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A LIOUVILLE THEOREM FOR F-HARMONIC MAPS
WITH MODERATE DIVERGENT ENERGY

HO CHOR YIN

Abstract. In this paper, we obtain a Liouville theorem of F-harmonic maps
between complete Riemannian manifolds with moderate divergent F-energy. We
assume that F' is a concave function and satisfies a differential inequality. We
employ Ara’s F-stress-energy tensor and the Hessian comparison theorem to
prove the main result.
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1. INTRODUCTION

Harmonic maps [54[11] are critical points of the energy functional defined on
the space of smooth maps between Riemannian manifolds. In [1], the author
introduced the theory of F-harmonic maps to unify various types of harmonic
map, e.g. p-harmonic maps and exponentially harmonic maps. Liouville type
properties of harmonic maps were studied by several authors.( cf. |3//8,9] and
the reference therein). In this paper, we study Liouville type properties of F-
harmonic maps with moderate divergent F-energy (see Definition . That
is, we study conditions for which a F-harmonic map with moderate divergent
F-energy u between two Riemannian manifolds (M, g) and (N, h) is a constant
map. In |11, p. 46], the author obtained the following

THEOREM 1.1 ([11]). Let M be a Cartan-Hadamard manifold of dimension
m whose sectional varies in a small range, and u a harmonic map from M into
any Riemannian manifold N with moderate divergent energy. If the dimension
m of the domain manifold is greater than 2, then u has to be constant.

Recall that a Cartan-Hadamard manifold is a complete simply-connected,
non-positive sectional curvature Riemannian manifold. We want to know
whether for F-harmonic map, we can have similar Liouville type properties.
In [4], the authors performed deep analysis about the growth rate of F-energy
and used asymptotic assumption of the map at infinity to obtain a series of
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Liouville theorems under various conditions e.g. pinching of radial curvature
of the domain manifold. In [10], the author obtained some Liouville theorems
under finiteness F-energy condition. To the best of our knowledge, Liouville
theroem for F-harmonic maps with the moderate energy divergent condition
(In the sense of Xin’s works) have not appeared in the literature. A key ingre-
dient in Xin’s proof is the conservation law of u in terms of the the vanishing
of the divergence of the stress energy tensor of harmonic map. Therefore, we
need to find a conservation law for F-harmonic map with a suitably defined
F-stress energy tensor. It is known that the Ara’s stress-energy tensor (See
(7)) for F-harmonic map is conserved [I] and we shall use this tensor in our
study. Our main theorem is the following

THEOREM 1.2. Let (M™,g),m > 2 be a complete, simply connected with
nonnegative sectional curvature Riemannian manifold which has a pole and
(N™ h) be any Riemannian manifold. Let uw : (M™,g) — (N™ h) be F-
harmonic map where F : (0,00) — [0,00) is a C? function such that F(0) = 0,
F' > 0 on (0,00) and F is a concave function satisfying the differential in-
equality ,

(1) tF'(t)/F(t) < C

where C' is a positive constant. Assume that the sectional curvature of (M™, g)
varies in a small range, more precisely, we assume that the radial curvature
k of the domain manifold M satisfies —c% < k< —cg < 0, where c1,co are
positive constants, and with moderate divergent F-energy. Then the map u
has to be constant.

To replace the condition finiteness of F-energy with the condition of mod-
erate divergent F-energy, we assume that the function F'(t) is concave and
satisfies a differential inequality. To prove the main result, we firstly obtain
an identity about the divergence of the F-stress energy tensor and take in-
tegration to obtain Lemma then we apply Hessian comparison theorem
to get some key estimates. Throughout this paper, we will adopt Einstein
summation convention: sum on repeated indices. This paper is organized as
follows, in Section 2, we recall definition of F-harmonic maps, conservation
law and stress energy tensor. In Section 3, we present the proof of the main
results.

2. PRELIMINARIES

2.1. F-ENERGY AND F-HARMONIC MAPS

Let F : R — R be a C*° function. For a smooth map u between Riemannian
manifolds (M, g) and (N, h), the F-energy Ep(u) is defined by

(2) Er(u) = /MF <‘dg‘> ‘.
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While let us recall the energy of E(u) is defined by

|du|? / 1, ou*ou’

3 E — 1 == 7ha = B 1
3) (u) /M( 2 . M\ 2 0 0at 0i )
Here, the volume element
(4) ¥1 = /|gldzt A - Ada™.

A smooth map wu : (M, g) — (N, h) is said to be F~harmonic if u|q is a critical
point of the F'—energy E(u) for every compact domain € € M.

