Tilting complexes for group graded algebras and Broué's abelian defect group conjecture

Andrei Marcus
"Babeș-Bolyai" University Cluj-Napoca
Madrid, August 25, 2006

(1) Introduction
(2) G-graded tilting complexes
(3) Stable equivalences and Rickard equivalences between symmetric algebras
(4) On Okuyama's tilting complexes
(5) Extending Rickard's construction
(6) Splendid stable and derived equivalences
(7) Equivalences between blocks of alternating groups
(8) References

Problem

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

The problem

Problem

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Motivation

Problem

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Motivation

- Let $K \unlhd H, G=H / K, b$ is a G-invariant block with defect group D of the group algebra $k K$.

Problem

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Motivation

- Let $K \unlhd H, G=H / K, b$ is a G-invariant block with defect group D of the group algebra $k K$.
- The Brauer correspondent c of b in $k N_{K}(D)$ is a G-invariant block of $k N_{K}(D)$;

Problem

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Motivation

- Let $K \unlhd H, G=H / K, b$ is a G-invariant block with defect group D of the group algebra $k K$.
- The Brauer correspondent c of b in $k N_{K}(D)$ is a G-invariant block of $k N_{K}(D)$;
- if D is abelian, Broué's conjecture predicts that there is a derived equivalence between the block algebras $A=k K b$ and $B=k N_{K}(D) c$ i.e. $\mathcal{D}^{b}(A)$ and $\mathcal{D}^{b}(B)$ are equivalent as triangulated categories;

Problem

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Motivation

- Let $K \unlhd H, G=H / K, b$ is a G-invariant block with defect group D of the group algebra $k K$.
- The Brauer correspondent c of b in $k N_{K}(D)$ is a G-invariant block of $k N_{K}(D)$;
- if D is abelian, Broué's conjecture predicts that there is a derived equivalence between the block algebras $A=k K b$ and $B=k N_{K}(D) c$ i.e. $\mathcal{D}^{b}(A)$ and $\mathcal{D}^{b}(B)$ are equivalent as triangulated categories;
- moreover, such an equivalence should be compatible with p^{\prime}-extensions, i.e. if $p \nmid|G|$, then the equivalence can be extended to a derived equivalence between the G-graded k-algebras $S=k H b$ and $R=k N_{H}(D) c$ induced by a bounded complex of G-graded (R, S)-bimodules.

The problem

This talk

This talk

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.

This talk

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.

This talk

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.
- In the case of the Morita equivalence, if P is a progenerator of A-Mod, the P becomes an $\left(A, \operatorname{End}_{A}(P)^{\mathrm{op}}\right)$-module.

This talk

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.
- In the case of the Morita equivalence, if P is a progenerator of A-Mod, the P becomes an $\left(A, \operatorname{End}_{A}(P)^{\mathrm{op}}\right)$-module.
- A difficulty in the case of derived equivalences is that if T is an one-sided tilting complex of A-modules, then $\operatorname{End}_{\mathcal{H}(A)}(T)^{\mathrm{op}}$ acts on T only up to homotopy.

This talk

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.
- In the case of the Morita equivalence, if P is a progenerator of A-Mod, the P becomes an $\left(A, \operatorname{End}_{A}(P)^{\mathrm{op}}\right)$-module.
- A difficulty in the case of derived equivalences is that if T is an one-sided tilting complex of A-modules, then $\operatorname{End}_{\mathcal{H}(A)}(T)^{\mathrm{op}}$ acts on T only up to homotopy.

Denote $A=R_{1}$ and $B=S_{1}$. The diagonal subalgebra is

$$
\Delta:=\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)=\bigoplus_{g \in G} R_{g} \otimes_{k} S_{g^{-1}}
$$

G-graded tilting complexes

Graded endomorphism rings

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R$-Gr) is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R$-Gr $)$) for all $g \in G$.

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R-\mathrm{Gr})$ is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-G r))$ for all $g \in G . T$ is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R-\mathrm{Gr})$ is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-G r))$ for all $g \in G . T$ is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-\mathrm{Gr}), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$.

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R-\mathrm{Gr})$ is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-\mathrm{Gr})$) for all $g \in G$. T is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-\mathrm{Gr}), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume G is finite. Then:

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R-\mathrm{Gr})$ is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-\mathrm{Gr})$) for all $g \in G$. T is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-\mathrm{Gr}), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-G r)}(T, T(g))$.

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R-\mathrm{Gr})$ is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-G r))$ for all $g \in G . T$ is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-\mathrm{Gr}), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\text {op }}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-G r)}(T, T(g))$.
b) E is strongly graded (crossed product) iff T is weakly G-invariant (G-invariant).

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R$-Gr) is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-G r))$ for all $g \in G$. T is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-G r), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\text {op }}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-\mathrm{Gr})}(T, T(g))$.
b) E is strongly graded (crossed product) iff T is weakly G-invariant (G-invariant).

Group graded functors

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R$-Gr) is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-\mathrm{Gr}))$ for all $g \in G$. T is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-G r), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-\mathrm{Gr})}(T, T(g))$.
b) E is strongly graded (crossed product) iff T is weakly G-invariant (G-invariant).

Group graded functors

- Consider the conjugation functors $\mathcal{S}_{g}=(-)(g), g \in G$.

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R$-Gr) is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-\mathrm{Gr}))$ for all $g \in G . T$ is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-G r), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-\mathrm{Gr})}(T, T(g))$.
b) E is strongly graded (crossed product) iff T is weakly G-invariant (G-invariant).

Group graded functors

- Consider the conjugation functors $\mathcal{S}_{g}=(-)(g), g \in G$.
- A functor $F: \mathcal{D}(S-G r) \rightarrow \mathcal{D}(R-G r)$ is said to be G-graded if $F \circ \mathcal{S}_{g}=\mathcal{S}_{g} \circ F$ for all $g \in G$.

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R$-Gr) is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-\mathrm{Gr}))$ for all $g \in G . T$ is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-G r), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\text {op }}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-\mathrm{Gr})}(T, T(g))$.
b) E is strongly graded (crossed product) iff T is weakly G-invariant (G-invariant).

Group graded functors

- Consider the conjugation functors $\mathcal{S}_{g}=(-)(g), g \in G$.
- A functor $F: \mathcal{D}(S-G r) \rightarrow \mathcal{D}(R-G r)$ is said to be G-graded if $F \circ \mathcal{S}_{g}=\mathcal{S}_{g} \circ F$ for all $g \in G$.
- A complex $X=\bigoplus_{g \in G} X_{g}$ of G-graded (R, S)-bimodules, yields an adjoint pair of G-graded functors:

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R$-Gr) is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-\mathrm{Gr}))$ for all $g \in G . T$ is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-G r), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\text {op }}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-\mathrm{Gr})}(T, T(g))$.
b) E is strongly graded (crossed product) iff T is weakly G-invariant (G-invariant).

Group graded functors

- Consider the conjugation functors $\mathcal{S}_{g}=(-)(g), g \in G$.
- A functor $F: \mathcal{D}(S-G r) \rightarrow \mathcal{D}(R-G r)$ is said to be G-graded if $F \circ \mathcal{S}_{g}=\mathcal{S}_{g} \circ F$ for all $g \in G$.
- A complex $X=\bigoplus_{g \in G} X_{g}$ of G-graded (R, S)-bimodules, yields an adjoint pair of G-graded functors:
$X^{\mathrm{L}}{ }_{S}-: \mathcal{D}(S-\mathrm{Gr}) \rightarrow \mathcal{D}(R-\mathrm{Gr})$.

G-graded tilting complexes

Graded endomorphism rings

A complex $T \in \mathcal{H}(R-G r)$ is called G-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R-G r))$ for all $g \in G . T$ is called weakly G-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.
Let $T \in \mathcal{H}(R-\mathrm{Gr}), E:=\operatorname{End}_{\mathcal{H}(R)}(T)^{\text {op }}$. Assume G is finite. Then:
a) E is a G-graded algebra, $E_{g} \simeq \operatorname{Hom}_{\mathcal{H}(R-G r)}(T, T(g))$.
b) E is strongly graded (crossed product) iff T is weakly G-invariant (G-invariant).

Group graded functors

- Consider the conjugation functors $\mathcal{S}_{g}=(-)(g), g \in G$.
- A functor $F: \mathcal{D}(S-G r) \rightarrow \mathcal{D}(R-G r)$ is said to be G-graded if $F \circ \mathcal{S}_{g}=\mathcal{S}_{g} \circ F$ for all $g \in G$.
- A complex $X=\bigoplus_{g \in G} X_{g}$ of G-graded (R, S)-bimodules, yields an adjoint pair of G-graded functors:
$X^{\mathrm{L}}{ }_{S}-: \mathcal{D}(S-\mathrm{Gr}) \rightarrow \mathcal{D}(R-\mathrm{Gr})$.
$\mathrm{RHom}_{R}(X,-): \mathcal{D}(R-\mathrm{Gr}) \rightarrow \mathcal{D}(S$-Gr $)$.

