b'}.

Let a sequence (wy,) be defined by w,, = HZZII‘ Then,
lwnll =1 and |wplr < ¢pllwnl| = ¢ for r e [1,p*[.

Up to a subsequence, for w € Y, we may assume that
Wy — W inY;
(6) Wy — W in L'(Q),1 <r<p%
wp(z) = w(z) ae xze
Next, we need to distinguish two cases.

Case 1. If w = 0, then, we have w,, — 0 in L"(2) for any r € [1, p*[. Then,
by (Hy), we have

(7) / . |G(az,un)|dx < Co(r1 + r5)meas(Q)

funlP [[een [P

—0 asn— +oo.

Let ' = L Because n > %, then, 1 < pn’ < p*. Hence, using (Hy), and
@ we d uce that

‘G<x7 un)’dx — / |G(x7un)‘ ’wn‘de
A (r1,+00)

An(rioo)  [lunlP [un P
1

1
n n , n’
< / |G (2, un)| da / |wn [P da
Ay (r1,400) |un|p77 An(r1,+00)
1 1
1 n ' n
<e¢f (/ F(x,un)d:U) </ |ewn [P da:)
Ap(r1,400) Q

1
o

< ( </ |ewon [P daz) — 0, asn— +oo.

From (7)) and (| . we get

\qun Y R <P Gl un)l
Janl” nory Tl T Sy Tl

— 0, asn— +oo,

which contradicts .
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Case 2. If w# 0. Let Ag = {x €N:wx)# O}. Then, meas(Ag) > 0.

For all x € Ag, by @, we have
|un ()| = |wn(2)] [Jun|| — +oo.
Thus
Ao C Ay (r1,+00), for n large enough .
As the proof of , we obtain that
(9) / ]G(x,un)\dx < Co(r1 + 77 )meas(2)
An(0,71)

lunll® |

—0 asn— +4oo.

Furthermore, using (H»), (9), the fact that ]\/4\(t) < ]\//.7(1)(1+t9) forallt € Ry
and Fatou’s Lemma, we obtain

I)\(un)
1m
B a9

(H (Jo GVl + SLVunar) )
= lim P — /eqda:
nesoo ] o Jual
— 6
300 (14 (o3 IVunl? + ¥ 1))’ )
o
= P T
An(0,71) ||un||9q A (r1,400) Hun”ﬁq
M) (Jlun %+ unl|?) G, un)
< lim * T g

- n—oo Hun”eq //\n(r1,+oo) HunH@q

— lim (M) <1+19> —A/ G(Lg;)dx
n—+oo p A(ri+o0) [[unl]

—~ 1 .
< limsup ( M(1) (1 + 9> — )\/ G@iﬂ;)dx
n—+00 p An(r1,400) ||unH q
— 1 .
= M(1) <1+9> —)\liminf/ G(Lﬁ))dx
p n—=400 JA (r1,400) ||wn ||?9

= ]/\4\(1) (1 + 19> - A liminf/ Gla, un) XA (r1,400) (7)d

ntoo Jo lunl|%

1 n
1+ €> — )\/ liminfiG(x’u ) XAn(m,Jroo)(x)\wn]equ,
Q

n—+oo  |u,|%
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which implies that

(10) lim D(un) = —00

n—00[uy, |74

On the other hand, we have

‘m I)\(un) T C+O(1)
n—+oo||up||%4 oo lun %

(11) = 0.

Combining and , we get a contradiction. Therefore, (u,) is bounded
inY.

Finally, we need to prove that any (C)-sequence has a convergent subse-
quence. Let (u,) C Y be a (C)-sequence. Then, (u,) is bounded in Y.
Passing to the limit, if necessary, to a subsequence, from Proposition we
have

up, = u inY; up, — u in L"(Q); up(z) = u(x) ae. x €

N .

(12)
Vu, = Vu in (LH(Q)) ; on(Vuy) — k in R,

where 1 <7 < p* and py(u) = [, (% + a(;,;)%) da.

If £ = 0, because py(v) > p”T(v) > 0 for all v € Y, then it follows from
Proposition 2.1 that u,, — 0 in Y. Hence, let us suppose k > 0.
By (H3y), It is easy to compute directly that

/\g(x,un)—g(%U)Hun—UIdxS/(Ig(:r,un)!+!9(x,U)D\un—UIdx
Q Q
g/Q[CO <1+|un|s_1)+00 (1+|u|5—1)} |y, — | dz

< 200/ |up, — u| de + C’o/ |t | — ul da + C'o/ lu*~1 Juy, — u| da
Q Q Q

1
< 200/ |un, — u|dx + Cp (/ |un|(8—1)s/ dx) s </ —_—" d$>
Q o \Je
+ Cy </ \u|(81)5/d:1:> ) (/ |un, — ul® d:1:> ’
Q Q
s—1 1
= 200/ |un, — u|dx + Cp (/ [t ]® dx) </ |tun, — ul® dx>
Q - Q e
+ Cy (/ |ul® dx> ’ (/ |ty — ul® dl‘)s
Q Q

= 200 [tn, — uly + Co un]¥ " |un — ul, + Coluls ™" |uy — u

1
s

s

— 0, asn— oo,
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11

where % + é = 1. Therefore

/ lg (z,un) — g(x,u)||uy, —ul|dz — 0, asn — occ.
Q

On the other hand, using (M) and (12), we obtain

M ([ vl + “vuas) » 20 20, asn o
QbD

q
Next, since u, — u, by , we have
(I\(up), up —u) =0, asmn — +oo.
Then
a(x)

(T, ().t — ) = M </Q(;yvunyp + |Vun|q)dx> (T ()t — 1)

q
- / g(x,up)(up —u)de — 0, as n — +o0,
Q

where J is given in .

