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THE INDECOMPOSABLE PREPROJECTIVE AND
PREINJECTIVE REPRESENTATIONS OF THE QUIVER D̃n

ÁBEL LŐRINCZI and CSABA SZÁNTÓ

Abstract. Consider the quiver D̃n and its finite dimensional representations
over the field k. We know due to Ringel in [7] that indecomposable representa-
tions without self extensions (called exceptional representations) can be exhibited
using matrices involving as coefficients only 0 and 1, such that the number of
nonzero coefficients is precisely d−1, where d is the global dimension of the rep-
resentation. This means that the corresponding ”coefficient quiver” is a tree, so
we will call such a presentation a ”tree presentation”. In this paper we describe
explicit tree presentations for the indecomposable preprojective and preinjective

representations of the quiver D̃n. In this way we generalize results obtained by

Mróz in [5] for the quiver D̃4 and by Lőrinczi and Szántó in [4] for the quiver D̃5.
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