MATHEMATICA, Tome 50 (73), N° 1, 2008, pp. 59–73

TWO-DIMENSIONAL POTENTIALS GENERATING A GIVEN ONE-PARAMETER FAMILY OF ORBITS ON A SURFACE

THOMAS KOTOULAS

Abstract. We say that a potential generates a curve on a surface if a unit mass traces the curve under the action of the potential. We consider the following problem: a one-parameter family of regular curves f(u, v) = c on a surface $\vec{r}(u, v) = \{x(u, v), y(u, v), z(u, v)\}$ is given. We seek two-dimensional potentials of the form $V(u, v) = u^m R(\frac{v}{u})$, R being an arbitrary C^2 -function, which generate this family of regular curves as trajectories on the above surface. We show that if the given family of orbits satisfies exactly two differential conditions, then such a potential exists and it is determined uniquely. Special cases are also studied and pertinent examples are given for each case. At a second step, if we consider that the "slope function" $\gamma(u, v) = f_v/f_u$ is homogeneous of zero degree and the components of the metric tensor are homogeneous functions of zero degree too, then a potential of the above form always exists and it is found as a solution of an ordinary second-order O.D.E. Several examples are offered and implications of this study are discussed.

MSC 2000. 70F17, 70M20, 53A05, 35F05, 35G05, 35G20

Key words. Inverse problems, one-parameter family of orbits, 2D Potentials, O.D.Es and P.D.Es.

REFERENCES

- ANISIU, M.C, PDEs in the inverse problem of dynamics, in V. Barbu et al. (eds.), Analysis and Optimization of Differential Systems, Kluwer Academic Publishers, 2003, 13–20.
- [2] BETSAKOS, D. and GRIGORIADOU, S., On the determination of a measure by the orbits generated by its logarithmic potential, Proc. Amer. Math. Soc., **134** (2006), 541–548.
- BORGHERO, F., On the determination of forces acting on a particle describing orbits on a given surface, Rendiconti di Mathematica e delle sue applicazioni, Serie VII Vol. 6 N. 4 (1986), 503–518.
- [4] BORGHERO, F. and BOZIS, G., Isoenergetic families of planar orbits generated by homogeneous potentials, Meccanica, 37 (2002), 545–554.
- [5] BOZIS, G., Inverse Problem with two-parametric families of planar orbits, Celest. Mech., 31 (1983), 129–142.
- [6] BOZIS, G., Szebehely's inverse problem for finite symmetrical material concetrations, A & A, 134 (1984), 360–364.
- [7] BOZIS, G. and MERTENS, R., On Szebehely's inverse problem for a particle describing orbits on a given surface, Z. Angew. Math. Mech., 65 (8) (1985), 383–384.
- [8] BOZIS, G. and GRIGORIADOU, S., Families of planar orbits generated by homogeneous potentials, Celest. Mech. and Dyn. Astr., 57 (1993), 461–472.
- [9] BOZIS, G. and BORGHERO, F., Family boundary curves for holonomic systems with two degrees of freedom, Inverse Problems, **11** (1) (1995), 51–64.
- [10] BOZIS, G., The inverse problem of dynamics: basic facts, Inverse Problems, 11 (1995), 687–708.

60	T. Kotoulas 2
[11]	BOZIS, G. and KOTOULAS, T., Homogeneous two-parametric families of orbits in three-
[19]	aimensional homogeneous potentials, Inverse Problems, 21 (1) (2005), 343–356.
[12] $[13]$	KOTOULAS, T.A., On the determination of the generalized force field from a two- parametric family of orbits on a given surface. Inverse Problems, 21 (1) (2005), 291–303.
[14]	KOTOULAS, T.A., Inverse problem in Lagrangian Dynamics: special solutions for poten- tials possessing families of regular orbits on a given surface, Inverse Problems in Science
	and Engineering, 13 (6) (2005), 671–681.
[15]	MERTENS, R., On Szebehely's equation for the potential energy of a particle describing orbits on a given surface, Z. Angew. Math. Mech., 61 (1981), 252–253.
[16]	STRUIK, D.J., <i>Lectures on Classical Differential Geometry</i> , Dover Publications Inc. New York, 1961 (second edition 1988).
[17]	SZEBEHELY, V., On the determination of the potential by satellite observations, in G. Proverbio (ed.), Proc. of the Int. Meeting on Earth's Rotation by Satellite Observation.
	The Univ. of Cagliari. Bologna. Italy. (1974). 31–35.
[18]	WHITTAKER, E.T., A Treatise on the Analytical Dynamics of Particle and Rigid Bodies, Cambridge University Press, Cambridge, 1988.

Received May 22, 2007

Aristotle University of Thessaloniki Department of Physics Section of Astrophysics, Astronomy and Mechanics $P.O.Box: \ 102, \ Post \ Code: \ 54124, \ Greece$ E-mail: tkoto@skiathos.physics.auth.gr