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A COMMON PROPERTY TO GENERALIZED CONTRACTIONS
AND EXISTENCE OF FIXED POINTS

SFYA BENAHMED

Abstract. The definitions of several types of generalized contractions for an
application T from a complete metric space (X, d) in itself given in [14] are
recalled and reviewed. A common property to all these concepts is put in light,
namely: there exists α > 0 such that, for all x ∈ X, x ̸= T (x), there exists
u ∈ X \ {x} satisfying:

[H] d(u, T (u)) + αd(x, u) ≤ d(x, T (x)).

We observe that assumption [H] is fulfilled in most cases treated in [14] and
we prove that assumption [H] and lower semi-continuity of the function x 7−→
d(x, T (x)) ensure existence of a fixed point along with a sharp estimate for the
distance to the fixed-points set.
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