A SECOND-KIND INTEGRAL EQUATION METHOD FOR STOKES FLOW PAST SMOOTH OBSTACLES IN A CHANNEL

MIRELA KOHR

Abstract. In this paper we obtain a compound double-layer representation for Stokes flow due to the motion of a solid particle in an ambient flow located in a two-dimensional channel. Our indirect method is an extension of the well known Completed Double Layer Boundary Integral Equation Method of Power and Miranda [18] from the case of Stokes flow due to the motion of a solid particle in a viscous incompressible fluid of infinite expanse to the case of Stokes flow in a two-dimensional channel. The problem is reduced to the study of a system of Fredholm integral equations of the second kind. We prove that this system has a unique continuous solution. The numerical results are presented for Stokes flow due to the motion of a circular obstacle in a two-dimensional channel between two parallel solid walls. We also include some conclusions which refer to the effect of the walls on the considered Stokes flow.

MSC 2000. 76D, 76M.

Key words. Stokes flow, completed double layer boundary integral equation method, Green's function, singularities of Stokes flow, boundary element method.

REFERENCES

- BREBBIA, C.A. and DOMINGUEZ, J., Boundary Elements: An Introductory Course, CMP/McGraw-Hill, New York, 1999.
- [2] BRENNER, H., The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. Eng. Sci., 16 (1961), 242–254.
- [3] FAXEN, H., Die Bewegung einer starren Kugel Längs der Achse eines mit zaher Flüsigkeit gefüllten Rohres, Arkiv. Mat. Astron. Fys., 17 (1923), 1–28.
- [4] GANATOS, P., WEINBAUM, S. and PFEFFER, R., A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion, J. Fluid Mech., 99 (1980), 739–753.
- [5] GANATOS, P., PFEFFER, R. and WEINBAUM, S., A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion, J. Fluid Mech., 99 (1980), 755–783.
- [6] HAPPEL, J. and BRENNER, H., Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
- [7] HSU, R. and GANATOS, P., The motion of a rigid body in viscous fluid bounded by a plane wall, J. Fluid Mech., 207 (1989), 29–72.
- [8] KOHR, M., A boundary integral equations method for asymmetric Stokes flow between two parallel planes, Arch. Mech., 49 (1997), 1167–1185.
- KOHR, M., Existence and uniqueness result for Stokes flows in a half-plane, Arch. Mech., 50 (1998), 791–803.
- [10] KOHR, M., An integral method for two-dimensional Stokes flows past a rigid obstacle in the half-plane, Appl. Mech. Engrg., 3 (1998), 5–24.
- [11] KOHR, M., An indirect boundary integral method for a Stokes flow problem, Comput. Methods Appl. Mech. Engrg., 190 (2000), 487–497.

- [12] KOHR, M. and POP, I., Viscous Incompressible Flow for Low Reynolds Numbers, WIT Press, Southampton (UK), 2004.
- [13] KRESS, R., Linear Integral Equations, Springer-Verlag, Berlin, 1989.
- [14] LADYZHENSKAYA, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1963.
- [15] MIKHLIN, S. G., Mathematical Physics, an Advanced Course, North-Holland Publishing Company, Amsterdam, 1970.
- [16] O'NEILL, M. E., A slow motion of viscous liquid caused by a slowly moving solid sphere, Mathematika, 11 (1964), 67–74.
- [17] PHAN-THIEN N., TULLOCK, D. L. and KIM, S., Completed double layer in half-space: a boundary element method, Comp. Mech., 9 (1992), 121–135.
- [18] POWER, H. and MIRANDA, G., Second kind integral equation formulation of Stokes flows past a particle of arbitrary shape, SIAM J. Appl. Math., 47 (1987), 689–698.
- [19] POWER, H., MIRANDA, G. and GONZÁLEZ, R., Integral equation solution for the flow due to the motion of a body of arbitrary shape near a plane wall at small Reynolds number, Mat. Aplic. Comp., 4 (1985), 279–296.
- [20] POWER, H. and POWER, B. F., Second-kind integral equation formulation for the slow motion of a particle of arbitrary shape near a plane wall in a viscous fluid, SIAM J. Appl. Math., 53 (1993), 60–70.
- [21] POWER, H. and WROBEL, L. C., Boundary Integral Methods in Fluid Mechanics, WIT Press: Computational Mechanics Publications, Southampton (UK), 1995.
- [22] POZRIKIDIS, C., Creeping flow in two-dimensional channels, J. Fluid Mech, 180 (1987), 495–514.
- [23] POZRIKIDIS, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, Cambridge, 1992.
- [24] POZRIKIDIS, C., Numerical Computation in Science and Engineering, Oxford University Press, New York, 1998.

Received December 13, 2004

"Babeş-Bolyai" University

Faculty of Mathematics and Computer Science 1 M. Kogălniceanu Str. 400084 Cluj-Napoca, Romania E-mail: mkohr@math.ubbcluj.ro