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The problem

Topic

The representation theory of Hopf-Galois extensions, as originated by
H.-J. Schneider in 1990.

Questions

Let H be a Hopf algebra, and A, B right H-comodule algebras.
Assume that A and B are faithfully flat H-Galois extensions.

1 If A and B are Morita equivalent, does it follow that AcoH and BcoH

are also Morita equivalent?

2 Conversely, if AcoH and BcoH are Morita equivalent, when does it
follow that A and B are Morita equivalent?

Motivation

Problems raised in the modular representation theory of finite groups lead
to the consideration of these questions in the context of strongly group
graded algebras.
The results of the present paper generalize the results of Marcus (1998).
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Overview

Given a right H-comodule algebra A, and a left H-comodule algebra B,
we consider (A⊗B,H)-Hopf modules. These are left A⊗B-modules and
right H-comodules, with a suitable compatibility condition.
They are also Doi-Hopf modules over a certain Doi-Hopf datum.

Main results

Section 2: we prove a structure Theorem for (A⊗ B,H)-Hopf
modules, stating that the category of (A⊗ B,H)-Hopf modules is
equivalent to the category of left modules over the cotensor product
A�HB, under the condition that A is a faithfully flat H-Galois
extension. This is the main tool used during the rest of the paper.

Section 3: we show that (A⊗ B,H)-Hopf modules can also be
viewed as comodules over a coring.

Section 4: we apply the results of Section 2 to relative Hopf
bimodules. Let A and B be right H-comodule algebras, and consider
(A,B)-bimodules with a right H-coaction, satisfying a certain
compatibility condition. These are (A⊗ Bop,H)-Hopf modules.
We state the Structure Theorem for relative Hopf bimodules.
We investigate the compatibility of the category equivalence with
the Hom and tensor functors.
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Overview

Main results

Section 5: we apply our results to discuss the two problems stated
above. We introduce the notion of H-Morita contexts, and we show
that if two faithfully flat H-Galois extensions are connected by a
(strict) H-Morita context, then the algebras of coinvariants are also
connected by a (strict) Morita context.
Our main result is the following converse result: if the algebras of
coinvariants are Morita equivalent, in such a way that the bimodule
structure on one of the connecting modules can be extended to a
left-action by the cotensor product A�HBop, then A and B are
H-Morita equivalent.

Section 6: we show that the Morita equivalence coming from a strict
H-Morita context between two faithfully flat H-Galois extensions
respects the Miyashita-Ulbrich action.

Section 7: we investigate the behavior of H-Morita equivalences
with respect to Hopf subalgebras.
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Notation

H is a Hopf algebra over a commutative ring k, with bijective
antipode S .

The Sweedler notation: ∆(h) = h(1) ⊗ h(2).

MH (resp. HM) is the category of right (resp. left) H-comodules.

For a right H-coaction ρ (respectively a left H-coaction λ) on a
k-module M, we denote

ρ(m) = m[0] ⊗m[1] and λ(m) = m[−1] ⊗m[0].

The submodule of coinvariants McoH of a right (respectively left)
H-comodule M consists of the elements m ∈ M satisfying
ρ(m) = m ⊗ 1 (respectively λ(m) = 1⊗m).

Let A be a right H-comodule algebra. Then AMH and MH
A are the

categories of left and right relative Hopf modules.

We have two pairs of adjoint functors:
(F1 = A⊗AcoH −, G1 = (−)coH) between AcoHM and AMH ;
(F2 = −⊗AcoH A, G2 = (−)coH) between MAcoH and MH

A .

The unit and counit of the adjunction (F1,G1) are given by

η1,N : N → (A⊗AcoH N)coH , η1,N(n) = 1⊗ n;

ε1,M : A⊗AcoH McoH → M, ε1,M(a⊗m) = am.
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Hopf Galois extensions

We recall the following result.

Theorem (Schneider)

Let A be a right H-comodule algebra. Consider the map

can : A⊗AcoH A → A⊗ H, can(a⊗ b) = ab[0] ⊗ b[1].

The following statements are equivalent:

1 (F1,G1) is a pair of inverse equivalences;

2 (F2,G2) is a pair of inverse equivalences;

3 can is an isomorphism and A is faithfully flat as a left AcoH -module;

4 can is an isomorphism and A is faithfully flat as a right AcoH -module.

Definition

If the equivalent conditions of the above theorem hold, then A is called a
faithfully flat H-Galois extension.
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The cotensor product

Let M be a right H-comodule, and N a left H-comodule.

