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DIRICHLET BOUNDARY VALUE PROBLEM RELATED TO THE

p(x)-LAPLACIAN WITH DISCONTINUOUS NONLINEARITY

MUSTAPHA AIT HAMMOU

Abstract. In this paper, we prove the existence of a weak solution for the
Dirichlet boundary value problem related to the p(x)-Laplacian

−div(|∇u|p(x)−2∇u) + u ∈ −[g(x, u), g(x, u)],

by using the degree theory after turning the problem into a Hammerstein equa-
tion. The right hand side g is a possibly discontinuous function in the second
variable satisfying some non-standard growth conditions.
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