Since J is a mapping of type (S4) in view of Proposition we conclude

that u, — w in Y. The proof is complete.

LEMMA 3.2. Assume that (My),(M2), (H1),(H2) and (Hs) hold. Then, for

all X > 0, I satisfies the (C')-condition.

0

Proof. Let (u,) C Y be a Cerami sequence for I satisfying . As in the
proof of Lemma we only prove that (u,) is bounded in Y. By contradic-
tion, suppose that ||u,| — +0o0 as n — +00. Let a sequence (wy,) be defined
by wy, = ”Z—Z” Then, ||w,| =1 and |wy |, < ¢ |lwy| = ¢ for r € [1,p*[. Up to

a subsequence, for w € Y, we may assume that
wp, = w inY;
(13) wp —w in L7(Q),1 <r < ph
wp(z) 2 w(z) ae zel
By virtue of (My), (Ms) and (Hj), we have

c+1

2 o)~ L

> %M (/Q(;wun\p 4 o) ]Vun]q)d:r) (/Q(;|Vun|p + “(qx)\wnmdx)

q

I q

A
—)\/ G(x,un)dx+/g(x,un)unda:
Q HJo

Ly (/Q(;wum + a(x)|Vun|q)da:> </Q(|Vun|p + a(m)|Vun|q)dx>
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> elqM (/(\v N )\v A dx) (/Q(|Vun|p+a(x)wun\q)dx>

- ;M (/ A1V + (q)|Vun|q)d:L‘> </Q(|Vun|p + a(x)|Vun|q)dx>

— )\/ G(z,up)dzr + — A / g(x, up)upde

1 1
> mo ((,q - M) lun P — / fufPda

p—0q AB
> mo—g— = [unll” = —=[unl;.
Therefore,
36
(14) 1< Hbq lim sup|w, [D.

mo (M - HQ) n—+o0

It follows from and that w # 0. Similar to the proof of Lemma
by and , we can conclude a contradiction. The proof is complete. [

Proof of Theorem|[I.3. Let X =Y and J = I,. We know that I, satisfies
(C)-condition in Y from Lemma and I,(0) = 0 . To apply Theorem
we will show that I, has a mountain pass geometry.

First, we affirm that there exists o, M > 0 such that

I(u) > M, YueY with |ul|=o0.
In virtue of (Hy) and (H3), we deduce that for any € > 0, there is a c. > 0
such that
(15) lg(z,t)| < eltfPt +c|t|*™t,  forall (z,t) € Q xR,
|G(x,t)| < elt|P + cc|t|?, for all (z,t) € Q x R,

where s € ]g, p*[.
Therefore, in view of and Proposition for v € Y with [ju| < 1
sufficiently small, we get

Iﬂu)z]\?(/g( |VulP + ()|V ]qu) /GCITU,
> ZL;/Q(quP—I—(q>|Vu]q)d:U—)\/Q(slu|p—|—c€|u|5)dm

mo
g It = Ascplull” = Acee]jull”

Conclusively, there exists o, M > 0 such that I\(u) > M for any u € Y
with ||u]| = 0.

Next, we affirm that there exists e € Y such that |le|| > o and I)(e) < 0.

Y
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In fact, by (Hz), for all T' > 0, there exists d7 > 0 such that
G(x,t) > T|t|%, for |t| > dr and for almost all z € Q.
Next, from (H;), for any = € 2 and [t| < d7, we obtain
|G, t)] < Co(1+[o7*71).

The combination of the above two inequalities implies that there exists
Cr > 0 such that

G(x,t) > T|t|% — Cp, for all (z,t) € Q x R.
Hence, for u; € Y with w3 > 0 on 2 and ¢ > 1 large enough, we obtain

—~ 1
Iy(tu) = M (/ Aivtwp + M|Vtu1|q)dx> - )\/ Gla, tur)dz
QP q Q

p q 4
< M(1) <1 + </ﬂ(tp|Vu1|p + tqa(a:)|Vu1|q)dx> )

— )\T\t\‘gq/ luy|??da + ACrmeas(Q)
Q

M(1
< 20 [ (9P + oo Vunfdo — AT [ Jual*da
Q Q

+ ]/\/[\(1) + ACrmeas(2).

]\/1151) / (|Vui|P 4+ a(x)|Vur|?)da — )\T/ lup |9z < 0,
Q 9)

for T' > 0 large enough, we deduce
I\(tu;) — —o0, ast— +oo.

Hence, there exists t; > 1 and e = tju; € Y with ||e|| > o such that I)(e) <O0.
Finally, all conditions of Theorem [2.0] are satisfied, so that, for all A > 0,

the problem has a nontrivial weak solution in Y. O

Proof of Theorem[1.3 Taking into account Lemma/[3.2] the rest of the proof

is totally similar to the proof of Theorem [1.2 O
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