Definition

The cotensor product M�HN is the k-module

M�HN = {
∑

i

mi ⊗ ni ∈ M ⊗ N |
∑

i

ρ(mi )⊗ ni =
∑

i

mi ⊗ λ(ni )}.

If H is cocommutative, then M�HN is also a right (or left) H-comodule.

Proposition

Let R be a k-algebra. Assume that P ∈MR is flat.
Let M ∈ RMH and N ∈ HM.
Assume that we have a right H-coaction on M that is left R-linear.
Then the map

P ⊗R (M�HN) → (P ⊗R M)�HN, p⊗ (
∑

i

mi ⊗ ni ) 7→
∑

i

(p⊗mi )⊗ ni

is bijective.
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H as a left H ⊗ Hcop-module coalgebra.

H ⊗ Hcop is also a Hopf algebra, and H is a left H ⊗ Hcop-module
coalgebra; the left H ⊗ Hcop-action is given by

(k ⊗ l) · h = khS(l).

H ⊗ Hcop ∈ H⊗HcopMH , with right H-action induced by the
comultiplication on H, and k ∈ HM via ε.
So we have the left H ⊗ Hcop-module (H ⊗ Hcop)⊗H k.

(H ⊗ Hcop)⊗H k is a coalgebra with comultiplication and counit

∆((h ⊗ h′)⊗H 1) = (h(1) ⊗ h′(2))⊗H 1⊗ (h(2) ⊗ h′(1))⊗H 1;

ε((h ⊗ h′)⊗H 1) = ε(hh′).

Then (H ⊗ Hcop)⊗H k is an H ⊗ Hcop-module coalgebra.

Proposition

(H ⊗ Hcop)⊗H k and H are isomorphic as H ⊗ Hcop-module coalgebras.
The isomorphisms are defined by

f : (H ⊗ Hcop)⊗H k → H, f ((h ⊗ h′)⊗H 1) = hS(h′);

g : H → (H ⊗ Hcop)⊗H k, g(h) = (h ⊗ 1)⊗H 1.
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(A⊗ B , H)-Hopf modules

Let A be a right H-comodule algebra, and B a left H-comodule algebra.

A⊗ B is a right H ⊗ Hcop-comodule algebra, with coaction

ρ(a⊗ b) = a[0] ⊗ b[0] ⊗ a[1] ⊗ b[−1].

(H ⊗ Hcop,A⊗ B,H) is a left-right Doi-Hopf datum.

We consider the category A⊗BM(H ⊗ Hcop)H of Doi-Hopf modules.
The objects are k-modules M with a left A⊗ B-action and a right
H-coaction such that

ρ((a⊗ b)m) = (a[0] ⊗ b[0])m[0] ⊗ a[1]m[1]S(b[−1]).

Definition

The objects of A⊗BM(H ⊗ Hcop)H are called (A⊗ B,H)-Hopf modules.
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(A⊗ B , H)-Hopf modules

It is easily seen that A⊗ B ∈ A⊗BM(H ⊗ Hcop)H , with coaction

ρ(a⊗ b) = a[0] ⊗ b[0] ⊗ a[1]S(b[−1]).

Lemma

With notation as above, we have that (A⊗ B)coH = A�HB.

Proposition

Assume that H is flat as a k-algebra.
Let A be a right H-comodule algebra and B a left H-comodule algebra.
We have a right H-colinear map

f : A⊗AcoH (A�HB) → A⊗ B,

f (a⊗ (
∑

i

ai ⊗ bi )) =
∑

i

aai ⊗ bi .

If A is a faithfully flat H-Galois extension, then f is an isomorphism.
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(A⊗ B , H)-Hopf modules

We have a pair of adjoint functors (F ,G ):

F : A�HBM→ A⊗BM(H⊗Hcop)H , F (N) = (A⊗B)⊗A�HB N;

G : A⊗BM(H ⊗ Hcop)H → A�HBM, G (M) = McoH .

The unit and counit of the adjunction are the following:

ηN : N →
(
(A⊗ B)⊗A�HB N

)coH
, ηN(n) = 1A ⊗ 1B ⊗ n;

εM : (A⊗ B)⊗A�HB McoH → M, εM(a⊗ b ⊗m) = (a⊗ b)m.

The following structure theorem is the main result of this section.