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R-\mathrm{Gr})$ is a G-graded tilting complex over R if

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R$-Gr $)$ is a G-graded tilting complex over R if a) $T \in R$ - perf.

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R$-Gr) is a G-graded tilting complex over R if
a) $T \in R$ - perf.
b) $\operatorname{Hom}_{\mathcal{D}(R)}(T, T[n])=0$ for all $n \neq 0$.

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R$-Gr) is a G-graded tilting complex over R if
a) $T \in R$ - perf.
b) $\operatorname{Hom}_{\mathcal{D}(R)}(T, T[n])=0$ for all $n \neq 0$.
c) $\operatorname{add}(T)$ generates R-perf as a triangulated category.

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R$-Gr) is a G-graded tilting complex over R if a) $T \in R$ - perf.
b) $\operatorname{Hom}_{\mathcal{D}(R)}(T, T[n])=0$ for all $n \neq 0$.
c) $\operatorname{add}(T)$ generates R-perf as a triangulated category.

Theorem

The following statements are equivalent.

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R$-Gr $)$ is a G-graded tilting complex over R if
a) $T \in R$ - perf.
b) $\operatorname{Hom}_{\mathcal{D}(R)}(T, T[n])=0$ for all $n \neq 0$.
c) $\operatorname{add}(T)$ generates R-perf as a triangulated category.

Theorem

The following statements are equivalent.
(i) There is a G-graded tilting complex $T \in \mathcal{D}(R-G r)$ and an isomorphism $S \rightarrow \operatorname{End}_{\mathcal{D}(R)}(T)^{\mathrm{op}}$ of G-graded algebras.

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R$-Gr $)$ is a G-graded tilting complex over R if
a) $T \in R$ - perf.
b) $\operatorname{Hom}_{\mathcal{D}(R)}(T, T[n])=0$ for all $n \neq 0$.
c) $\operatorname{add}(T)$ generates R-perf as a triangulated category.

Theorem

The following statements are equivalent.
(i) There is a G-graded tilting complex $T \in \mathcal{D}(R-G r)$ and an isomorphism $S \rightarrow \operatorname{End}_{\mathcal{D}(R)}(T)^{\mathrm{op}}$ of G-graded algebras.
(ii) There is a complex X of G-graded (R, S)-bimodules such that the functor

$$
x^{\mathrm{L}}{ }_{S}-: \mathcal{D}(S) \rightarrow \mathcal{D}(R)
$$

is an equivalence.

G-graded tilting complexes

Definition

$T \in \mathcal{D}(R$-Gr $)$ is a G-graded tilting complex over R if
a) $T \in R$ - perf.
b) $\operatorname{Hom}_{\mathcal{D}(R)}(T, T[n])=0$ for all $n \neq 0$.
c) $\operatorname{add}(T)$ generates R-perf as a triangulated category.

Theorem

The following statements are equivalent.
(i) There is a G-graded tilting complex $T \in \mathcal{D}(R-G r)$ and an isomorphism $S \rightarrow \operatorname{End}_{\mathcal{D}(R)}(T)^{\mathrm{op}}$ of G-graded algebras.
(ii) There is a complex X of G-graded (R, S)-bimodules such that the functor

$$
x^{\mathrm{L}}{ }_{S}-: \mathcal{D}(S) \rightarrow \mathcal{D}(R)
$$

is an equivalence.
(iii) There are triangle equivalences $F: \mathcal{D}(S) \rightarrow \mathcal{D}(R)$ and
$F^{\mathrm{gr}}: \mathcal{D}(S-\mathrm{Gr}) \rightarrow \mathcal{D}(R-\mathrm{Gr})$ such that F^{gr} is a G-graded functor and commutes with the ungrading functor.

G-graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X_{1} of $\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)$ modules and Y_{1} of $\Delta\left(S \otimes_{k} R^{\mathrm{op}}\right)$ modules, and isomorphisms

$$
\begin{aligned}
& X_{1}{ }_{\otimes}^{\mathrm{L}}{ }_{S_{1}} Y_{1} \simeq R_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(R \otimes_{k} R^{\mathrm{op}}\right)\right), \\
& Y_{1}{ }_{\otimes}^{\mathrm{L}}{ }_{R_{1}} X_{1} \simeq S_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(S \otimes_{k} S^{\mathrm{op}}\right)\right) .
\end{aligned}
$$

G-graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X_{1} of $\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)$ modules and Y_{1} of $\Delta\left(S \otimes_{k} R^{\mathrm{op}}\right)$ modules, and isomorphisms

$$
\begin{aligned}
& X_{1}{ }^{\mathrm{L}}{ }_{S_{1}} Y_{1} \simeq R_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(R \otimes_{k} R^{\mathrm{op}}\right)\right), \\
& Y_{1}{\stackrel{\mathrm{Q}}{R_{1}}} X_{1} \simeq S_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(S \otimes_{k} S^{\mathrm{op}}\right)\right) .
\end{aligned}
$$

Proposition (Inducing one-sided tilting complexes)

G-graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X_{1} of $\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)$ modules and Y_{1} of $\Delta\left(S \otimes_{k} R^{\mathrm{op}}\right)$ modules, and isomorphisms

$$
\begin{aligned}
& X_{1}{\stackrel{\mathrm{~L}}{S_{1}}}^{Y_{1}} \simeq R_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(R \otimes_{k} R^{\mathrm{op}}\right)\right), \\
& Y_{1}{\stackrel{\mathrm{Q}}{R_{1}}} X_{1} \simeq S_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(S \otimes_{k} S^{\mathrm{op}}\right)\right)
\end{aligned}
$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded.

G-graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X_{1} of $\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)$ modules and Y_{1} of $\Delta\left(S \otimes_{k} R^{\mathrm{op}}\right)$ modules, and isomorphisms

$$
\begin{aligned}
& X_{1} \stackrel{\mathrm{~L}}{S_{1}} Y_{1} \simeq R_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(R \otimes_{k} R^{\mathrm{op}}\right)\right), \\
& Y_{1} \stackrel{\otimes_{R_{1}} X_{1} \simeq S_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(S \otimes_{k} S^{\mathrm{op}}\right)\right)}{ } .
\end{aligned}
$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded.
Let T be a G-invariant object of $\mathcal{H}^{b}(A)$.

G-graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X_{1} of $\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)$ modules and Y_{1} of $\Delta\left(S \otimes_{k} R^{\mathrm{op}}\right)$ modules, and isomorphisms

$$
\begin{aligned}
& X_{1} \stackrel{\mathrm{~L}}{S_{1}} Y_{1} \simeq R_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(R \otimes_{k} R^{\mathrm{op}}\right)\right), \\
& Y_{1} \stackrel{\otimes_{R_{1}} X_{1} \simeq S_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(S \otimes_{k} S^{\mathrm{op}}\right)\right)}{ } .
\end{aligned}
$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded.
Let T be a G-invariant object of $\mathcal{H}^{b}(A)$.
Denote $\tilde{T}=R \otimes_{A} T$ and $S=\operatorname{End}_{\mathcal{H}(R)}(\tilde{T})^{\mathrm{op}}$.

G-graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X_{1} of $\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)$ modules and Y_{1} of $\Delta\left(S \otimes_{k} R^{\mathrm{op}}\right)$ modules, and isomorphisms

$$
\begin{aligned}
& X_{1} \stackrel{\mathrm{~L}}{S_{1}} Y_{1} \simeq R_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(R \otimes_{k} R^{\mathrm{op}}\right)\right), \\
& Y_{1} \stackrel{\otimes_{R_{1}} X_{1} \simeq S_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(S \otimes_{k} S^{\mathrm{op}}\right)\right)}{ } .
\end{aligned}
$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded.
Let T be a G-invariant object of $\mathcal{H}^{b}(A)$.
Denote $\tilde{T}=R \otimes_{A} T$ and $S=\operatorname{End}_{\mathcal{H}(R)}(\tilde{T})^{\text {op }}$.
a) T is a tilting complex for A if and only if \tilde{T} is a G-graded tilting complex for R.