2.2. CONSERVATION LAW FOR F-HARMONIC MAP

Let uw : (M,g) — (N,h) be a smooth map. Let £ and u*h denote the
energy density and the first fundamental form, respectively. Let £(u) :=
2 2
|dgl yEr(u) == F(%) For harmonic maps, the stress-energy(SE) tensor .S,
is defined by

(5) Sy =E(u)g —u*h,

which is a symmetric 2-tensor. Here, £(u) denotes the energy density function.
A detailed treatment on stress-energy tensor of harmonic map can be found in
[2,5]. For harmonic maps between manifolds, the basic relation between the
stress-energy tensor and harmonic maps is the following [5]

PropoOsSITION 2.1. divS, = — (7, du).

DEFINITION 2.2. Let uw : (M™,g) — (N",h) be any smooth map. If u
satisfies div.S,, = 0, then we say that the map u satisfies the conservation law.

The Euler-Lagrange equation of F-harmonic map gives us,
(6) = F(E(u))m + e (grad(F(E(w)))
and we have the following F-stress-energy tensor [1],
(7) SF = F(£())g — F/(€())ush.
Then, it holds that
(8) divSt = —(rF du).

REMARK 2.3. We say that the F-stress energy tensor is conserved or satisfies
a conservation law since it satisfies the equation.

LEMMA 2.4. Assume that D € M is a geodesic ball and its boundary 0D
s a geodesic sphere, and v is F-harmonic. Choose a local orthonormal frame
field of M along 0D such that f1,..., fm—1 € T(TOD), fm is the normal vector
of 0D, n := f,, , we have

(9) /w (F(E(u))(X,n) — F'(£(u)){u. X, um))) *1:/<55,VX>*17

D
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where
(10) (SE VX)) = F(E(u)divX — F'(E(u))(usei, uxej)n(Ve, X, ).
Proof. Let {e;} be an orthonormal frame near a point p € M such that
Ve,ejlp =0. Let X € I'(T'M) be any vector field on M, we have
div(F(E(u)X) = X(F(E(w))) + F(E(u))divX
"(EW)X(E(w)) + F(E(u))divX
(E@) X (E W) + (VX F(E(w))g),

(11) F
F

where we use the notation
(12) VX(ei,ej) == (Ve X, €5).

In the following, we will use du(e;) = u.e; interchangeably for simplicity. We
compute the first term in as follows,

qu*ei,u*el)

(Vxdu)e;, use;)

(Ve,du) X, use;)

X, F'(E(u))ue;)

S FI(E(u))uxes) — (du(Ve, X), F'(E(u) Juve;)
(

(€(u)

o~~~

u))uxe;) — (du(X), Ve, (F' (€ (u))uxei))
Juse;
) (du(X), Ve, (F'(E(u))use;))

Yuse;

s

(
= V. (du(X), F(E(u))use;
— F'(E(u){(du(Ve, X), uxe;
= div (F'(E(u))(ueX, usei)e;) — (usX, )
— F(E)(Ve, X, ) (s, ;)
= div (F'(E(u)) (ue X, uses)e;) — (ue X, )
- F’(S(u))(VX, u”h),
substituting this into , we have
div(F(E(u)X) = div (F'(€(u)) (ue X, use;)e;)
(X, 7F) — F(E(w) (VX,uh) + (VX, F(E(u))g),
= div (F'(E(u)) (U X, use;)e;)
— (u X, 7Y + (ST, v X).

)
) —

X)), usei)
) — (du(X), 7))
)

(13)
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As D @ M is a geodesic ball and its boundary is a geodesic sphere, and wu is
a F-harmonic map and {e;} be an orthonormal frame near a point p € 9D
such that eq,...,en—1 € I'(TOD), e, is the normal vector of 9D, n := e,
and V,e;|, = 0, taking integration on D for , we obtain

/ (F(E(u){(X,n) — F'(E(u))(ue X, uem))) * 1 = / (SE v X)*1.
oD D

The proof is completed. O

We modify the definition of the condition of moderate divergent energy in
[11] for F-energy to obtain the following

DEFINITION 2.5. If there is a positive function 7(r) and Ry > 0 such that
/°° dr
g OO,
Ro T(r)

lim F(E(u)) ()
R—00 JBp(ze)  N(r())

Then, we say that u is moderate F-energy divergent.

then we have

* 1 < oo.