Theorem

Assume that H is flat as a k-algebra.
Let A be a right H-comodule algebra and B a left H-comodule algebra.
If A is a faithfully flat H-Galois extension, then (F ,G ) is a pair of inverse
equivalences between the categories A�HBM and A⊗BM(H ⊗ Hcop)H .
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Comodules over corings

Let A be a ring. An A-coring C is a comonoid in the monoidal
category AMA.

One can associate a coring to a Doi-Hopf datum.

The category of Doi-Hopf modules is isomorphic to the category of
comodules over this coring.

We describe the A⊗ B-coring C associated to the left-right Doi-Hopf
datum (H ⊗ Hcop,A⊗ B,H) that we have discussed above.

C = H ⊗ A⊗ B, with left and right A⊗ B-action given by

(a′⊗b′)(h⊗ a⊗b)(a′′⊗b′′) = a′[1]hS(b′[−1])⊗ a′[0]aa
′′⊗b′[0]bb′′.

The comultiplication and counit are given by the formulas

∆(h ⊗ a⊗ b) = (h(2) ⊗ 1A ⊗ 1B)⊗A⊗B (h(1) ⊗ a⊗ b);

ε(h ⊗ a⊗ b) = ε(h)a⊗ b.

The category CM of left C-comodules is isomorphic to

A⊗BM(H ⊗ Hcop)H .
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Comodules over corings

Let x be a grouplike element of a coring C, and let

AcoC = {a ∈ A | ax = xa}.

We have an adjoint pair of functors between AcoCM and CM.

If this is a pair of inverse equivalences, then the map

can : A⊗AcoC A → C, can(a⊗ b) = axb

is an isomorphism of corings.

If, in addition, A is flat as a right AcoC-module, then it also follows
that A is faithfully flat as a right AcoC-module.

We apply this to the coring C = H ⊗ A⊗ B:

Proposition

Assume that A is a faithfully flat H-Galois extension. Then

can : (A⊗ B)⊗A�HB (A⊗ B) → H ⊗ A⊗ B ⊗ A⊗ B,

(a⊗ b)⊗ (a′ ⊗ b′) 7→ a[1]S(b[−1])⊗ a[0]a
′ ⊗ b[0]b

′

is an isomorphism.
Furthermore, A⊗ B is faithfully flat as a right A�HB-module.
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Hopf bimodules

Now let A and B be right H-comodule algebras.

A two-sided relative Hopf module is a k-module with a left A-action,
a right B-action, and a right H-coaction, such that

ρ(amb) = a[0]m[0]b[0] ⊗ a[1]m[1]b[1].

AMH
B is the category of two-sided relative Hopf modules with

k-module maps that are A-linear, B-linear and H-colinear.

Bop is a left H-comodule algebra, with left coaction λ given by

λ(b) = S−1(b[1])⊗ b[0].

We can apply the previous results to A and Bop. In particular, A⊗Bop is
a right H ⊗ Hcop-comodule algebra.

Lemma

The Doi-Hopf modules category A⊗BopM(H ⊗ Hcop)H is isomorphic to
the category of two-sided relative Hopf modules AMH

B .
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Hopf bimodules

A⊗ Bop is a two-sided Hopf module, with coaction

ρ(a⊗ b) = a[0] ⊗ b[0] ⊗ a[1]b[1].

Furthermore

(A⊗ Bop)coH = A�HBop.

We obtain the following Structure Theorem for two-sided Hopf modules.

Theorem

Let H be a Hopf algebra over the commutative ring k, with bijective
antipode, and consider two right H-comodule algebras A and B.

1 We have a pair of adjoint functors
(F = A⊗ Bop ⊗A�HBop −, G = (−)coH) between A�HBopM and

AMH
B .

2 If A is a faithfully flat H-Galois extension, then (F ,G ) is a pair of
inverse equivalences.
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Hopf bimodules

Remark

Assume that both A and B are faithfully flat H-Galois extensions. Via
appropriate transport of structure, the functors

(A⊗ Bop)⊗A�Bop −, A⊗AcoH −, −⊗BcoH B : A�BopM→ AMH
B

are naturally isomorphic equivalences of categories.

It follows immediately that we may define the functors

−⊗AcoH − : B�AopM× AMC → BMC ,

−⊗AcoH − : BMA × A�CopM→ BMC .