G-graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X_{1} of $\Delta\left(R \otimes_{k} S^{\mathrm{op}}\right)$ modules and Y_{1} of $\Delta\left(S \otimes_{k} R^{\mathrm{op}}\right)$ modules, and isomorphisms

$$
\begin{aligned}
& X_{1}{\stackrel{\mathrm{~L}}{S_{1}}}^{Y_{1}} \simeq R_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(R \otimes_{k} R^{\mathrm{op}}\right)\right), \\
& Y_{1} \stackrel{\otimes_{R_{1}} X_{1} \simeq S_{1} \quad \text { in } \quad \mathcal{D}^{b}\left(\Delta\left(S \otimes_{k} S^{\mathrm{op}}\right)\right)}{ } .
\end{aligned}
$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded.
Let T be a G-invariant object of $\mathcal{H}^{b}(A)$.
Denote $\tilde{T}=R \otimes_{A} T$ and $S=\operatorname{End}_{\mathcal{H}(R)}(\tilde{T})^{\mathrm{op}}$.
a) T is a tilting complex for A if and only if \tilde{T} is a G-graded tilting complex for R.
b) If T is a tilting complex for A and R is a finite dimensional symmetric crossed product, then S is a symmetric crossed product of $B:=S_{1} \simeq \operatorname{End}_{\mathcal{H}(A)}(T)^{\mathrm{op}}$ and G.
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of G-graded R-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}\left(T^{\bullet}\right)^{\mathrm{op}} \simeq S$.
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of G-graded R-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}\left(T^{\bullet}\right)^{\mathrm{op}} \simeq S$.
There is a two-sided tilting complex X^{\bullet} of G-graded (R, S)-bimodules.
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of G-graded R-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}\left(T^{\bullet}\right)^{\mathrm{op}} \simeq S$.
There is a two-sided tilting complex X^{\bullet} of G-graded (R, S)-bimodules.
Then X_{1}^{\bullet} is a complex of Δ-modules, and also a two-sided tilting complex of $\left(R_{1}, S_{1}\right)$-bimodules.
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of G-graded R-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}\left(T^{\bullet}\right)^{\mathrm{op}} \simeq S$.
There is a two-sided tilting complex X^{\bullet} of G-graded (R, S)-bimodules.
Then X_{1}^{\bullet} is a complex of Δ-modules, and also a two-sided tilting complex of (R_{1}, S_{1})-bimodules.
Let Y_{1}^{\bullet} be a projective resolution of X_{1}^{\bullet} as Δ-modules.
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of G-graded R-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}\left(T^{\bullet}\right)^{\mathrm{op}} \simeq S$.
There is a two-sided tilting complex X^{\bullet} of G-graded (R, S)-bimodules.
Then X_{1}^{\bullet} is a complex of Δ-modules, and also a two-sided tilting complex of (R_{1}, S_{1})-bimodules.
Let Y_{1}^{\bullet} be a projective resolution of X_{1}^{\bullet} as Δ-modules.
It is possible (Rickard), to truncate Y_{1}^{\bullet} and obtain a bounded complex

$$
Z_{1}^{\bullet}:=\left(\cdots \rightarrow 0 \rightarrow \operatorname{Kerd}^{n} \rightarrow Y_{1}^{n} \rightarrow Y_{1}^{n+1} \rightarrow \cdots\right)
$$

of Δ-modules quasi-isomorphic to X_{1}^{\bullet}, such that:
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of G-graded R-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}\left(T^{\bullet}\right)^{\mathrm{op}} \simeq S$.
There is a two-sided tilting complex X^{\bullet} of G-graded (R, S)-bimodules.
Then X_{1}^{\bullet} is a complex of Δ-modules, and also a two-sided tilting complex of (R_{1}, S_{1})-bimodules.
Let Y_{1}^{\bullet} be a projective resolution of X_{1}^{\bullet} as Δ-modules.
It is possible (Rickard), to truncate Y_{1}^{\bullet} and obtain a bounded complex

$$
Z_{1}^{\bullet}:=\left(\cdots \rightarrow 0 \rightarrow \text { Kerd }^{n} \rightarrow Y_{1}^{n} \rightarrow Y_{1}^{n+1} \rightarrow \cdots\right)
$$

of Δ-modules quasi-isomorphic to X_{1}^{\bullet}, such that:

- all the terms of Z_{1}^{\bullet} but $\operatorname{Ker} d^{n}$ are projective Δ-modules;
G is a p^{\prime}-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of G-graded R-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}\left(T^{\bullet}\right)^{\mathrm{op}} \simeq S$.
There is a two-sided tilting complex X^{\bullet} of G-graded (R, S)-bimodules.
Then X_{1}^{\bullet} is a complex of Δ-modules, and also a two-sided tilting complex of (R_{1}, S_{1})-bimodules.
Let Y_{1}^{\bullet} be a projective resolution of X_{1}^{\bullet} as Δ-modules.
It is possible (Rickard), to truncate Y_{1}^{\bullet} and obtain a bounded complex

$$
Z_{1}^{\bullet}:=\left(\cdots \rightarrow 0 \rightarrow \operatorname{Kerd}^{n} \rightarrow Y_{1}^{n} \rightarrow Y_{1}^{n+1} \rightarrow \cdots\right)
$$

of Δ-modules quasi-isomorphic to X_{1}^{\bullet}, such that:

- all the terms of Z_{1}^{\bullet} but $\operatorname{Ker} d^{n}$ are projective Δ-modules;
- Ker d^{n} is projective as an R_{1}-module and as a right S_{1}-module.

Let

$$
\begin{aligned}
& M_{1}:=\Omega^{n}\left(\operatorname{Kerd}^{n}\right), \quad N_{1}:=\Omega^{-n}\left(\operatorname{Hom}_{R_{1}}\left(\operatorname{Kerd}^{n}, R_{1}\right)\right), \\
& M:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} M_{1}, \quad Z^{\bullet}:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} Z_{1}^{\bullet} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& M_{1}:=\Omega^{n}\left(\operatorname{Kerd}^{n}\right), \quad N_{1}:=\Omega^{-n}\left(\operatorname{Hom}_{R_{1}}\left(\operatorname{Kerd}^{n}, R_{1}\right)\right), \\
& M:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} M_{1}, \quad Z^{\bullet}:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} Z_{1}^{\bullet} .
\end{aligned}
$$

Then we have:
a) The functor

$$
Z^{\bullet} \otimes_{S}-: \mathcal{H}^{b}(S) \rightarrow \mathcal{H}^{b}(R)
$$

is an equivalence, and it is also a graded functor.
The inverse equivalence is induced by the k-dual of Z^{\bullet}.

Let

$$
\begin{aligned}
& M_{1}:=\Omega^{n}\left(\operatorname{Kerd}^{n}\right), \quad N_{1}:=\Omega^{-n}\left(\operatorname{Hom}_{R_{1}}\left(\operatorname{Kerd}^{n}, R_{1}\right)\right), \\
& M:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} M_{1}, \quad Z^{\bullet}:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} Z_{1}^{\bullet} .
\end{aligned}
$$

Then we have:
a) The functor

$$
Z^{\bullet} \otimes_{S}-: \mathcal{H}^{b}(S) \rightarrow \mathcal{H}^{b}(R)
$$

is an equivalence, and it is also a graded functor.
The inverse equivalence is induced by the k-dual of Z^{\bullet}.
The complex Z^{\bullet} is called a Rickard tilting complex or a split endomorphism tilting complex.

Let

$$
\begin{aligned}
& M_{1}:=\Omega^{n}\left(\operatorname{Kerd}^{n}\right), \quad N_{1}:=\Omega^{-n}\left(\operatorname{Hom}_{R_{1}}\left(\operatorname{Kerd}^{n}, R_{1}\right)\right) \\
& M:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} M_{1}, \quad Z^{\bullet}:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} Z_{1}^{\bullet}
\end{aligned}
$$

Then we have:
a) The functor

$$
Z^{\bullet} \otimes_{S}-: \mathcal{H}^{b}(S) \rightarrow \mathcal{H}^{b}(R)
$$

is an equivalence, and it is also a graded functor.
The inverse equivalence is induced by the k-dual of Z^{\bullet}.
The complex Z^{\bullet} is called a Rickard tilting complex or a split endomorphism tilting complex.
b) M is a Δ-module, $N_{1} \simeq M_{1}^{\vee}$ as $\Delta\left(S \otimes_{k} R^{o p}\right)$-modules, and M_{1} and N_{1} induce a stable Morita equivalence between R_{1} and S_{1}.

Let

$$
\begin{aligned}
& M_{1}:=\Omega^{n}\left(\operatorname{Kerd}^{n}\right), \quad N_{1}:=\Omega^{-n}\left(\operatorname{Hom}_{R_{1}}\left(\operatorname{Kerd}^{n}, R_{1}\right)\right) \\
& M:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} M_{1}, \quad Z^{\bullet}:=\left(R \otimes_{k} S^{\mathrm{op}}\right) \otimes_{\Delta} Z_{1}^{\bullet}
\end{aligned}
$$

Then we have:
a) The functor

$$
Z^{\bullet} \otimes_{s}-: \mathcal{H}^{b}(S) \rightarrow \mathcal{H}^{b}(R)
$$

is an equivalence, and it is also a graded functor.
The inverse equivalence is induced by the k-dual of Z^{\bullet}.
The complex Z^{\bullet} is called a Rickard tilting complex or a split endomorphism tilting complex.
b) M is a Δ-module, $N_{1} \simeq M_{1}^{\vee}$ as $\Delta\left(S \otimes_{k} R^{o p}\right)$-modules, and M_{1} and N_{1} induce a stable Morita equivalence between R_{1} and S_{1}.
c) It follows that M and its k-dual N induce a graded stable Morita equivalence between R and S.

Definition (Rouquier)

The complex C of G-graded exact (R, S)-bimodules induces a G-graded stable equivalence between R and S if $C \otimes_{S} C^{\vee} \simeq R \oplus Z, \quad C^{\vee} \otimes_{R} C \simeq S \oplus W$
in the bounded homotopy category of f. gen. G-graded bimodules, where Z and W are complexes of projective bimodules.