3. PROOF OF MAIN RESULTS
In this section, we will give the proof of Theorem

Proof. Let D = Bg(x¢) be a geodesic ball of radius R and centered at z
and its boundary is the geodesic sphere dBr(xg). It is clear that the square of
the distance function from zy in Bgr(x) is smooth. Let % be the unit radial
vector field which is also the unit normal vector field n to dBg(zp). Take
X = r% in @ L.H.S of @ becomes

/ (F(E(u){X,n) — F'(E(u))(ue X, uem))) * 1
OBR(zo)

/ 9 L9\,
:/8312(%) RF(S(u))*1—/(93R($0)F(5(u))R<u*ar, N1

<R F(&E(u)) * 1.
OBR(xo)

We want to obtain a lower bound of the R.H.S. of @, to this end, we compute
the following first,

0 0
0 0
Ve X = Ves(rg) = TVSSE
(15) = rHess(r)(es, er)ey,

(16) divX =1+ rHess(r)(es, es),
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where {eq} = {es, %} is a local orthonormal frame near xg on Br(zp). Using
,, we have
(ureq, useg)(Ve, X, €5)

(9
= (uxes, user)(Ve, X, er) + (us u*et><VesX et)
d

0 8 d 0
(17) + (u*es,u*5><vesX,E)+ <u*8 (‘3 ><V X Yo =)
= <U*657u*et>< eéX et> < >
d
= rHess(r)(es, €) (uses, urer) + <u*§, u*5>

Using ,, we obtain

(SF,VX) = P(E()divX — F'(€(w)) (teeas uses)(Ve, X, e5)g
(18) = F(E(w))(1 4 rHess(r)(es, €5)) , ;
— F'(E(u)) (rHess(r)(es, er)(uses, user) + <u*€9r’u*8r>> .
We consider the case that when the radial curvature & of the domain manifold

M satisfies —c2 < k < —c3 < 0, where cy,co are positive constants. Using
the Hessian comparison theorem [7], we see that (18) becomes

(SE VX)) > F(E(u)[1 + (m — 1)(car) coth(car)]

2
— F'(&(u))

Usmy | = F'(E(u))(c1r) coth(cir){uses, ues)

_F (1 (U, Unes) + ;<u*§,u*§>> [+ (m — 1)(car) coth(car)]

2
— F'(E(u)) |u — F'(E(u))(crr) coth(cyr)(uses, uses)

*or

(19) > {F <;<U*657u*68>> + F <;(u*£,u*£>>}

[1 4 (m — 1)(cor) coth(car)]

o 12

— F'(E(u)) Usm |~ F'(E(u))(err) coth(crr) (uses, uses)
2

> [P {uses,wees)) + F5 [ | )

[1+ (m — 1)(cor) coth(car)]

a|? o |?
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- F/(%<’U«*€5, uxes))(c1r) coth(err)((uses, uses))

> F(%(u*es, uxes)) + rcoth(c2r)[(m — 1)02F(%<u*6s, Uses))

—{ ) F’(1< >)]+F(1 o 2)
Ux€s, UxE5)C] 5 UxCg, Uy Cy 5 u*8r
A A Y
F(2 “*ar ) u*ar )
1 1| o
> - Z —_
- BI[F<2 <u*657u*65>) + F(2 U 87, )]

where Bj is a positive constant. Using @D and ((19), we obtain

R/aBR(IO) F(E(u))x1

1 1

(20) o[
> /BR(xo) Bl[F(§<u*€S7U*65>) +F(5

5 (W5, )] * 1.

We will finish the proof by contradiction. If u is not a constant map then

F(%(u*es,u*es)) + F(% ‘u*%f) is not identically equal to zero. There exists
Ry > 0, such that whenever R > Ry, we have

2

1 1
21 / F(=(uses, uses)) + F(= |us— x 1> By,
(21) LT )+ F; s | )
where Bj is a positive constant. Combining and , we have
BB
(22) / F(E(u) 1> 2122
8B (x0) R

As we assume that u is moderate F-energy divergent, we recall that if there
is a positive function n(r) and Ry > 0 such that

> dr
2 7t =
then we have
(24) lim FlE(w)(z) * 1 < oo0.

R—o0 /B (o) n(r(x

Now, by using , implies that

. PE@)@) | _ [* dr .
A o 0@ T /0 ) /BRWF“( Nx1
o dr
ZBIB2/0 rn(r)

> d
ZBlBg/ ! = OQ.
Ro TN(T)
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This contradicts to the fact that w is moderate F-energy divergent. We con-
clude that u has to be a constant map. O

COROLLARY 3.1. Assume that (M™,g),m > 2 is a complete, simply con-
nected with nonnegative sectional curvature Riemannian manifold which has a
pole and (N™,h) be any Riemannian manifold. Let u: (M™,g) — (N™, h) be
F-harmonic map where F : (0,00) — [0, 00) is a C? function such that F(0) =
0, ' < 0 Assume that the sectional curvature k of (M™, g) satisfiesi—c? <
k < —c3 < 0, where c1,c2 are positive constants., with moderate divergent
energy. Then u has to be constant.

Proof. The setup is similar to that of the previous proof. As before, using
the Hessian comparison theorem, we see that ((18]) becomes

(8F VX)) > F(E())[1 + (m — 1)(cor) coth(cyr)]

2
— F'(E(u)) Uso| — F'(E(w))(err) coth(err) (uses, uses)
r
> CF(&E(u)).
The remaining steps are similar to the proof of Theorem and we omit
them. O]
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