Proposition

Let A,B,C be right H-comodule algebras. If M ∈ AMH
B and N ∈ BMH

C ,
then M ⊗B N ∈ AMH

C . If B is a faithfully flat H-Galois extension, then

f : McoH ⊗BcoH NcoH → (M ⊗B N)coH , f (m ⊗ n) = m ⊗ n,

is an isomorphism, so McoH ⊗BcoH NcoH is an A�HC op-module.
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Hopf bimodules

Corollary

Let A,B,C be right H-comodule algebras, and assume that A and B are
faithfully flat H-Galois extensions.

Let M1 ∈ A�HBopM and N1 ∈ B�HCopM, and denote

M = (A⊗ Bop)⊗A�HBop M1 ∈ AMH
B ;

N = (B ⊗ C op)⊗B�HCop N1 ∈ BMH
C .

Then

M1 ⊗BcoH N1 ∈ A�HCopM,

M ⊗B N ∼= (A⊗ C op)⊗A�HCop (M1 ⊗BcoH N1).

Corollary

Let A,B,C be right H-comodule algebras, and assume that A and B are
faithfully flat H-Galois extensions. Let r : M1 → M ′

1 be a map of left
A�HBop-modules, and s : N1 → N ′

1 a map of left B�HC op-modules.
Then r ⊗BcoH s : M1 ⊗BcoH N1 → M ′

1 ⊗BcoH N ′
1 is left A�HC op-linear.
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Hopf bimodules

From now on, let H be a projective Hopf algebra.
Let A be a right H-comodule algebra, and M,N ∈ AMH .

Then A Hom(M,N) is a left H∗-module, with action

(h∗ · f )(m) = 〈h∗,S−1(m[1])f (m[0])[1]〉f (m[0])[0].

A HOM(M,N) is the rational part of A Hom(M,N).

It is the subspace of A Hom(M,N) consisting of left A-linear
f : M → N for which there exists a (unique)
f[0] ⊗ f[1] ∈ A Hom(M,N)⊗ H such that

f[0](m)⊗ f[1] = f (m[0])[0] ⊗ S−1(m[1])f (m[0])[1],

for all m ∈ M.

A HOM(M,N) is a right H-comodule.

If H is finitely generated projective, then A HOM(M,N) coincides
with A Hom(M,N).
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Hopf bimodules

Proposition

If M is finitely generated projective as a left A-module, then

A HOM(M,N) coincides with A Hom(M,N).
For f ∈ A HOM(M,N), we have

ρ(f ) =
∑

i

m∗
i · f (mi [0])[0] ⊗ S−1(mi [1])f (mi [0])[1],

where
∑

i m
∗
i ⊗A m is a finite dual basis of M ∈ AM.

Proposition

Let A,B,C be right H-comodule algebras.
If M ∈ AMH

B and N ∈ AMH
C , then A HOM(M,N) ∈ BMH

C .
We have a map

β : A HOM(M,N)coH → AcoH Hom(McoH ,NcoH).

If A is a faithfully flat H-Galois extension, then β is an isomorphism of
left B�C op-modules.
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A HOM(M,N) ∼= (B ⊗ C op)⊗B�Cop AcoH Hom(M1,N1).

Proposition

Let M ∈ AMH
B , N ∈ AMH

C . Then the evaluation map

ϕ : M ⊗B A HOM(M,N) → N, ϕ(m ⊗B f ) = f (m)

is in AMH
C . If A and B are faithfully flat H-Galois, then the evaluation

McoH ⊗BcoH AcoH Hom(McoH ,NcoH) → NcoH

is left A�HC op-linear.
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Proposition

Let M ∈ AMH
B . Then the map

ψ : B → A END(M), ψ(b)(m) = mb

is a morphism in BMH
B .

If A is faithfully flat H-Galois, then

ψcoH : BcoH → A END(M)coH ∼= AcoH End(McoH)

is left B�HBop-linear.

Proposition

Let M ∈ AMH
B , N ∈ AMH

C . Then the map

µ : A HOM(M,A)⊗A N → A HOM(M,N), µ(f ⊗ n)(m) = f (m)n

is in BMH
C . If A is a faithfully flat H-Galois extension, then the map

µcoH : AcoH Hom(McoH ,AcoH)⊗AcoH NcoH → AcoH Hom(McoH ,NcoH)

is left B�HC op-linear.
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Morita equivalences

In this section, we study Morita equivalences induced by two-sided
relative Hopf modules.