Definition (Rouquier)

The complex C of G-graded exact (R, S)-bimodules induces a G-graded stable equivalence between R and S if $C \otimes_{S} C^{\vee} \simeq R \oplus Z, \quad C^{\vee} \otimes_{R} C \simeq S \oplus W$
in the bounded homotopy category of f. gen. G-graded bimodules, where Z and W are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_{1} agrees on each simple module, up to isomorphism, with that induced by C_{1}.

Definition (Rouquier)

The complex C of G-graded exact (R, S)-bimodules induces a G-graded stable equivalence between R and S if $C \otimes_{S} C^{\vee} \simeq R \oplus Z, \quad C^{\vee} \otimes_{R} C \simeq S \oplus W$
in the bounded homotopy category of f. gen. G-graded bimodules, where Z and W are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_{1} agrees on each simple module, up to isomorphism, with that induced by C_{1}. Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that:

Definition (Rouquier)

The complex C of G-graded exact (R, S)-bimodules induces a G-graded stable equivalence between R and S if $C \otimes_{S} C^{\vee} \simeq R \oplus Z, \quad C^{\vee} \otimes_{R} C \simeq S \oplus W$
in the bounded homotopy category of f. gen. G-graded bimodules, where Z and W are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_{1} agrees on each simple module, up to isomorphism, with that induced by C_{1}.
Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that:

1) $X=C \oplus P$, where P is a complex of G-graded projective bimodules;

Stable equivalences and Rickard equivalences

Definition (Rouquier)

The complex C of G-graded exact (R, S)-bimodules induces a G-graded stable equivalence between R and S if $C \otimes_{S} C^{\vee} \simeq R \oplus Z, \quad C^{\vee} \otimes_{R} C \simeq S \oplus W$
in the bounded homotopy category of f. gen. G-graded bimodules, where Z and W are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_{1} agrees on each simple module, up to isomorphism, with that induced by C_{1}.
Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that:

1) $X=C \oplus P$, where P is a complex of G-graded projective bimodules;
2) X induces a G-graded Rickard equivalence between R and S;

Stable equivalences and Rickard equivalences

Definition (Rouquier)

The complex C of G-graded exact (R, S)-bimodules induces a G-graded stable equivalence between R and S if
$C \otimes_{S} C^{\vee} \simeq R \oplus Z, \quad C^{\vee} \otimes_{R} C \simeq S \oplus W$
in the bounded homotopy category of f. gen. G-graded bimodules, where Z and W are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_{1} agrees on each simple module, up to isomorphism, with that induced by C_{1}.
Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that:

1) $X=C \oplus P$, where P is a complex of G-graded projective bimodules;
2) X induces a G-graded Rickard equivalence between R and S;
3) In the derived category of G-graded (R, S)-bimodules, X is isomorphic to the composition between D and a G-graded Morita autoequivalence of R.

On Okuyama's tilting complexes

On Okuyama's tilting complexes

$S_{i}, i \in I$ are the simple A-modules, P_{i} is a projective cover of S_{i}.

On Okuyama's tilting complexes

$S_{i}, i \in I$ are the simple A-modules, P_{i} is a projective cover of S_{i}.
I becomes a G-set via the action of G on simple A-modules.
For a subset I_{0} of I let
$P^{\bullet}\left(I_{0}\right)=\bigoplus_{i \in 1} P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P^{-1} \xrightarrow{\delta_{0}} P^{0} \rightarrow 0 \rightarrow \cdots\right)$,
where, $\delta_{0}=\bigoplus_{i \in I} \delta_{i}$, and for $i \in I_{0}$
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow R_{i} \xrightarrow{\delta_{i}} P_{i} \rightarrow 0 \rightarrow \cdots\right)$,
with R_{i} in degree $-1, P_{i}$ in degree 0 , and $\delta_{i}: R_{i} \rightarrow P_{i}$ is a minimal right
$\bigoplus_{i \in I_{0}} P_{i}$-approximation of P_{i}, and for $i \notin I_{0}$,
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P_{i} \xrightarrow{\delta_{i}} 0 \rightarrow \cdots\right)$, with P_{i} in degree -1 .

On Okuyama's tilting complexes

$S_{i}, i \in I$ are the simple A-modules, P_{i} is a projective cover of S_{i}.
I becomes a G-set via the action of G on simple A-modules.
For a subset I_{0} of I let
$P^{\bullet}\left(I_{0}\right)=\bigoplus_{i \in I} P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P^{-1} \xrightarrow{\delta_{0}} P^{0} \rightarrow 0 \rightarrow \cdots\right)$,
where, $\delta_{0}=\bigoplus_{i \in I} \delta_{i}$, and for $i \in I_{0}$
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow R_{i} \xrightarrow{\delta_{i}} P_{i} \rightarrow 0 \rightarrow \cdots\right)$,
with R_{i} in degree $-1, P_{i}$ in degree 0 , and $\delta_{i}: R_{i} \rightarrow P_{i}$ is a minimal right
$\bigoplus_{i \in I_{0}} P_{i}$-approximation of P_{i}, and for $i \notin I_{0}$,
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P_{i} \xrightarrow{\delta_{i}} 0 \rightarrow \cdots\right)$, with P_{i} in degree -1 .
Let $C:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$ and $E:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$.

On Okuyama's tilting complexes

$S_{i}, i \in I$ are the simple A-modules, P_{i} is a projective cover of S_{i}.
I becomes a G-set via the action of G on simple A-modules.
For a subset I_{0} of I let
$P^{\bullet}\left(I_{0}\right)=\bigoplus_{i \in I} P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P^{-1} \xrightarrow{\delta_{0}} P^{0} \rightarrow 0 \rightarrow \cdots\right)$,
where, $\delta_{0}=\bigoplus_{i \in I} \delta_{i}$, and for $i \in I_{0}$
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow R_{i} \xrightarrow{\delta_{i}} P_{i} \rightarrow 0 \rightarrow \cdots\right)$,
with R_{i} in degree $-1, P_{i}$ in degree 0 , and $\delta_{i}: R_{i} \rightarrow P_{i}$ is a minimal right
$\bigoplus_{i \in I_{0}} P_{i}$-approximation of P_{i}, and for $i \notin I_{0}$,
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P_{i} \xrightarrow{\delta_{i}} 0 \rightarrow \cdots\right)$, with P_{i} in degree -1 .
Let $C:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$ and $E:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$.
For $i \in I$, let \hat{P}_{i} be the indecomposable projective C-module corresponding to the indecomposable direct summand P_{i}^{\bullet} of $P^{\bullet}\left(I_{0}\right)$, so $\hat{S}_{i}=\hat{P}_{i} / \operatorname{rad} \hat{P}_{i}$ is a simple C-module.

On Okuyama's tilting complexes

$S_{i}, i \in I$ are the simple A-modules, P_{i} is a projective cover of S_{i}.
I becomes a G-set via the action of G on simple A-modules.
For a subset I_{0} of I let
$P^{\bullet}\left(I_{0}\right)=\bigoplus_{i \in I} P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P^{-1} \xrightarrow{\delta_{0}} P^{0} \rightarrow 0 \rightarrow \cdots\right)$,
where, $\delta_{0}=\bigoplus_{i \in I} \delta_{i}$, and for $i \in I_{0}$
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow R_{i} \xrightarrow{\delta_{i}} P_{i} \rightarrow 0 \rightarrow \cdots\right)$,
with R_{i} in degree $-1, P_{i}$ in degree 0 , and $\delta_{i}: R_{i} \rightarrow P_{i}$ is a minimal right
$\bigoplus_{i \in I_{0}} P_{i}$-approximation of P_{i}, and for $i \notin I_{0}$,
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P_{i} \xrightarrow{\delta_{i}} 0 \rightarrow \cdots\right)$, with P_{i} in degree -1 .
Let $C:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$ and $E:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$.
For $i \in I$, let \hat{P}_{i} be the indecomposable projective C-module corresponding to the indecomposable direct summand P_{i}^{\bullet} of $P^{\bullet}\left(I_{0}\right)$, so $\hat{S}_{i}=\hat{P}_{i} / \operatorname{rad} \hat{P}_{i}$ is a simple C-module.

Proposition

a) $P^{\bullet}\left(I_{0}\right)$ is a tilting complex for A.

On Okuyama's tilting complexes

$S_{i}, i \in I$ are the simple A-modules, P_{i} is a projective cover of S_{i}.
I becomes a G-set via the action of G on simple A-modules.
For a subset I_{0} of I let
$P^{\bullet}\left(I_{0}\right)=\bigoplus_{i \in I} P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P^{-1} \xrightarrow{\delta_{0}} P^{0} \rightarrow 0 \rightarrow \cdots\right)$,
where, $\delta_{0}=\bigoplus_{i \in I} \delta_{i}$, and for $i \in I_{0}$
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow R_{i} \xrightarrow{\delta_{i}} P_{i} \rightarrow 0 \rightarrow \cdots\right)$,
with R_{i} in degree $-1, P_{i}$ in degree 0 , and $\delta_{i}: R_{i} \rightarrow P_{i}$ is a minimal right
$\bigoplus_{i \in I_{0}} P_{i}$-approximation of P_{i}, and for $i \notin I_{0}$,
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P_{i} \xrightarrow{\delta_{i}} 0 \rightarrow \cdots\right)$, with P_{i} in degree -1 .
Let $C:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$ and $E:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$.
For $i \in I$, let \hat{P}_{i} be the indecomposable projective C-module corresponding to the indecomposable direct summand P_{i}^{\bullet} of $P^{\bullet}\left(I_{0}\right)$, so $\hat{S}_{i}=\hat{P}_{i} / \operatorname{rad} \hat{P}_{i}$ is a simple C-module.

