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DERIVED CONES TO REACHABLE SETS OF
STURM-LIOUVILLE TYPE DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

Abstract. We consider a second-order differential inclusion and we prove that
the reachable set of a certain second-order variational inclusion is a derived cone
in the sense of Hestenes to the reachable set of the initial differential inclusion.
This result allows to obtain a sufficient condition for local controllability along
a reference trajectory.
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