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AN ARCLENGTH PROBLEM FOR SOME SUBCLASSES
OF m-FOLD SYMMETRIC UNIVALENT FUNCTIONS

A. VASUDEVARAO

Abstract. For 0 < β ≤ 1, let Fm(β) (respectively Gm(β)) denote the class of

analytic functions f in the unit disk D with f(0) = 0, f ′(0) = 1 and f(e
2πi
m z) =

e
2πi
m f(z) satisfying RePf (z) < β

2
+ 1 (respectively RePf (z) > β

2
− 1) for z ∈ D,

where

Pf (z) = 1 +
zf ′′(z)

f ′(z)
.

For |α| < π/2, let Sα denote the class of univalent functions f(z) for which zf ′(z)
is spirallike functions which has been introduced by M.S. Robertson [18]. The
main aim of this paper is to investigate arclength problem

Lr(f) =

∫
|z|=r

|f ′(z)| |dz|, 0 < r < 1

for functions f in Fm(β), Gm(β) and Sα. As a consequence, we shall obtain
arclength for functions in some subclasses of the class of univalent functions. In
each of these subclasses, we shall provide extremal functions to obtain the sharp
upper bound for Lr(f).
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