Definition

Let A and B be right H-comodule algebras.
An H-Morita context connecting A and B is a Morita context
(A,B,M,N, α, β) such that M ∈ AMH

B , N ∈ BMH
A ,

α : M ⊗B N → A

is a morphism in AMH
A , and

β : N ⊗A M → B

is a morphism in BMH
B .

Proposition

Let (A,B,M,N, α, β) be a strict H-Morita context.
Then we have a pair of inverse equivalences (M ⊗B −,N ⊗A −) between
the categories BMH and BMH .
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Morita equivalences

From now on that A and B are faithfully flat H-Galois extensions.
Let (A,B,M,N, α, β) be an H-Morita context.

Then McoH ∈ A�HBopM, and NcoH ∈ B�HAopM.
It follows that we have a left A�HAop-linear map

α1 = αcoH ◦ f : McoH ⊗BcoH NcoH → (M ⊗B N)coH → AcoH ,

and a left B�HBop-linear isomorphism

β1 = βcoH ◦ f : NcoH ⊗AcoH McoH → (N ⊗A M)coH → BcoH .

From the description of f , it follows that we have a commutative
diagram of isomorphisms

McoH ⊗BcoH NcoH ⊗AcoH McoH //

��

(M ⊗B N)coH ⊗AcoH McoH

��
McoH ⊗BcoH (N ⊗A M)coH // (M ⊗B N ⊗A M)coH
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Morita equivalences

Now α⊗A M = M ⊗B β implies (α⊗A M)coH = (M ⊗B β)coH .
It follows that

α1 ⊗AcoH McoH = McoH ⊗BcoH β.

In a similar way, we have that

β1 ⊗BcoH NcoH = NcoH ⊗AcoH α.

It follows that (AcoH ,BcoH ,McoH ,NcoH , α1, β1) is a Morita context. If
(A,B,M,N, α, β) is strict, then (AcoH ,BcoH ,McoH , NcoH , α1, β1) is also
strict.
This proves the following.

Proposition

Let (A,B,M,N, α, β) be a (strict) H-Morita context connecting the
faithfully flat H-Galois extensions A and B.
Then we have a (strict) Morita context (AcoH ,BcoH ,McoH ,NcoH , α1, β1),
with McoH ∈ A�HBopM, NcoH ∈ B�HAopM, α1 ∈ A�HAopM and
β1 ∈ B�HBopM.
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Morita equivalences

Now suppose that (AcoH ,BcoH ,M1,N1, α1, β1) is a strict Morita context.
In our main result, we discuss when we can lift the Morita context to a
strict H-Morita context connecting A and B.
It turns out that it is sufficient that M1 is a left A�Bop-module.

Theorem

Let M1 ∈ AcoHMBcoH and N1 ∈ BcoHMAcoH , and consider

M = A⊗AcoH M1 ∈ AMH
BcoH and N = B ⊗BcoH N1 ∈ BMH

AcoH .

Then the following statements are equivalent:

1 The structure on M and N can be extended such that M ∈ AMH
B

and N ∈ BMH
A , and M and N induce a strict H-Morita context

connecting A and B;

2 we have a strict Morita context (AcoH ,BcoH ,M1,N1, α1, β1) and the
structure of M1 can be extended to a structure of left
A�Bop-module.



Morita equivalences

Now suppose that (AcoH ,BcoH ,M1,N1, α1, β1) is a strict Morita context.
In our main result, we discuss when we can lift the Morita context to a
strict H-Morita context connecting A and B.
It turns out that it is sufficient that M1 is a left A�Bop-module.

Theorem

Let M1 ∈ AcoHMBcoH and N1 ∈ BcoHMAcoH , and consider

M = A⊗AcoH M1 ∈ AMH
BcoH and N = B ⊗BcoH N1 ∈ BMH

AcoH .

Then the following statements are equivalent:

1 The structure on M and N can be extended such that M ∈ AMH
B

and N ∈ BMH
A , and M and N induce a strict H-Morita context

connecting A and B;

2 we have a strict Morita context (AcoH ,BcoH ,M1,N1, α1, β1) and the
structure of M1 can be extended to a structure of left
A�Bop-module.



Morita equivalences

Now suppose that (AcoH ,BcoH ,M1,N1, α1, β1) is a strict Morita context.
In our main result, we discuss when we can lift the Morita context to a
strict H-Morita context connecting A and B.
It turns out that it is sufficient that M1 is a left A�Bop-module.

