ON THE DIOPHANTINE EQUATION $x^{5}+k y^{3}=z^{5}+k w^{3}$

N. YOUSEFNEJAD, H. SHABANI-SOLT, and A. S. JANFADA

Abstract

In this article we consider the symmetric Diophantine equation $x^{m}+$ $k y^{n}=z^{m}+k w^{n}$, where k is a rational number and prove that, for any rational number k, the equation $x^{5}+k y^{3}=z^{5}+k w^{3}$ has infinitely many rational nontrivial solutions. The strategy is to use the elliptic fibration method.

MSC 2010. 11Y50, 11G05, 11D41.
Key words. Diophantine equation, elliptic curve.

REFERENCES

[1] A. Choudhry, Symmetric diophantine equations, Rocky Mountain J. Math., 34 (2004), 1281-1284.
[2] H. Inose, On certain Kummer surfaces which can be realized as non-singular quartic surfaces in \mathbb{P}^{3}, J. Fac. Sci. Univ. Tokyo, 23 (1976), 545-560.
[3] M. Kuwata, Elliptic fibrations on quartic K3 surfaces with large Picard numbers, Pacific J. Math., 171 (1995), 231-243.
[4] M. Reid, Canonical 3-folds, in Journées de Géometrie Algébrique d'Angers, A. Beauville ed., Sijthoff and Noordhoff, Alphen, 1980, pp. 273-310.
[5] H. Shabani-Solt, N. Yousefnejad, and A.S. Janfada, On the diophantine equation $x^{6}+$ $k y^{3}=z^{6}+k w^{3}$, Iran. J. Math. Sci. Inform., to appear.
[6] T.N. Shorey and R. Tijdeman, Exponential diophantine equations, Cambridge University Press, 1986.
[7] L.C. Washington, Elliptic curves, number theory and cryptography, second edition, Taylor \& Francis Group, LLC, Boca Raton, 2008.
[8] R. Wazir, Arithmetic on elliptic three-folds, Compos. Math., 140 (2004), 567-580.

Received October 5, 2017
Accepted November 27, 2017

Urmia University
Department of Mathematics Urmia 57561-51818, I.R. Iran
E-mail: yusefnejadnazanin@yahoo.com
E-mail: h.shabani.solt@gmail.com
E-mail: asjanfada@gmail.com

DOI: 10.24193/mathcluj.2018.1.10