Proposition

a) $P^{\bullet}\left(I_{0}\right)$ is a tilting complex for A.
b) If I_{0} is a G-subset of I, then E is a crossed product of C and G.

On Okuyama's tilting complexes

$S_{i}, i \in I$ are the simple A-modules, P_{i} is a projective cover of S_{i}.
I becomes a G-set via the action of G on simple A-modules.
For a subset I_{0} of I let
$P^{\bullet}\left(I_{0}\right)=\bigoplus_{i \in I} P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P^{-1} \xrightarrow{\delta_{0}} P^{0} \rightarrow 0 \rightarrow \cdots\right)$,
where, $\delta_{0}=\bigoplus_{i \in I} \delta_{i}$, and for $i \in I_{0}$
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow R_{i} \xrightarrow{\delta_{i}} P_{i} \rightarrow 0 \rightarrow \cdots\right)$,
with R_{i} in degree $-1, P_{i}$ in degree 0 , and $\delta_{i}: R_{i} \rightarrow P_{i}$ is a minimal right
$\bigoplus_{i \in I_{0}} P_{i}$-approximation of P_{i}, and for $i \notin I_{0}$,
$P_{i}^{\bullet}=\left(\cdots \rightarrow 0 \rightarrow P_{i} \xrightarrow{\delta_{i}} 0 \rightarrow \cdots\right)$, with P_{i} in degree -1 .
Let $C:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$ and $E:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}$.
For $i \in I$, let \hat{P}_{i} be the indecomposable projective C-module corresponding to the indecomposable direct summand P_{i}^{\bullet} of $P^{\bullet}\left(I_{0}\right)$, so $\hat{S}_{i}=\hat{P}_{i} / \operatorname{rad} \hat{P}_{i}$ is a simple C-module.

Proposition

a) $P^{\bullet}\left(I_{0}\right)$ is a tilting complex for A.
b) If I_{0} is a G-subset of I, then E is a crossed product of C and G.
c) There is an isomorphism $\widehat{g S}_{i} \simeq g \hat{S}_{i}$ of C-modules.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$, with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\mathrm{op}}\right)$-approximation of M.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$,
with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\text {op }}\right)$-approximation of M. $A^{(1)}:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}, R^{(1)}:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$,
with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\text {op }}\right)$-approximation of M. $A^{(1)}:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}, R^{(1)}:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$. Regarded as a complex of A-modules, $\left.P^{\bullet}\left(M, I_{0}\right)\right)$ is a direct sum of complexes isomorphic to $P_{i}^{\bullet}, i \in I$.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$,
with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\mathrm{op}}\right)$-approximation of M. $A^{(1)}:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}, R^{(1)}:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$. Regarded as a complex of A-modules, $\left.P^{\bullet}\left(M, I_{0}\right)\right)$ is a direct sum of complexes isomorphic to $P_{i}^{\bullet}, i \in I$.
Let $S_{i}^{(1)}$ be a simple $A^{(1)}$-modules corresponding to an indecomposable summand isomorphic to P_{i}^{\bullet} of ${ }_{A} P^{\bullet}\left(M, I_{0}\right)$.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$,
with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\text {op }}\right)$-approximation of M. $A^{(1)}:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}, R^{(1)}:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$. Regarded as a complex of A-modules, $\left.P^{\bullet}\left(M, I_{0}\right)\right)$ is a direct sum of complexes isomorphic to $P_{i}^{\bullet}, i \in I$.
Let $S_{i}^{(1)}$ be a simple $A^{(1)}$-modules corresponding to an indecomposable summand isomorphic to P_{i}^{\bullet} of ${ }_{A} P^{\bullet}\left(M, I_{0}\right)$.

Proposition

Assume that I_{0} is a G-subset of I, and M is a $\Delta\left(R \otimes_{k} S^{\text {op }}\right)$-module.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$,
with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\text {op }}\right)$-approximation of M.
$A^{(1)}:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}, R^{(1)}:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$. Regarded as a complex of A-modules, $\left.P^{\bullet}\left(M, I_{0}\right)\right)$ is a direct sum of complexes isomorphic to $P_{i}^{\bullet}, i \in I$.
Let $S_{i}^{(1)}$ be a simple $A^{(1)}$-modules corresponding to an indecomposable summand isomorphic to P_{i}^{\bullet} of ${ }_{A} P^{\bullet}\left(M, I_{0}\right)$.

Proposition

Assume that I_{0} is a G-subset of I, and M is a $\Delta\left(R \otimes_{k} S^{\text {op }}\right)$-module.
(1) $R^{(1)}$ is a G-graded crossed product, graded Morita equivalent to E.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$,
with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\text {op }}\right)$-approximation of M.
$A^{(1)}:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}, R^{(1)}:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$. Regarded as a complex of A-modules, $\left.P^{\bullet}\left(M, I_{0}\right)\right)$ is a direct sum of complexes isomorphic to $P_{i}^{\bullet}, i \in I$.
Let $S_{i}^{(1)}$ be a simple $A^{(1)}$-modules corresponding to an indecomposable summand isomorphic to P_{i}^{\bullet} of ${ }_{A} P^{\bullet}\left(M, I_{0}\right)$.

Proposition

Assume that I_{0} is a G-subset of I, and M is a $\Delta\left(R \otimes_{k} S^{\text {op }}\right)$-module.
(1) $R^{(1)}$ is a G-graded crossed product, graded Morita equivalent to E.
(2) There is a G-graded algebra map $S \rightarrow R^{(1)}$, and the ($S, R^{(1)}$)-bimodule $R^{(1)}$ induces a graded stable equivalence of Morita type between S and $R^{(1)}$.

On Okuyama's tilting complexes

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}\left(M, I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$,
with P in degree -1 and M in degree 0 , where $\delta: P \rightarrow M$ is a right minimal $\left(\left(\bigoplus_{i \in I} P_{i}\right) \otimes_{k} B^{\text {op }}\right)$-approximation of M.
$A^{(1)}:=\operatorname{End}_{\mathcal{H}(A)}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}, R^{(1)}:=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$. Regarded as a complex of A-modules, $\left.P^{\bullet}\left(M, I_{0}\right)\right)$ is a direct sum of complexes isomorphic to $P_{i}^{\bullet}, i \in I$.
Let $S_{i}^{(1)}$ be a simple $A^{(1)}$-modules corresponding to an indecomposable summand isomorphic to P_{i}^{\bullet} of ${ }_{A} P^{\bullet}\left(M, I_{0}\right)$.

Proposition

Assume that I_{0} is a G-subset of I, and M is a $\Delta\left(R \otimes_{k} S^{\text {op }}\right)$-module.
(1) $R^{(1)}$ is a G-graded crossed product, graded Morita equivalent to E.
(2) There is a G-graded algebra map $S \rightarrow R^{(1)}$, and the ($S, R^{(1)}$)-bimodule $R^{(1)}$ induces a graded stable equivalence of Morita type between S and $R^{(1)}$.
(0) There is an isomorphism of B-modules ${ }_{B} S_{g_{i}}^{(1)} \simeq{ }^{g} S_{i}^{(1)}$.

On Okuyama's tilting complexes

Graded version of Okuyama's method

On Okuyama's tilting complexes

Graded version of Okuyama's method
Let $\left\{T_{i} \mid i \in I\right\}$ be a set of representatives for the isomorphism classes of simple B-modules.

On Okuyama's tilting complexes

Graded version of Okuyama's method

Let $\left\{T_{i} \mid i \in I\right\}$ be a set of representatives for the isomorphism classes of simple B-modules.
Consider the A-modules $X_{i}=M \otimes_{B} T_{i}, i \in I$.

On Okuyama's tilting complexes

Graded version of Okuyama's method

Let $\left\{T_{i} \mid i \in I\right\}$ be a set of representatives for the isomorphism classes of simple B-modules.
Consider the A-modules $X_{i}=M \otimes_{B} T_{i}, i \in I$.
If all X_{i} are are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ-module, then R and S are graded Morita equivalent.

On Okuyama's tilting complexes

Graded version of Okuyama's method

Let $\left\{T_{i} \mid i \in I\right\}$ be a set of representatives for the isomorphism classes of simple B-modules.
Consider the A-modules $X_{i}=M \otimes_{B} T_{i}, i \in I$.
If all X_{i} are are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ-module, then R and S are graded Morita equivalent.
Otherwise, choose a subset I_{0} of I and replace A by $A^{(1)}=\operatorname{End}_{A}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$ (which is Morita equivalent to $\left.C=\operatorname{End}_{A}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}\right)$ and M by a $\left(B, A^{(1)}\right)$-bimodule $M^{(1)}$ inducing a stable equivalence between B and $A^{(1)}$.

