ON THE POLYNOMIAL SOLUTIONS OF GENERAL POLYNOMIAL DIFFERENTIAL EQUATIONS

CLAUDIA VALLS

Abstract

We deal with the ordinary differential equation of the form $y^{m} \mathrm{~d} y / \mathrm{d} x$ $=P(x, y)$ where $m \geq 2$ and $P(x, y)$ is a real polynomial in the variables x and y of degree n in the variable y. We study the maximum number of the polynomial solutions of this equation with respect to n. We also consider the multiplicity of polynomial limit cycles. MSC 2010. 37D99. Key words. Polynomial ordinary differential equations, polynomial solutions.

REFERENCES

[1] D. Behoul and S.S. Cheng, Computation of all polynomial solutions of a class of nonlinear differential equations, Computing, 77 (2006), 163-177.
[2] J.G. Campbell and M. Golomb, On the polynomial solutions of a Riccati equation, Amer. Math. Monthly, 61 (1954), 402-404.
[3] J. Giné, M. Grau and J. Llibre, On the polynomial limit cycles of polynomial differential equations, Israel J. Math., 181 (2011), 461-475.
[4] N.G. Lloyd, The number of periodic solutions of the equation $\dot{z}=z^{N}+p_{1}(t) z^{N-1}+$ $\ldots+p_{N}(t)$, Proc. Lond. Math. Soc., 27 (1973), 667-700.
[5] N.G. Lloyd, A note on the number of limit cycles of certain two-dimensional systems, J. Lond. Math. Soc., 20 (1979), 277-286.
[6] E.D. Rainville, Necessary conditions for polynomial solutions of certain Riccati equations, Amer. Math. Monthly, 43 (1936), 473-476.
[7] C. Valls, On the polynomial solutions of some generalized polynomial differential equations, preprint.

Received November 18, 2018
Accepted March 3, 2019

Universidade de Lisboa
Departamento de Matemática
Lisboa, Portugal
E-mail: cvalls@math.tecnico.ulisboa.pt

