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COMMON PROPERTY TO GENERALIZED CONTRACTIONS
AND EXISTENCE OF FIXED POINTS

SFYA BENAHMED

Abstract. The definitions of several types of generalized contractions for an
application T from a complete metric space (X,d) in itself given in [14] are
recalled and reviewed. A common property to all these concepts is put in light,
namely: there exists « > 0 such that, for all x € X, = # T(x), there exists
u € X \ {z} satisfying:

[H] d(u, T(u)) + ad(z,u) < d(z, T(z)).

We observe that assumption [H] is fulfilled in most cases treated in [14] and
we prove that assumption [H| and lower semi-continuity of the function z —
d(z,T(z)) ensure existence of a fixed point along with a sharp estimate for the
distance to the fixed-points set.
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