Theorem

Let M1 ∈ AcoHMBcoH and N1 ∈ BcoHMAcoH , and consider

M = A⊗AcoH M1 ∈ AMH
BcoH and N = B ⊗BcoH N1 ∈ BMH

AcoH .

Then the following statements are equivalent:

1 The structure on M and N can be extended such that M ∈ AMH
B

and N ∈ BMH
A , and M and N induce a strict H-Morita context

connecting A and B;

2 we have a strict Morita context (AcoH ,BcoH ,M1,N1, α1, β1) and the
structure of M1 can be extended to a structure of left
A�Bop-module.



Morita equivalences

Now suppose that (AcoH ,BcoH ,M1,N1, α1, β1) is a strict Morita context.
In our main result, we discuss when we can lift the Morita context to a
strict H-Morita context connecting A and B.
It turns out that it is sufficient that M1 is a left A�Bop-module.

Theorem

Let M1 ∈ AcoHMBcoH and N1 ∈ BcoHMAcoH , and consider

M = A⊗AcoH M1 ∈ AMH
BcoH and N = B ⊗BcoH N1 ∈ BMH

AcoH .

Then the following statements are equivalent:

1 The structure on M and N can be extended such that M ∈ AMH
B

and N ∈ BMH
A , and M and N induce a strict H-Morita context

connecting A and B;

2 we have a strict Morita context (AcoH ,BcoH ,M1,N1, α1, β1) and the
structure of M1 can be extended to a structure of left
A�Bop-module.



Morita equivalences

Now suppose that (AcoH ,BcoH ,M1,N1, α1, β1) is a strict Morita context.
In our main result, we discuss when we can lift the Morita context to a
strict H-Morita context connecting A and B.
It turns out that it is sufficient that M1 is a left A�Bop-module.

Theorem

Let M1 ∈ AcoHMBcoH and N1 ∈ BcoHMAcoH , and consider

M = A⊗AcoH M1 ∈ AMH
BcoH and N = B ⊗BcoH N1 ∈ BMH

AcoH .

Then the following statements are equivalent:

1 The structure on M and N can be extended such that M ∈ AMH
B

and N ∈ BMH
A , and M and N induce a strict H-Morita context

connecting A and B;

2 we have a strict Morita context (AcoH ,BcoH ,M1,N1, α1, β1) and the
structure of M1 can be extended to a structure of left
A�Bop-module.



The Miyashita-Ulbrich action

Let A be a faithfully flat right H-Galois extension, and consider the map

γA = can−1 ◦(ηA ⊗ H) : H → A⊗AcoH A.

We use the notation

γA(h) =
∑

i

li (h)⊗AcoH ri (h).

γA(h) is then characterized by the property∑
i

li (h)ri (h)[0] ⊗ ri (h)[1] = 1⊗ h.

Let M be an (A,A)-bimodule. On MAcoH

, we can define a right H-action
called the Miyashita-Ulbrich action. It is given by the formula

m ↼ h =
∑

i

li (h)mri (h).
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The Miyashita-Ulbrich action

In particular, for X ,Y ∈MA, Hom(X ,Y ) ∈ AMA, with left and right
A-action given by

(a · f · a′)(x) = f (xa)a′.

It is easy to see that

Hom(X ,Y )A
coH

= HomAcoH (X ,Y ),

and the Miyashita-Ulbrich action is then given by

(f ↼ h)(x) =
∑

i

f (xli (h))ri (h).

Lemma

Let A and B be faithfully flat right H-Galois extensions.
For all b ∈ B, we have that

x := γ(S−1(b[1]))⊗ b[0] ∈ A⊗AcoH (A�HBop).
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The Miyashita-Ulbrich action

Now we assume that (A,B,M,N, α, β) is a strict H-Morita context
connecting the faithfully flat H-Galois extensions A and B.

For X ∈MA, we have the isomorphism

ϕ : X ⊗AcoH McoH ∼= X ⊗A A⊗AcoH McoH
X⊗Aε1,M // X ⊗A M,

given by

ϕ(x ⊗AcoH m) = x ⊗A m.

We have that X ⊗A M ∈MB , and its right B-action can be transported
to X ⊗AcoH McoH .
We compute this action.

Lemma

The transported right B-action on X ⊗AcoH McoH is given by the formula

(x ⊗AcoH m) · b =
∑

i

xli (S
−1(b[1]))⊗AcoH (ri (S

−1(b[1]))⊗ b[0])m.
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The Miyashita-Ulbrich action

Consider the setting of the main theorem:
(A,B,M,N, α, β) is a strict H-Morita context connecting the faithfully
flat H-Galois extensions A and B, and (AcoH ,BcoH ,McoH ,NcoH , α1, β1)
is the corresponding Morita context connecting AcoH and BcoH .