On Okuyama's tilting complexes

Graded version of Okuyama's method

Let $\left\{T_{i} \mid i \in I\right\}$ be a set of representatives for the isomorphism classes of simple B-modules.
Consider the A-modules $X_{i}=M \otimes_{B} T_{i}, i \in I$.
If all X_{i} are are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ-module, then R and S are graded Morita equivalent.
Otherwise, choose a subset I_{0} of I and replace A by $A^{(1)}=\operatorname{End}_{A}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$ (which is Morita equivalent to $\left.C=\operatorname{End}_{A}\left(P^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}\right)$ and M by a $\left(B, A^{(1)}\right.$)-bimodule $M^{(1)}$ inducing a stable equivalence between B and $A^{(1)}$.
If I_{0} is a G-subset of I, then we have that $R^{(1)}$ is G-graded derived equivalent to R, and $M^{(1)}$ is a $\Delta\left(S \otimes_{k} R^{\left.(1)^{\mathrm{op}}\right)}\right.$-module.

On Okuyama's tilting complexes

Graded version of Okuyama's method

Let $\left\{T_{i} \mid i \in I\right\}$ be a set of representatives for the isomorphism classes of simple B-modules.
Consider the A-modules $X_{i}=M \otimes_{B} T_{i}, i \in I$.
If all X_{i} are are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ-module, then R and S are graded Morita equivalent.
Otherwise, choose a subset I_{0} of I and replace A by $A^{(1)}=\operatorname{End}_{A}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$ (which is Morita equivalent to $\left.C=\operatorname{End}_{A}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}\right)$ and M by a $\left(B, A^{(1)}\right.$)-bimodule $M^{(1)}$ inducing a stable equivalence between B and $A^{(1)}$.
If I_{0} is a G-subset of I, then we have that $R^{(1)}$ is G-graded derived equivalent to R, and $M^{(1)}$ is a $\Delta\left(S \otimes_{k} R^{\left.(1)^{\mathrm{op}}\right)}\right.$-module.
This procedure continues until a stage t when simple B-modules will correspond to simple $A^{(t)}$-modules.

On Okuyama's tilting complexes

Graded version of Okuyama's method

Let $\left\{T_{i} \mid i \in I\right\}$ be a set of representatives for the isomorphism classes of simple B-modules.
Consider the A-modules $X_{i}=M \otimes_{B} T_{i}, i \in I$.
If all X_{i} are are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ-module, then R and S are graded Morita equivalent.
Otherwise, choose a subset I_{0} of I and replace A by $A^{(1)}=\operatorname{End}_{A}\left(P^{\bullet}\left(M, I_{0}\right)\right)^{\text {op }}$ (which is Morita equivalent to $\left.C=\operatorname{End}_{A}\left(P^{\bullet}\left(I_{0}\right)\right)^{\text {op }}\right)$ and M by a $\left(B, A^{(1)}\right.$)-bimodule $M^{(1)}$ inducing a stable equivalence between B and $A^{(1)}$.
If I_{0} is a G-subset of I, then we have that $R^{(1)}$ is G-graded derived equivalent to R, and $M^{(1)}$ is a $\Delta\left(S \otimes_{k} R^{(1)^{\text {op }}}\right)$-module.
This procedure continues until a stage t when simple B-modules will correspond to simple $A^{(t)}$-modules.
The point is that the G-invariance of a set I_{s} of simple $A^{(s)}$-modules can be established from the knowledge of the action of G on the simple A-modules.

On Okuyama's tilting complexes

Another method

On Okuyama's tilting complexes

Another method
I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.
Let I_{0} be a subset of $I, P=P\left(I_{0}\right)=\bigoplus_{i \in I_{0}} P_{i} \otimes_{k} Q_{i}^{*}$, and let
$\delta=\delta\left(I_{0}\right)=\bigoplus_{i \in I_{0}} \delta_{i}: P \rightarrow M$.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.
Let I_{0} be a subset of $I, P=P\left(I_{0}\right)=\bigoplus_{i \in I_{0}} P_{i} \otimes_{k} Q_{i}^{*}$, and let
$\delta=\delta\left(I_{0}\right)=\bigoplus_{i \in I_{0}} \delta_{i}: P \rightarrow M$.
Let ${ }_{A} M_{B}^{\bullet}=M^{\bullet}\left(I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$, with M in degree 0. $A_{A} M^{\bullet}$ is a tilting complex iff a certain condition is satisfied.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.
Let I_{0} be a subset of $I, P=P\left(I_{0}\right)=\bigoplus_{i \in I_{0}} P_{i} \otimes_{k} Q_{i}^{*}$, and let
$\delta=\delta\left(I_{0}\right)=\bigoplus_{i \in I_{0}} \delta_{i}: P \rightarrow M$.
Let ${ }_{A} M_{B}^{\bullet}=M^{\bullet}\left(I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$, with M in degree $0 .{ }_{A} M^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C=\operatorname{End}_{\mathcal{H}(A)}\left(M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$ and $E=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.
Let I_{0} be a subset of $I, P=P\left(I_{0}\right)=\bigoplus_{i \in I_{0}} P_{i} \otimes_{k} Q_{i}^{*}$, and let
$\delta=\delta\left(I_{0}\right)=\bigoplus_{i \in I_{0}} \delta_{i}: P \rightarrow M$.
Let ${ }_{A} M_{B}^{\bullet}=M^{\bullet}\left(I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$, with M in degree $0 .{ }_{A} M^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C=\operatorname{End}_{\mathcal{H}(A)}\left(M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$ and $E=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$.

Proposition
Assume that ${ }_{A} M^{\bullet}$ tilting complex, $M \Delta$-module, $I_{0} G$-subset of I. Then

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.
Let I_{0} be a subset of $I, P=P\left(I_{0}\right)=\bigoplus_{i \in I_{0}} P_{i} \otimes_{k} Q_{i}^{*}$, and let
$\delta=\delta\left(I_{0}\right)=\bigoplus_{i \in I_{0}} \delta_{i}: P \rightarrow M$.
Let ${ }_{A} M_{B}^{\bullet}=M^{\bullet}\left(I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$, with M in degree $0 .{ }_{A} M^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C=\operatorname{End}_{\mathcal{H}(A)}\left(M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$ and $E=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$.

Proposition

Assume that ${ }_{A} M^{\bullet}$ tilting complex, $M \Delta$-module, $I_{0} G$-subset of I. Then
(1) M^{\bullet} extends to a complex of Δ-modules.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.
Let I_{0} be a subset of $I, P=P\left(I_{0}\right)=\bigoplus_{i \in I_{0}} P_{i} \otimes_{k} Q_{i}^{*}$, and let
$\delta=\delta\left(I_{0}\right)=\bigoplus_{i \in I_{0}} \delta_{i}: P \rightarrow M$.
Let ${ }_{A} M_{B}^{\bullet}=M^{\bullet}\left(I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$, with M in degree $0 .{ }_{A} M^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C=\operatorname{End}_{\mathcal{H}(A)}\left(M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$ and $E=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$.

Proposition

Assume that ${ }_{A} M^{\bullet}$ tilting complex, $M \Delta$-module, $I_{0} G$-subset of I. Then
(1) M^{\bullet} extends to a complex of Δ-modules.
(2) E is a crossed product, and there is a G-graded stable Morita equivalence between E and S.

On Okuyama's tilting complexes

Another method

I is a G-set via the action on the set $\left\{T_{i} \mid i \in I\right\}$ of simple B-modules.
Let $\tau_{i}: Q_{i} \rightarrow T_{i}$ and $\pi_{i}: P_{i} \rightarrow M \otimes_{B} T_{i}$ be projective covers.
A projective cover of M has the form $\bigoplus_{i \in I} \delta_{i}: \bigoplus_{i \in I} P_{i} \otimes_{k} Q_{i}^{*} \rightarrow M$.
Let I_{0} be a subset of $I, P=P\left(I_{0}\right)=\bigoplus_{i \in I_{0}} P_{i} \otimes_{k} Q_{i}^{*}$, and let
$\delta=\delta\left(I_{0}\right)=\bigoplus_{i \in I_{0}} \delta_{i}: P \rightarrow M$.
Let ${ }_{A} M_{B}^{\bullet}=M^{\bullet}\left(I_{0}\right)=(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \cdots)$, with M in degree $0 .{ }_{A} M^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C=\operatorname{End}_{\mathcal{H}(A)}\left(M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$ and $E=\operatorname{End}_{\mathcal{H}(R)}\left(R \otimes_{A} M^{\bullet}\left(I_{0}\right)\right)^{\mathrm{op}}$.

