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EXPLICIT CRITERIA FOR THE OSCILLATION
OF CAPUTO TYPE FRACTIONAL-ORDER DELAY

DIFFERENTIAL EQUATIONS

RAJASEKAR DEEPALAKSHMI, SIVAGANDHI SARAVANAN, ETHIRAJU
THANDAPANI, and ERCAN TUNÇ

Abstract. New explicit criteria for the oscillation of all solutions of first and
second-order delay differential equations including the Caputo fractional deriv-
ative are presented. Examples illustrating the importance and novelty of the
main results are included.
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1. INTRODUCTION

This paper is concerned with the oscillatory behavior of all solutions of the
fractional-order delay differential equations of the form

(1) x′(t) + p CDα
0 x(t) + qx(t− τ) = 0,

and

(2) x′′(t) + p CDα
0 x(t) + qx(t− τ) = 0,

where t > 0, p, q, τ ∈ R+, α ∈ (0, 1), and CDα
0 x denotes the Caputo fractional

derivative of x of order α, that is,

CDα
0 x(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αx′(s)ds, t ≥ 0;

for the definition of the Caputo derivative of order α ∈ (n − 1, n), n ≥ 1, see
[3, 6, 13,15] for details.

As usual, a nontrivial solution of a differential equation is said to be oscil-
latory if it is neither eventually positive nor eventually negative. Otherwise,
it is called nonoscillatory. If all the solutions of an equation are oscillatory,
then this equation itself is called oscillatory.

In recent years, fractional-order differential equations have gained consider-
ably more attention among the researchers due to these type of equations find
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applications in various fields of the natural sciences and engineering. Readers
interested in the applications of equations of this kind can refer to [11,12,15].

Caputo fractional derivative is widely used in the control theory and to
describe economic processes because of its good explanation about the memory
of characteristics of economic variables [12, 17]. It also is useful to note that
the Laplace transform of Caputo’s derivative has a similar transformation as
that of integer-order derivatives. Next, we recall some facts about the Laplace
transform, which play a significant role in the proofs of the main results. Let
x : [0,∞) → R be a real-valued function. The Laplace transform of x(t) is
denoted by L[x(t)] or X(s) and is given by the improper integral

(3) X(s) = L[x(t)] =
∫ ∞

0
e−stx(t)dt,

and the abscissa of convergence of the Laplace transformX(s) of x(t) is defined
as

δ0 = inf{δ ∈ R : X(δ) exists}.

Therefore, X(s) exists for Re(s) > δ0. The Laplace transform of the Caputo
fractional derivative of x(t) of order α ∈ (0, 1) is given by (see [4, 15])

L[CDα
0 x(t)] = sαX(s)− sα−1x(0),

and the integer order derivative are

L[x′(t)] = sX(s)− x(0),

and

L[x′′(t)] = s2X(s)− sx(0)− x′(0).

The oscillation theory of fractional-order differential equations received less
attention compared to integer-order differential equations; we can refer the
reader to [1, 2, 5, 7, 8, 14, 16, 18] and the references therein for some typical
results, where the authors provide collection of oscillation results obtained for
various types of fractional-order differential equations.

In [18], the authors considered the equation of the form

(4) CDα
t x(t) + qx(t− τ) = 0, t > 0,

and obtained explicit criteria for the oscillation of all solutions of (4). In
[5], the author studied equations (1) and (2) and provided oscillation criteria
using characteristic equations of (1) and (2). It is known fact that finding the
roots of such equations are extremely difficult since those equations involves
transcendental function.

Therefore in this paper, we obtain easily verifiable conditions to get the
oscillation of all solutions of the studied equations. Examples are provided to
show the novelty of our results.
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2. OSCILLATION RESULTS

Theorem 2.1. Let p, q, τ ∈ R+ and let α ∈ (0, 1) be the ratio of two odd
integers. If the equation

(5) λ+ pλα + qe−λτ = 0

has no real roots, then every solution of (1) oscillates.

