POSITIVE SOLUTIONS FOR A $(p, 2)$-LAPLACIAN STEKLOV PROBLEM

ABDELMAJID BOUKHSAS, ABDELLAH ZEROUALI, OMAR CHAKRONE, and BELHADJ KARIM

Abstract

In this work, we study positive solutions of a Steklov problem driven by the ($p, 2$)-Laplacian operator by using the variational method. A sufficient condition for the existence of positive solutions is characterized by the eigenvalues of a linear eigenvalue problem and another nonlinear eigenvalue problem.

MSC 2010. 35J20, 35J62, 35J70, 35P05, 35P30.
Key words. ($p, 2$)-Laplacian, nonlinear boundary conditions.

REFERENCES

[1] R. Aris, Mathematical modelling techniques, Pitman, London, 1978.
[2] V. Benci, P. d'Avenia, D. Fortunato and L. Pisani, Solutions in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154 (2000), 297-324.
[3] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, Multiple solutions for a (p, q) Laplacian Steklov problem, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 357-368.
[4] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, On a positive solutions for (p, q)Laplacian Steklov problem with two parameters, Bol. Soc. Parana. Mat. (3), 40 (2022), 1-19.
[5] A. Boukhsas, A. Zerouali, O. Chakrone and B. Karim, Steklov eigenvalue problems with indefinite weight for the (p, q)-Laplacian, to appear.
[6] L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with (p, q)-Laplacian, Comm. Pure Appl. Math., 4 (2005), 9-22.
[7] P. C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, Vol. 28, Springer-Verlag, Berlin, 1979.
[8] L. Gasiński and N. S. Papageorgiou, Asymmetric ($p, 2$)-equations with double resonance, Calc. Var. Partial Differential Equations, 56 (2017), 1-23.
[9] L. Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z., 232 (1999), 651-664.
[10] P. Lindqvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.
[11] N. S. Papageorgiou and V. D. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014), 393-430.

The authors thank the referee for his helpful comments and suggestions.
DOI: 10.24193/mathcluj.2022.2.05
[12] N. S. Papageorgiou, V. D. Rădulescu and D.D. Repovs, Existence and multiplicity of solutions for resonant ($p, 2$)-equations, Adv. Nonlinear Stud., 18 (2018), 105-129.
[13] M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems, 4th edition, A Series of Modern Surveys in Mathematics, Vol 34, Springer, Berlin, 2008
[14] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, Resonant Steklov eigenvalue problem involving the ($p ; q$)-Laplacian, Afr. Mat., 30 (2019), 171-179.
[15] A. Zerouali, B. Karim, O. Chakrone and A. Boukhsas, On a positive solution for $(p ; q)$ Laplace equation with nonlinear boundary conditions and indefinite weights, Bol. Soc. Parana. Mat. (3), 38 (2020), 219-233.
[16] V. V. E. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv., 29 (1987), 33-66.

Received December 24, 2020
Accepted May 4, 2021

> | University Moulay Ismail of Meknes |
| :---: |
| FST Errachidia |
| LMIMA Laboratory, ROLALI Group |
| Errachidia, Morocco |
| E-mail: abdelmajidboukhsas@gmail.com |
| https://orcid.org/0000-0002-9317-8232 |

Regional Centre of Trades Education and Training
Department of Mathematics Oujda, Morocco
E-mail: abdellahzerouali@yahoo.fr https://orcid.org/0000-0001-9090-4094

University Mohammed First
Faculty of Sciences
Department of Mathematics
Oujda, Morocco
E-mail: chakrone@yahoo.fr
https://orcid.org/0000-0002-2208-4220

University Moulay Ismail of Meknes
FST Errachidia
Department of Mathematics
Errachidia, Morocco
E-mail: karembelf@gmail.com
https://orcid.org/0000-0002-7455-5434