Proposition

Assume that ${ }_{A} M^{\bullet}$ tilting complex, $M \Delta$-module, $I_{0} G$-subset of I. Then
(1) M^{\bullet} extends to a complex of Δ-modules.
(2) E is a crossed product, and there is a G-graded stable Morita equivalence between E and S.
(3) There is a complex $N^{\bullet}=N^{\bullet}\left(I_{0}\right)$ of $\Delta\left(R \otimes_{k} E^{\text {op }}\right)$-modules such that ${ }_{A} N_{C}^{\bullet}$ is a tilting complex, and N^{\bullet} is homotopy equivalent to M^{\bullet} as complexes of Δ-modules.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.
(b) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=k$ if $i=j$ and 0 otherwise.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.
(b) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=k$ if $i=j$ and 0 otherwise.
(c) $X_{i}, i \in I$ generate $\mathcal{D}^{b}(A$-mod) as a triangulated category.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.
(b) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=k$ if $i=j$ and 0 otherwise.
(c) $X_{i}, i \in I$ generate $\mathcal{D}^{b}(A$-mod) as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_{i} \in \mathcal{D}^{b}(A-\bmod), i \in I$, be objects satisfying (a), (b), (c).

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.
(b) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=k$ if $i=j$ and 0 otherwise.
(c) $X_{i}, i \in I$ generate $\mathcal{D}^{b}(A$-mod) as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_{i} \in \mathcal{D}^{b}(A$-mod), $i \in I$, be objects satisfying (a), (b), (c). Assume that X_{i} satisfy the additional condition (d) $R_{g} \otimes_{A} X_{i} \simeq X_{s_{i}}$ in $\mathcal{D}^{b}(A$-mod), for all $i \in I$ and $g \in G$.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.
(b) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=k$ if $i=j$ and 0 otherwise.
(c) $X_{i}, i \in I$ generate $\mathcal{D}^{b}(A-\bmod)$ as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_{i} \in \mathcal{D}^{b}(A$-mod), $i \in I$, be objects satisfying (a), (b), (c). Assume that X_{i} satisfy the additional condition (d) $R_{g} \otimes_{A} X_{i} \simeq X_{s_{i}}$ in $\mathcal{D}^{b}(A$-mod), for all $i \in I$ and $g \in G$.

Then there is another symmetric crossed product R^{\prime} of A^{\prime} and G, and a G-graded derived equivalence between R and R^{\prime}, whose restriction to A sends $X_{i}, i \in I$, to the simple A^{\prime}-modules.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.
(b) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=k$ if $i=j$ and 0 otherwise.
(c) $X_{i}, i \in I$ generate $\mathcal{D}^{b}(A$-mod) as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_{i} \in \mathcal{D}^{b}(A$-mod), $i \in I$, be objects satisfying (a), (b), (c). Assume that X_{i} satisfy the additional condition (d) $R_{g} \otimes_{A} X_{i} \simeq X_{s_{i}}$ in $\mathcal{D}^{b}(A$-mod), for all $i \in I$ and $g \in G$.

Then there is another symmetric crossed product R^{\prime} of A^{\prime} and G, and a G-graded derived equivalence between R and R^{\prime}, whose restriction to A sends $X_{i}, i \in I$, to the simple A^{\prime}-modules.

Corollary

Let ${ }_{R} M_{S}$ be inducing a G-graded Morita stable equivalence.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.
Under a derived equivalence, the objects $X_{i} \in \mathcal{D}^{b}(A$-mod) corresponding to simple B-modules satisfy:
(a) $\operatorname{Hom}\left(X_{i}, X_{j}[m]\right)=0$ for $m<0$.
(b) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=k$ if $i=j$ and 0 otherwise.
(c) $X_{i}, i \in I$ generate $\mathcal{D}^{b}(A$-mod) as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_{i} \in \mathcal{D}^{b}(A$-mod), $i \in I$, be objects satisfying (a), (b), (c). Assume that X_{i} satisfy the additional condition (d) $R_{g} \otimes_{A} X_{i} \simeq X_{s_{i}}$ in $\mathcal{D}^{b}(A$-mod), for all $i \in I$ and $g \in G$.

Then there is another symmetric crossed product R^{\prime} of A^{\prime} and G, and a G-graded derived equivalence between R and R^{\prime}, whose restriction to A sends $X_{i}, i \in I$, to the simple A^{\prime}-modules.

Corollary

Let ${ }_{R} M_{S}$ be inducing a G-graded Morita stable equivalence. If in addition X_{i} is stably isomorphic to $M_{1} \otimes_{B} T_{i}$, for all $i \in I$, then there is a G-graded derived equivalence between R and S.

Splendid stable and derived equivalences

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group.

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.
Then there is a complex X of G-graded (R, S)-bimodules such that:

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.
Then there is a complex X of G-graded (R, S)-bimodules such that:

1) The image of X_{1} in Δ-stmod $\simeq \mathcal{D}^{b}(\Delta-\bmod) / \mathcal{H}^{b}\left(\Delta\right.$-proj) is C_{1};

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.
Then there is a complex X of G-graded (R, S)-bimodules such that:

1) The image of X_{1} in Δ-stmod $\simeq \mathcal{D}^{b}(\Delta$-mod $) / \mathcal{H}^{b}\left(\Delta\right.$-proj) is C_{1};
2) X induces a splendid derived equivalence between R and S;

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.
Then there is a complex X of G-graded (R, S)-bimodules such that:

1) The image of X_{1} in Δ-stmod $\simeq \mathcal{D}^{b}(\Delta-\bmod) / \mathcal{H}^{b}\left(\Delta\right.$-proj) is C_{1};
2) X induces a splendid derived equivalence between R and S;
3) $X_{1} \otimes_{B} T_{i} \simeq X_{i}$ in $\mathcal{D}^{b}(A-\bmod)$, for all $i \in I$.

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.
Then there is a complex X of G-graded (R, S)-bimodules such that:

1) The image of X_{1} in Δ-stmod $\simeq \mathcal{D}^{b}(\Delta$-mod $) / \mathcal{H}^{b}\left(\Delta\right.$-proj) is C_{1};
2) X induces a splendid derived equivalence between R and S;
3) $X_{1} \otimes_{B} T_{i} \simeq X_{i}$ in $\mathcal{D}^{b}(A-\bmod)$, for all $i \in I$.

Example

a) T.I. situation: take $M_{1}:={ }_{A} A_{B}$ and $M={ }_{R} R_{S}$.

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.
Then there is a complex X of G-graded (R, S)-bimodules such that:

1) The image of X_{1} in Δ-stmod $\simeq \mathcal{D}^{b}(\Delta$-mod $) / \mathcal{H}^{b}\left(\Delta\right.$-proj) is C_{1};
2) X induces a splendid derived equivalence between R and S;
3) $X_{1} \otimes_{B} T_{i} \simeq X_{i}$ in $\mathcal{D}^{b}(A-\bmod)$, for all $i \in I$.

Example

a) T.I. situation: take $M_{1}:={ }_{A} A_{B}$ and $M={ }_{R} R_{S}$.
b) Let D elementary abelian of order p^{2}, b the principal block of $\mathcal{O K}$. Then there is a splendid complex of (A, B)-bimodules inducing a stable equivalence (Rouquier).

Let $S=k H b, B=k K b, R=k N_{H}(D) c, A=N_{K}(D), H^{\prime}=N_{H}(D)$, $K^{\prime}=N_{K}(D)$, and assume that $G=H / K$ is a p^{\prime}-group. ${ }_{R} C_{S}^{\bullet}$ is splendid, if the indecomposable summands of C^{i} are $\delta(D)$-projective p-permutation $k\left(H^{\prime} \times H\right)$-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_{i} is stably isomorphic to $C_{1} \otimes_{B} T_{i}$ for all $i \in I$.
Then there is a complex X of G-graded (R, S)-bimodules such that:

1) The image of X_{1} in Δ-stmod $\simeq \mathcal{D}^{b}(\Delta$-mod $) / \mathcal{H}^{b}\left(\Delta\right.$-proj) is C_{1};
2) X induces a splendid derived equivalence between R and S;
3) $X_{1} \otimes_{B} T_{i} \simeq X_{i}$ in $\mathcal{D}^{b}(A-\bmod)$, for all $i \in I$.

Example

a) T.I. situation: take $M_{1}:={ }_{A} A_{B}$ and $M={ }_{R} R_{S}$.
b) Let D elementary abelian of order p^{2}, b the principal block of $\mathcal{O K}$.

Then there is a splendid complex of (A, B)-bimodules inducing a stable equivalence (Rouquier). This applies to the examples considered by M. Holloway (5-blocks of $2 . J_{2}, U_{3}(4)$ and $\mathrm{Sp}_{4}(4)$), and Y. Usami and N. Yoshida (principal 5-blocks of $G_{2}\left(2^{n}\right), 5 \mid 2^{n}+1,25 \nmid 2^{n}+1$).