Proof. Assume that x(t) is a nonoscillatory solution of (1). Without loss of
generality, we may assume that x(t) is an eventually positive solution of (1),
that is, there exists a positive constant T such that x(t) > 0 for all t ≥ T .
As equation (1) is autonomous, we may assume x(t) > 0 for t ≥ −τ . Taking
Laplace transform on both sides of (1) yields, for Re(s) > δ0,

sX(s) + psαX(s) + qe−sτX(s)− x(0)− psα−1x(0) + qe−sτ

∫ 0

−τ
e−stx(t)dt = 0,

that is,

(6) (s+ psα + qe−sτ )X(s) = x(0)(1 + psα−1)− qe−sτ

∫ 0

−τ
e−stx(t)dt.

Let

(7) F (s) = s+ psα + qe−sτ ,

and

(8) Ω(s) = (1 + psα−1)x(0)− qe−sτ

∫ 0

−τ
e−stx(t)dt.

It follows from (6)–(8) that

(9) F (s)X(s) = Ω(s), Re (s) > δ0.

Clearly, the functions F (s) and Ω(s) are entire functions. In view of (5), we
have F (s) ̸= 0 for all s ∈ R, and so, it follows from (9) that

(10) X(s) =
Ω(s)

F (s)
, Re (s) > δ0.

Since δ0 = −∞ (see [9, Theorem 2.1.1]), equality (10) becomes

(11) X(s) =
Ω(s)

F (s)
for all s ∈ R.

By taking s → −∞, we see that (11) leads to a contradiction since X(s)
and F (s) are always positive whereas Ω(s) becomes eventually negative by
(8). The positivity of F (s) follows from (7), F (0) = q > 0 and equation
(5) has no real roots. The positivity X(s) follows from (3) and x(t) > 0 for
t ≥ 0. By the positivity of x(t) on [−τ, 0] and lims→−∞ sα−1 → 0, we have
lims→−∞Ω(s) = −∞. The proof of the theorem is complete. □
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Theorem 2.2. Let p, q, τ ∈ R+ and let α ∈ (0, 1) be the ratio of two odd
integers. If the equation

(12) λ2 + pλα + qe−λτ = 0

has no real roots, then every solution of (2) oscillates.

Proof. The proof is similar that of Theorem 2.1 and hence it is omitted. □

Lemma 2.3 ([10]). Let a ∈ R+ and 0 < α ≤ 1. Then

(13) aα ≤ αa+ (1− α),

and equality holds if α = 1.

Having the above results, we will derive explicit sufficient conditions for the
oscillation of equations (1) and (2).

Theorem 2.4. Let p, q, τ ∈ R+ and let α ∈ (0, 1) be the quotient of odd
integers. If

(14) (qeτ − 1)(q + pα− p)1−α − p(1 + pα)1−α > 0,

then (1) oscillates.

Proof. In view of Theorem 2.1, our goal is to prove that equation (5) has
no real roots. For the sake of contradiction that equation (5) has a negative
real root λ. In fact, if λ ≥ 0, then λ + pλα + qe−λτ > 0. Let λ1 = −λ > 0.
Since α is the ratio of odd integers, it follows from (5) that

(15) λ1 + pλα
1 = qeλ1τ ≥ q.

Using (13) in (15), we obtain

λ1 + pαλ1 + p(1− α) ≥ λ1 + pλα
1 ≥ q

or

(16) λ1(1 + pα) ≥ q − p(1− α).

From (15) and the inequality ex ≥ ex for x ≥ 0, we observe that λ1 + pλα
1 ≥

λ1qeτ , or pλ
α
1 ≥ λ1(qeτ − 1), or p ≥ λ1−α

1 (qeτ − 1), or

p ≥
(
q + pα− p

1 + pα

)1−α

(qeτ − 1),

where we have used (16). This contradicts with (14). The proof of the theorem
is complete. □

Corollary 2.5. Let p, q, τ ∈ R+ and let α ∈ (0, 1) be the quotient of odd
integers. If (14) holds and