For X ,Y ∈MA, we have an isomorphism

φ : HomAcoH (X ,Y ) → HomBcoH (X ⊗AcoH McoH ,Y ⊗AcoH McoH),

φ(f ) = f ⊗AcoH McoH .

It follows that Hom(X ⊗AcoH McoH ,Y ⊗AcoH McoH) is a
(B,B)-bimodule.

We consider the Miyashita-Ulbrich action on
HomBcoH (X ⊗AcoH McoH ,Y ⊗AcoH McoH).

Proposition

With notation as above, the map φ preserves the Miyashita-Ulbrich
action.
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Hopf subalgebras
H is a Hopf algebra with bijective antipode over a field k, and K is a
Hopf subalgebra of H. We assume that the antipode of K is bijective,
and that H is faithfully flat as a left K -module.

Let K+ = Ker(εK ). It is well-known that

H = H/HK+ ∼= H ⊗K k

is a left H-module coalgebra, with operations

h · l = hl , ∆H(h) = h(1) ⊗ h(2), εH(h) = ε(h).

The class in H represented by h ∈ H is denoted by h.
1 is a grouplike element of H, and we consider coinvariants with
respect to this element.

A right H-comodule M is also a right H-comodule, by corestriction
of coscalars:

ρH(m) = m[0] ⊗m[1].

The H-coinvariants of M ∈MH are

McoH = {m ∈ M | m[0] ⊗m[1] = m ⊗ 1}
= {m ∈ M | ρ(m) ∈ M ⊗ K} ∼= M�HK .



Hopf subalgebras
H is a Hopf algebra with bijective antipode over a field k, and K is a
Hopf subalgebra of H. We assume that the antipode of K is bijective,
and that H is faithfully flat as a left K -module.

Let K+ = Ker(εK ). It is well-known that

H = H/HK+ ∼= H ⊗K k

is a left H-module coalgebra, with operations

h · l = hl , ∆H(h) = h(1) ⊗ h(2), εH(h) = ε(h).

The class in H represented by h ∈ H is denoted by h.
1 is a grouplike element of H, and we consider coinvariants with
respect to this element.

A right H-comodule M is also a right H-comodule, by corestriction
of coscalars:

ρH(m) = m[0] ⊗m[1].

The H-coinvariants of M ∈MH are

McoH = {m ∈ M | m[0] ⊗m[1] = m ⊗ 1}
= {m ∈ M | ρ(m) ∈ M ⊗ K} ∼= M�HK .



Hopf subalgebras
H is a Hopf algebra with bijective antipode over a field k, and K is a
Hopf subalgebra of H. We assume that the antipode of K is bijective,
and that H is faithfully flat as a left K -module.

Let K+ = Ker(εK ). It is well-known that

H = H/HK+ ∼= H ⊗K k

is a left H-module coalgebra, with operations

h · l = hl , ∆H(h) = h(1) ⊗ h(2), εH(h) = ε(h).

The class in H represented by h ∈ H is denoted by h.
1 is a grouplike element of H, and we consider coinvariants with
respect to this element.

A right H-comodule M is also a right H-comodule, by corestriction
of coscalars:

ρH(m) = m[0] ⊗m[1].

The H-coinvariants of M ∈MH are

McoH = {m ∈ M | m[0] ⊗m[1] = m ⊗ 1}
= {m ∈ M | ρ(m) ∈ M ⊗ K} ∼= M�HK .



Hopf subalgebras
H is a Hopf algebra with bijective antipode over a field k, and K is a
Hopf subalgebra of H. We assume that the antipode of K is bijective,
and that H is faithfully flat as a left K -module.

Let K+ = Ker(εK ). It is well-known that

H = H/HK+ ∼= H ⊗K k

is a left H-module coalgebra, with operations

h · l = hl , ∆H(h) = h(1) ⊗ h(2), εH(h) = ε(h).

The class in H represented by h ∈ H is denoted by h.
1 is a grouplike element of H, and we consider coinvariants with
respect to this element.

A right H-comodule M is also a right H-comodule, by corestriction
of coscalars:

ρH(m) = m[0] ⊗m[1].

