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A LIOUVILLE THEOREM FOR F-HARMONIC MAPS
WITH MODERATE DIVERGENT ENERGY

HO CHOR YIN

Abstract. In this paper, we obtain a Liouville theorem of F -harmonic maps
between complete Riemannian manifolds with moderate divergent F -energy. We
assume that F is a concave function and satisfies a differential inequality. We
employ Ara’s F -stress-energy tensor and the Hessian comparison theorem to
prove the main result.
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1. INTRODUCTION

Harmonic maps [5,11] are critical points of the energy functional defined on
the space of smooth maps between Riemannian manifolds. In [1], the author
introduced the theory of F -harmonic maps to unify various types of harmonic
map, e.g. p-harmonic maps and exponentially harmonic maps. Liouville type
properties of harmonic maps were studied by several authors.( cf. [3,8,9] and
the reference therein). In this paper, we study Liouville type properties of F -
harmonic maps with moderate divergent F -energy (see Definition 2.5). That
is, we study conditions for which a F -harmonic map with moderate divergent
F -energy u between two Riemannian manifolds (M, g) and (N,h) is a constant
map. In [11, p. 46], the author obtained the following

Theorem 1.1 ([11]). Let M be a Cartan-Hadamard manifold of dimension
m whose sectional varies in a small range, and u a harmonic map from M into
any Riemannian manifold N with moderate divergent energy. If the dimension
m of the domain manifold is greater than 2, then u has to be constant.

Recall that a Cartan-Hadamard manifold is a complete simply-connected,
non-positive sectional curvature Riemannian manifold. We want to know
whether for F -harmonic map, we can have similar Liouville type properties.
In [4], the authors performed deep analysis about the growth rate of F -energy
and used asymptotic assumption of the map at infinity to obtain a series of
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Liouville theorems under various conditions e.g. pinching of radial curvature
of the domain manifold. In [10], the author obtained some Liouville theorems
under finiteness F -energy condition. To the best of our knowledge, Liouville
theroem for F -harmonic maps with the moderate energy divergent condition
(In the sense of Xin’s works) have not appeared in the literature. A key ingre-
dient in Xin’s proof is the conservation law of u in terms of the the vanishing
of the divergence of the stress energy tensor of harmonic map. Therefore, we
need to find a conservation law for F -harmonic map with a suitably defined
F -stress energy tensor. It is known that the Ara’s stress-energy tensor (See
(7)) for F -harmonic map is conserved [1] and we shall use this tensor in our
study. Our main theorem is the following

Theorem 1.2. Let (Mm, g),m > 2 be a complete, simply connected with
nonnegative sectional curvature Riemannian manifold which has a pole and
(Nn, h) be any Riemannian manifold. Let u : (Mm, g) → (Nn, h) be F -
harmonic map where F : (0,∞) → [0,∞) is a C2 function such that F (0) = 0,
F ′ > 0 on (0,∞) and F is a concave function satisfying the differential in-
equality ,

tF ′(t)/F (t) ≤ C(1)

where C is a positive constant. Assume that the sectional curvature of (Mm, g)
varies in a small range, more precisely, we assume that the radial curvature
k of the domain manifold M satisfies −c21 ≤ k ≤ −c22 < 0, where c1, c2 are
positive constants, and with moderate divergent F -energy. Then the map u
has to be constant.

To replace the condition finiteness of F -energy with the condition of mod-
erate divergent F -energy, we assume that the function F (t) is concave and
satisfies a differential inequality. To prove the main result, we firstly obtain
an identity about the divergence of the F -stress energy tensor and take in-
tegration to obtain Lemma 2.4; then we apply Hessian comparison theorem
to get some key estimates. Throughout this paper, we will adopt Einstein
summation convention: sum on repeated indices. This paper is organized as
follows, in Section 2, we recall definition of F -harmonic maps, conservation
law and stress energy tensor. In Section 3, we present the proof of the main
results.

2. PRELIMINARIES

2.1. F-ENERGY AND F-HARMONIC MAPS

Let F : R → R be a C∞ function. For a smooth map u between Riemannian
manifolds (M, g) and (N,h), the F -energy EF (u) is defined by

(2) EF (u) =

∫
M

F

(
|du|2

2

)
∗ 1.
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While let us recall the energy of E(u) is defined by

(3) E(u) =

∫
M

(
|du|2

2

)
∗ 1 =

∫
M

(
1

2
hαβ

∂uα

∂xi
∂uβ

∂xj
gij

)
∗ 1.

Here, the volume element

∗1 =
√

|g|dx1 ∧ · · · ∧ dxm.(4)

A smooth map u : (M, g) → (N,h) is said to be F–harmonic if u|Ω is a critical
point of the F–energy Ef (u) for every compact domain Ω ∈ M .

