
MATHEMATICA, Tome 47 (70), No 1, 2005, pp. 89–100

EQUILIBRIUM PROBLEMS AND VARIATIONAL INEQUALITIES

MUHAMMAD A. NOOR and KHALIDA I. NOOR

Abstract. In this paper, we suggest and analyze some iterative methods for
solving equilibrium problems with trifunction by using the auxiliary principle
technique. We prove that the convergence of the proposed methods either re-
quires only pseudomonotonicity or partially relaxed strongly monotonicity. We
also consider the concept of well-posedness for equilibrium problems with tri-
function and obtain some new results. It is shown that the auxiliary principle
technique developed in this paper can be extended for regularized equilibrium
problems with some minor modifications. Since equilibrium problems with tri-
function include the classical equilibrium problems, variational inequalities and
complementarity problems as special cases, results proved in this paper continue
to hold for these problems. Our results can be viewed as a novel application of
the auxiliary principle technique.
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