(17) lim inf
t→∞

q(t) = q > 0,

then every solution of the equation

(18) x′(t) + p CDα
0 x(t) + q(t)x(t− τ) = 0, t > 0,

where q ∈ C ((0,∞),R+), oscillates.
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Proof. Let x(t) be an eventually positive solution of (18). Then there exists
T > 0 sufficiently large such that x(t) > 0 and x(t − τ) > 0 for all t ≥ T . It
follows from (17) and (18) that, for t ≥ T ,

0 = x′(t) + p CDα
0 x(t) + q(t)x(t− τ)

≥ x′(t) + p CDα
0 x(t) + lim inf

t→∞
q(t)x(t− τ)

= x′(t) + p CDα
0 x(t) + qx(t− τ).

Now, we see that the eventually positive solution x(t) satisfies the inequality

(19) x′(t) + p CDα
0 x(t) + qx(t− τ) ≤ 0, t ≥ T.

In view of (14) and Theorem 2.4, equation (5) has no real roots. Therefore,
similarly to the proof of Theorem 2.1, inequality (19) has no eventually positive
solution, which implies that every solution of (18) oscillates. The proof of the
corollary is complete. □

Theorem 2.6. Let p, q, τ ∈ R+ and let α ∈ (0, 1) be the quotient of odd
integers. If

(20) q
1
α eτ − p

1
α > 0,

then every solution of (2) oscillates.

Proof. In view of Theorem 2.2, our goal is to prove that equation (12) has
no real roots. For the sake of contradiction that equation (12) has a negative
real root λ. In fact, if λ ≥ 0, then λ2 + pλα + qe−λτ > 0. Let λ1 = −λ > 0.
Since α is the ratio of odd integers, it follows from (12) that

(21) pλα
1 = λ2

1 + qeλ1τ ≥ q.

Using the fact that ex ≥ ex for x ≥ 0 in (21), we obtain

(22) pλα
1 = λ2

1 + qeλ1τ ≥ λ1qeτ.

Combining (21) and (22) leads to p
1
α ≥ q

1
α eτ, which contradicts to (20). This

completes the proof of the theorem. □

3. NUMERICAL EXAMPLES

We present two examples to show the importance and novelty of our main
results.

Example 3.1. Consider the first-order delay differential equation with frac-
tional-order derivative of the form

(23) x′(t) +C D
1/3
0 x(t) +

√
3x

(
t− 2π

3

)
= 0,

where α = 1/3, p = 1, q =
√
3 and τ = 2π/3. By doing a simple calculation, we

see that condition (14) gives 8.0313 > 0. That is, condition (14) is satisfied.
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Therefore, by Theorem 2.4, equation (23) is oscillatory. In fact, one such
oscillatory solution of (23) is x(t) = sin t.

Example 3.2. Consider the second-order delay differential equation with
fractional-order derivative of the form

(24) x′′(t) + p CD
3/5
0 x(t) + qx

(
t− 17π

10

)
= 0,

where α = 3/5, p =
√
2
√

5−
√
5/4, q = (

√
5 + 1)/4 and τ = 17π/10. By

doing a simple calculation, we see that condition (20) yields 9.7846 > 0. That
is, condition (20) is satisfied. Therefore, by Theorem 2.6, equation (24) is
oscillatory. In fact, one such oscillatory solution of (24) is x(t) = cos t.

Remark 3.3. Notice that when p = 0, we see that equations (1) and (2)
reduce to equations without fractional derivative. That is, condition (14)
reduces to qτ > 1

e and condition (20) reduce to q > 0, which are well-known
conditions for the oscillation of the equations x′(t) + qx(t− τ) = 0, and x′′ +
qx(t− τ) = 0, respectively.

4. CONCLUSION

In this paper, based on parameters and fractional exponent, we have pro-
vided explicit sufficient conditions for the oscillation of all solutions of the
studied equations (1) and (2). The obtained results extended and general-
ized that of in [18]. Further our results are advantageous over that of in [5],
since our conditions are explicit and easy to verify. Thus, the results obtained
here are further contribution to the oscillation theory of fractional differential
equations.
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