2.2. CONSERVATION LAW FOR F-HARMONIC MAP

Let u : (M, g) → (N,h) be a smooth map. Let E and u∗h denote the
energy density and the first fundamental form, respectively. Let E(u) :=
|du|2
2 , EF (u) := F ( |du|

2

2 ). For harmonic maps, the stress-energy(SE) tensor Su

is defined by

Su = E(u)g − u∗h,(5)

which is a symmetric 2-tensor. Here, E(u) denotes the energy density function.
A detailed treatment on stress-energy tensor of harmonic map can be found in
[2, 5]. For harmonic maps between manifolds, the basic relation between the
stress-energy tensor and harmonic maps is the following [5]

Proposition 2.1. divSu = −⟨τu, du⟩.

Definition 2.2. Let u : (Mm, g) → (Nn, h) be any smooth map. If u
satisfies divSu ≡ 0, then we say that the map u satisfies the conservation law.

The Euler-Lagrange equation of F -harmonic map gives us,

τFu = F ′(E(u))τu + u∗
(
grad(F ′(E(u)))

)
.(6)

and we have the following F -stress-energy tensor [1],

SF
u = F (E(u))g − F ′(E(u))u∗h.(7)

Then, it holds that

divSF
u = −⟨τFu ,du⟩.(8)

Remark 2.3. We say that the F -stress energy tensor is conserved or satisfies
a conservation law since it satisfies the equation(8).

Lemma 2.4. Assume that D ⋐ M is a geodesic ball and its boundary ∂D
is a geodesic sphere, and u is F -harmonic. Choose a local orthonormal frame
field of M along ∂D such that f1, . . . , fm−1 ∈ Γ(T∂D), fm is the normal vector
of ∂D, n := fm , we have∫

∂D

(
F (E(u))⟨X,n⟩ − F ′(E(u))⟨u∗X,u∗n⟩)

)
∗ 1 =

∫
D
⟨SF

u ,∇X⟩ ∗ 1,(9)
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where

⟨SF
u ,∇X⟩ = F (E(u))divX − F ′(E(u))⟨u∗ei, u∗ej⟩h⟨∇eiX, ej⟩g.(10)

Proof. Let {ei} be an orthonormal frame near a point p ∈ M such that
∇eiej |p = 0. Let X ∈ Γ(TM) be any vector field on M , we have

div(F (E(u)X) = X(F (E(u))) + F (E(u))divX
= F ′(E(u))X(E(u)) + F (E(u))divX
= F ′(E(u))X(E(u)) + ⟨∇X,F (E(u))g⟩,

(11)

where we use the notation

∇X(ei, ej) := ⟨∇eiX, ej⟩.(12)

In the following, we will use du(ei) = u∗ei interchangeably for simplicity. We
compute the first term in (11) as follows,

F ′(E(u))X(E(u)) = F ′(E(u))1
2
∇X⟨u∗ei, u∗ei⟩

= F ′(E(u))⟨∇Xu∗ei, u∗ei⟩
= F ′(E(u))⟨(∇Xdu)ei, u∗ei⟩
= F ′(E(u))⟨(∇eidu)X,u∗ei⟩
= ⟨(∇eidu)X,F ′(E(u))u∗ei⟩
= ⟨∇ei(du(X)), F ′(E(u))u∗ei⟩ − ⟨du(∇eiX), F ′(E(u))u∗ei⟩
= ∇ei⟨du(X), F ′(E(u))u∗ei⟩ − ⟨du(X),∇ei(F

′(E(u))u∗ei)⟩
− ⟨du(∇eiX), F ′(E(u))u∗ei⟩
= ∇ei⟨du(X), F ′(E(u))u∗ei⟩ − ⟨du(X),∇ei(F

′(E(u))u∗ei)⟩
− F ′(E(u))⟨du(∇eiX), u∗ei⟩
= ∇ei⟨du(X), F ′(E(u))u∗ei⟩ − ⟨du(X), τFu ⟩
− F ′(E(u))⟨du(∇eiX), u∗ei⟩
= div

(
F ′(E(u))⟨u∗X,u∗ei⟩ei

)
− ⟨u∗X, τFu ⟩

− F ′(E(u))⟨∇eiX, ej⟩⟨u∗ei, u∗ej⟩
= div

(
F ′(E(u))⟨u∗X,u∗ei⟩ei

)
− ⟨u∗X, τFu ⟩

− F ′(E(u))⟨∇X,u∗h⟩,
substituting this into (11), we have

div(F (E(u)X) = div
(
F ′(E(u))⟨u∗X,u∗ei⟩ei

)
− ⟨u∗X, τFu ⟩ − F ′(E(u))⟨∇X,u∗h⟩+ ⟨∇X,F (E(u))g⟩,
= div

(
F ′(E(u))⟨u∗X,u∗ei⟩ei

)
− ⟨u∗X, τFu ⟩+ ⟨SF

u ,∇X⟩.