The H-coinvariants of M ∈MH are

McoH = {m ∈ M | m[0] ⊗m[1] = m ⊗ 1}
= {m ∈ M | ρ(m) ∈ M ⊗ K} ∼= M�HK .



Hopf subalgebras
H is a Hopf algebra with bijective antipode over a field k, and K is a
Hopf subalgebra of H. We assume that the antipode of K is bijective,
and that H is faithfully flat as a left K -module.

Let K+ = Ker(εK ). It is well-known that

H = H/HK+ ∼= H ⊗K k

is a left H-module coalgebra, with operations

h · l = hl , ∆H(h) = h(1) ⊗ h(2), εH(h) = ε(h).

The class in H represented by h ∈ H is denoted by h.
1 is a grouplike element of H, and we consider coinvariants with
respect to this element.

A right H-comodule M is also a right H-comodule, by corestriction
of coscalars:

ρH(m) = m[0] ⊗m[1].

The H-coinvariants of M ∈MH are

McoH = {m ∈ M | m[0] ⊗m[1] = m ⊗ 1}
= {m ∈ M | ρ(m) ∈ M ⊗ K} ∼= M�HK .



Hopf subalgebras

If A is a right H-comodule algebra, then AcoH is a right K -comodule

algebra, and (AcoH)coK = AcoH .

Proposition (Schneider)

Assume that A is a faithfully flat right H-Galois extension. Then

1 A is faithfully flat as a right AcoH -module, and

can : A⊗AcoH A → A⊗ H, can(a⊗ b) = ab[0] ⊗ b[1]

is bijective.

2 The functors (A⊗AcoH −, (−)coH) form a pair of inverse equivalences

between AcoHM and AM(H)H .

Theorem

Assume that A is a faithfully flat right H-Galois extension.

Then AcoH is a faithfully flat right K-Galois extension.
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Hopf subalgebras

We recall some elementary facts from category theory.

If (F1,G1) and (F2,G2) are adjoint pairs, respectively between C and
D, and between D and E , then (F = F2 ◦ F1,G = G1 ◦ G2) is an
adjoint pair C and E .

If two of these three pairs are inverse equivalences, then the third
one is also a pair of inverse equivalences.

We have two pairs of inverse equivalences:

(F1 = A⊗AcoH −, G1 = (−)coH) between AcoHM and AMH ;

(F3 = AcoH ⊗AcoH −, G3 = (−)coK ) between AcoHM and
AcoHMK .

We have an adjoint pair (F4 = A⊗AcoH −,G4 = (−)coH ∼= −�HK )
between AcoHMK and AMH .

It is clear that F1 = F4 ◦ F3 and G1 = G3 ◦ G4.

Corollary

The adjoint pair (F4 = A⊗AcoH −,G4 = (−)coH ∼= −�HK ) establishes a
pair of inverse equivalences between the categories AcoHMK and AMH .
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Hopf subalgebras

Theorem

Let A and B be faithfully flat right H-Galois extensions, connected by a
strict H-Morita context (A,B,M,N, α, β).

1 AcoH and BcoH are connected by a strict K-Morita context, with

connecting modules McoH and NcoH ;

2 we have a pair of inverse equivalences (M ⊗B −,N ⊗A −) between

the categories BM(H)H and AM(H)H ;

3 the following diagram of categories and functors is commutative:

AM(H)H̄
N⊗A− //

(−)co H̄

��

BM(H)H̄
M⊗B−

oo

(−)co H̄

��
Aco H̄M

Nco H̄⊗
Aco H̄− //

A⊗
Aco H̄−

OO

Bco H̄M
Mco H̄⊗

Bco H̄−
oo

B⊗
Bco H̄−

OO
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Hopf subalgebras

Recall that if the algebras A and B are Morita equivalent, then there is a
Morita equivalence between A⊗ Aop and B ⊗ Bop sending A to B.
In particular, this implies that the centers of A and B are isomorphic.

In our context this generalizes as follows.

Corollary

Assume that the equivalent conditions of the main theorem hold.

1 Let K and L be Hopf subalgebras of H with bijective antipodes, and
assume that H ⊗ H is faithfully flat as a right K ⊗ L-module.
Then the categories Aco H/HK+MAco H/HL+ and Bco H/HK+MBco H/HL+ are
equivalent.

2 There is an isomorphism

CA(Aco H) ∼= CB(Bco H)

of left H-module right H-comodule algebras,
where CA(Aco H) denotes the centralizer in A of Aco H .
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