(13)
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As D ⋐ M is a geodesic ball and its boundary is a geodesic sphere, and u is
a F -harmonic map and {ei} be an orthonormal frame near a point p ∈ ∂D
such that e1, . . . , em−1 ∈ Γ(T∂D), em is the normal vector of ∂D, n := em
and ∇eiej |p = 0, taking integration on D for (13), we obtain∫

∂D

(
F (E(u))⟨X,n⟩ − F ′(E(u))⟨u∗X,u∗n⟩)

)
∗ 1 =

∫
D
⟨SF

u ,∇X⟩ ∗ 1.

The proof is completed. □

We modify the definition of the condition of moderate divergent energy in
[11] for F -energy to obtain the following

Definition 2.5. If there is a positive function η(r) and R0 > 0 such that∫ ∞

R0

dr

rη(r)
= ∞,

then we have

lim
R→∞

∫
BR(x0)

F (E(u))(x)
η(r(x))

∗ 1 < ∞.

Then, we say that u is moderate F -energy divergent.

3. PROOF OF MAIN RESULTS

In this section, we will give the proof of Theorem 1.2.

Proof. Let D = BR(x0) be a geodesic ball of radius R and centered at x0
and its boundary is the geodesic sphere ∂BR(x0). It is clear that the square of
the distance function from x0 in BR(x0) is smooth. Let ∂

∂r be the unit radial
vector field which is also the unit normal vector field n to ∂BR(x0). Take
X = r ∂

∂r in (9). L.H.S of (9) becomes∫
∂BR(x0)

(
F (E(u))⟨X,n⟩ − F ′(E(u))⟨u∗X,u∗n⟩)

)
∗ 1

=

∫
∂BR(x0)

RF (E(u)) ∗ 1−
∫
∂BR(x0)

F ′(E(u))R⟨u∗
∂

∂r
, u∗

∂

∂r
⟩) ∗ 1

≤ R

∫
∂BR(x0)

F (E(u)) ∗ 1.

We want to obtain a lower bound of the R.H.S. of (9), to this end, we compute
the following first,

∇ ∂
∂r
X = ∇ ∂

∂r
(r

∂

∂r
) =

∂

∂r
,(14)

∇esX = ∇es(r
∂

∂r
) = r∇es

∂

∂r
= rHess(r)(es, et)et,(15)

divX = 1 + rHess(r)(es, es),(16)
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where {eα} :=
{
es,

∂
∂r

}
is a local orthonormal frame near x0 on BR(x0). Using

(15),(16), we have

⟨u∗eα, u∗eβ⟩⟨∇eαX, eβ⟩

= ⟨u∗es, u∗et⟩⟨∇esX, et⟩+ ⟨u∗
∂

∂r
, u∗et⟩⟨∇esX, et⟩

+ ⟨u∗es, u∗
∂

∂r
⟩⟨∇esX,

∂

∂r
⟩+ ⟨u∗

∂

∂r
, u∗

∂

∂r
⟩⟨∇ ∂

∂r
X,

∂

∂r
⟩

= ⟨u∗es, u∗et⟩⟨∇esX, et⟩+ ⟨u∗
∂

∂r
, u∗

∂

∂r
⟩

= rHess(r)(es, et)⟨u∗es, u∗et⟩+ ⟨u∗
∂

∂r
, u∗

∂

∂r
⟩.

(17)

Using (10),(17), we obtain

⟨SF
u ,∇X⟩ = F (E(u))divX − F ′(E(u))⟨u∗eα, u∗eβ⟩h⟨∇eαX, eβ⟩g

= F (E(u))(1 + rHess(r)(es, es))

− F ′(E(u))
(
rHess(r)(es, et)⟨u∗es, u∗et⟩+ ⟨u∗

∂

∂r
, u∗

∂

∂r
⟩
)
.

(18)

We consider the case that when the radial curvature k of the domain manifold
M satisfies −c21 ≤ k ≤ −c22 < 0, where c1, c2 are positive constants. Using
the Hessian comparison theorem [7], we see that (18) becomes

⟨SF
u ,∇X⟩ ≥ F (E(u))[1 + (m− 1)(c2r) coth(c2r)]

− F ′(E(u))
∣∣∣∣u∗ ∂

∂r

∣∣∣∣2 − F ′(E(u))(c1r) coth(c1r)⟨u∗es, u∗es⟩

= F

(
1

2
⟨u∗es, u∗es⟩+

1

2
⟨u∗

∂

∂r
, u∗

∂

∂r
⟩
)
[1 + (m− 1)(c2r) coth(c2r)]

− F ′(E(u))
∣∣∣∣u∗ ∂

∂r

∣∣∣∣2 − F ′(E(u))(c1r) coth(c1r)⟨u∗es, u∗es⟩

≥
{
F

(
1

2
⟨u∗es, u∗es⟩

)
+ F

(
1

2
⟨u∗

∂

∂r
, u∗

∂

∂r
⟩
)}

[1 + (m− 1)(c2r) coth(c2r)]

− F ′(E(u))
∣∣∣∣u∗ ∂

∂r

∣∣∣∣2 − F ′(E(u))(c1r) coth(c1r)⟨u∗es, u∗es⟩

≥ [F (
1

2
⟨u∗es, u∗es⟩) + F (

1

2

∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)]
[1 + (m− 1)(c2r) coth(c2r)]

− F ′(
1

2

∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)(∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)

(19)
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− F ′(
1

2
⟨u∗es, u∗es⟩)(c1r) coth(c1r)(⟨u∗es, u∗es⟩)

≥ F (
1

2
⟨u∗es, u∗es⟩) + r coth(c2r)[(m− 1)c2F (

1

2
⟨u∗es, u∗es⟩)

− ⟨u∗es, u∗es⟩c1F ′(
1

2
⟨u∗es, u∗es⟩)] + F (

1

2

∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)
− F ′(

1

2

∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)(∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)
≥ B1[F (

1

2
⟨u∗es, u∗es⟩) + F (

1

2

∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)]
where B1 is a positive constant. Using (9) and (19), we obtain

R

∫
∂BR(x0)

F (E(u)) ∗ 1

≥
∫
BR(x0)

B1[F (
1

2
⟨u∗es, u∗es⟩) + F (

1

2

∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)] ∗ 1.(20)

We will finish the proof by contradiction. If u is not a constant map then

F (12⟨u∗es, u∗es⟩) + F (12
∣∣u∗ ∂

∂r

∣∣2) is not identically equal to zero. There exists
R0 > 0, such that whenever R > R0, we have∫

BR(x0)
[F (

1

2
⟨u∗es, u∗es⟩) + F (

1

2

∣∣∣∣u∗ ∂

∂r

∣∣∣∣2)] ∗ 1 ≥ B2,(21)

where B2 is a positive constant. Combining (20) and (21), we have∫
∂BR(x0)

F (E(u)) ∗ 1 ≥ B1B2

R
.(22)

As we assume that u is moderate F -energy divergent, we recall that if there
is a positive function η(r) and R0 > 0 such that∫ ∞

R0

dr

rη(r)
= ∞,(23)

then we have

lim
R→∞

∫
BR(x0)

F (E(u))(x)
η(r(x))

∗ 1 < ∞.(24)

Now, by using (24), (22) implies that

lim
R→∞

∫
BR(x0)

F (E(u))(x)
η(r(x))

∗ 1 =

∫ ∞

0

dr

η(r)

∫
BR(x0)

F (E(u)) ∗ 1

≥ B1B2

∫ ∞

0

dr

rη(r)

≥ B1B2

∫ ∞

R0

dr

rη(r)
= ∞.
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This contradicts to the fact that u is moderate F -energy divergent. We con-
clude that u has to be a constant map. □

Corollary 3.1. Assume that (Mm, g),m > 2 is a complete, simply con-
nected with nonnegative sectional curvature Riemannian manifold which has a
pole and (Nn, h) be any Riemannian manifold. Let u : (Mm, g) → (Nn, h) be
F -harmonic map where F : (0,∞) → [0,∞) is a C2 function such that F (0) =
0, F ′ < 0 Assume that the sectional curvature k of (Mm, g) satisfies:−c21 ≤
k ≤ −c22 < 0, where c1, c2 are positive constants., with moderate divergent
energy. Then u has to be constant.

Proof. The setup is similar to that of the previous proof. As before, using
the Hessian comparison theorem, we see that (18) becomes

⟨SF
u ,∇X⟩ ≥ F (E(u))[1 + (m− 1)(c2r) coth(c2r)]

− F ′(E(u))
∣∣∣∣u∗ ∂

∂r

∣∣∣∣2 − F ′(E(u))(c1r) coth(c1r)⟨u∗es, u∗es⟩

≥ CF (E(u)).
The remaining steps are similar to the proof of Theorem 1.2 and we omit
them. □
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