Algebras graded by a cyclic group

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group
$\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to C_{n}.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system,
$p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group
$\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group $\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Let $R=\bigoplus_{g \in C_{n}} R_{g}$ be a C_{n}-graded \mathcal{O}-algebra.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group $\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Let $R=\bigoplus_{g \in C_{n}} R_{g}$ be a C_{n}-graded \mathcal{O}-algebra.
\hat{C}_{n} acts on R by ${ }^{\hat{\rho}} r_{g}=\hat{\rho}(g) r_{g} . R_{\sigma^{j}}=\left\{r \in R \mid{ }^{\hat{\sigma}} r=\epsilon^{j} r\right\}$, for $j=0, \ldots, n-1$.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group $\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Let $R=\bigoplus_{g \in C_{n}} R_{g}$ be a C_{n}-graded \mathcal{O}-algebra.
\hat{C}_{n} acts on R by ${ }^{\hat{\rho}} r_{g}=\hat{\rho}(g) r_{g} . R_{\sigma j}=\left\{\left.r \in R\right|^{\hat{\sigma}} r=\epsilon^{j} r\right\}$, for
$j=0, \ldots, n-1$. Let $R * \hat{C}_{n}:=\left\{r \hat{\rho} \mid r \in R, \hat{\rho} \in \hat{C}_{n}\right\}$.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group $\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Let $R=\bigoplus_{g \in C_{n}} R_{g}$ be a C_{n}-graded \mathcal{O}-algebra.
\hat{C}_{n} acts on R by ${ }^{\hat{\rho}} r_{g}=\hat{\rho}(g) r_{g} . R_{\sigma j}=\left\{\left.r \in R\right|^{\hat{\sigma}} r=\epsilon^{j} r\right\}$, for $j=0, \ldots, n-1$. Let $R * \hat{C}_{n}:=\left\{r \hat{\rho} \mid r \in R, \hat{\rho} \in \hat{C}_{n}\right\}$.

Proposition

The category R-Gr of C_{n}-graded R-modules is isomorphic to $R * \hat{C}_{n}$-Mod.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group $\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Let $R=\bigoplus_{g \in C_{n}} R_{g}$ be a C_{n}-graded \mathcal{O}-algebra.
\hat{C}_{n} acts on R by ${ }^{\hat{\rho}} r_{g}=\hat{\rho}(g) r_{g} . R_{\sigma j}=\left\{\left.r \in R\right|^{\hat{\sigma}} r=\epsilon^{j} r\right\}$, for $j=0, \ldots, n-1$. Let $R * \hat{C}_{n}:=\left\{r \hat{\rho} \mid r \in R, \hat{\rho} \in \hat{C}_{n}\right\}$.

Proposition

The category R-Gr of C_{n}-graded R-modules is isomorphic to $R * \hat{C}_{n}$-Mod.

Let R and S be two C_{n}-graded \mathcal{O}-algebras. Then \hat{C}_{n} acts on $R \otimes_{\mathcal{O}} S^{\text {op }}$ diagonally, by $\hat{\rho}(r \otimes s)=\hat{\rho}^{\hat{\rho}} r \otimes \hat{\rho}^{-1} s$.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group $\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Let $R=\bigoplus_{g \in C_{n}} R_{g}$ be a C_{n}-graded \mathcal{O}-algebra.
\hat{C}_{n} acts on R by ${ }^{\hat{\rho}} r_{g}=\hat{\rho}(g) r_{g} . R_{\sigma^{j}}=\left\{r \in R \mid{ }^{\hat{\sigma}} r=\epsilon^{j} r\right\}$, for $j=0, \ldots, n-1$. Let $R * \hat{C}_{n}:=\left\{r \hat{\rho} \mid r \in R, \hat{\rho} \in \hat{C}_{n}\right\}$.

Proposition

The category R-Gr of C_{n}-graded R-modules is isomorphic to $R * \hat{C}_{n}$-Mod.

Let R and S be two C_{n}-graded \mathcal{O}-algebras. Then \hat{C}_{n} acts on $R \otimes_{\mathcal{O}} S^{\text {op }}$ diagonally, by $\hat{\rho}(r \otimes s)=\hat{\rho} r \otimes \hat{\rho}^{-1} s$.
The category R-Gr-S of C_{n}-graded (R, S)-bimodules is isomorphic to $\left(R \otimes_{\mathcal{O}} S^{\mathrm{op}}\right) * \hat{C}_{n}$-Mod.

Algebras graded by a cyclic group

$C_{n}=\langle\sigma\rangle$ the cyclic group of order $n,(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n, \mathcal{K}$ contains a primitive n-th root ϵ of unity. The group $\hat{C}_{n}:=\operatorname{Hom}\left(C_{n}, \mathcal{K}^{\times}\right)$is isomorphic to $C_{n} . \hat{C}_{n}=\langle\hat{\sigma}\rangle$, where $\hat{\sigma}(\sigma)=\epsilon$.

Let $R=\bigoplus_{g \in C_{n}} R_{g}$ be a C_{n}-graded \mathcal{O}-algebra.
\hat{C}_{n} acts on R by ${ }^{\hat{\rho}} r_{g}=\hat{\rho}(g) r_{g} . R_{\sigma^{j}}=\left\{r \in R \mid{ }^{\hat{\sigma}} r=\epsilon^{j} r\right\}$, for $j=0, \ldots, n-1$. Let $R * \hat{C}_{n}:=\left\{r \hat{\rho} \mid r \in R, \hat{\rho} \in \hat{C}_{n}\right\}$.

Proposition

The category R-Gr of C_{n}-graded R-modules is isomorphic to $R * \hat{C}_{n}$-Mod.

Let R and S be two C_{n}-graded \mathcal{O}-algebras. Then \hat{C}_{n} acts on $R \otimes_{\mathcal{O}} S^{\text {op }}$ diagonally, by $\hat{\rho}(r \otimes s)=\hat{\rho} r \otimes \hat{\rho}^{-1} s$.
The category R-Gr-S of C_{n}-graded (R, S)-bimodules is isomorphic to $\left(R \otimes_{\mathcal{O}} S^{\mathrm{op}}\right) * \hat{C}_{n}$-Mod.
If M is an (R, S)-bimodule and $\hat{\rho} \in \hat{C}_{n}$, then the $\hat{\rho}$-th conjugate ${ }^{\hat{\rho}} M$ of M is defined by ${ }^{\hat{\rho}} M=\left(R \otimes_{\mathcal{O}} S^{\text {op }}\right) \hat{\rho} \otimes_{R \otimes_{\mathcal{O}} S^{\text {op }}} M$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O} G^{+}$covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr).

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O G}$ covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O G}$ covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$. C_{n} acts by conjugation of the blocks of $\mathcal{O} G^{+}$and $\mathcal{O H}^{+}$. The Brauer correspondent of g_{e} is $g^{g} f$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O} G^{+}$covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$. C_{n} acts by conjugation of the blocks of $\mathcal{O} G^{+}$and $\mathcal{O H}^{+}$. The Brauer correspondent of $g e$ is g.
Consider the central idempotent $b^{+}=\sum_{\hat{\rho} \in\left[\hat{C}_{n} / \hat{C}_{n, b}\right]}{ }^{\hat{\rho}} b=\sum_{g \in\left[C_{n} / C_{n, e}\right]}{ }^{g} e$ of $\mathcal{O} G^{+}$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O} G^{+}$covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$. \mathcal{C}_{n} acts by conjugation of the blocks of $\mathcal{O} G^{+}$and $\mathcal{O H}^{+}$. The Brauer correspondent of g_{e} is g.
Consider the central idempotent $b^{+}=\sum_{\hat{\rho} \in\left[\hat{C}_{n} / \hat{C}_{n, b}\right]}{ }^{\hat{\rho}} b=\sum_{g \in\left[C_{n} / C_{n, e}\right]}^{g} e$ of $\mathcal{O} G^{+}$. Let c^{+}be the similarly defined central idempotent of $\mathcal{O H}^{+}$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O G}$ covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$. C_{n} acts by conjugation of the blocks of $\mathcal{O} G^{+}$and $\mathcal{O H}^{+}$. The Brauer correspondent of g_{e} is g.
Consider the central idempotent $b^{+}=\sum_{\hat{\rho} \in\left[\hat{C}_{n} / \hat{C}_{n, b}\right]}{ }^{\hat{\rho}} b=\sum_{g \in\left[C_{n} / C_{n, e}\right]}{ }^{g} e$ of $\mathcal{O} G^{+}$. Let c^{+}be the similarly defined central idempotent of $\mathcal{O} H^{+}$. Consider the strongly C_{n}-graded algebras $R=b^{+} \mathcal{O G}=\mathcal{O} G e O G$ and $S=c^{+} \mathcal{O H}=\mathcal{O} \mathrm{HeO} H$.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O} G^{+}$covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$. C_{n} acts by conjugation of the blocks of $\mathcal{O} G^{+}$and $\mathcal{O H}^{+}$. The Brauer correspondent of g_{e} is g.
Consider the central idempotent $b^{+}=\sum_{\hat{\rho} \in\left[\hat{C}_{n} / \hat{C}_{n, b}\right]}{ }^{\hat{\rho}} b=\sum_{g \in\left[C_{n} / C_{n, e}\right]}{ }^{g} e$ of $\mathcal{O} G^{+}$. Let c^{+}be the similarly defined central idempotent of $\mathcal{O} H^{+}$. Consider the strongly C_{n}-graded algebras $R=b^{+} \mathcal{O G}=\mathcal{O} G e O G$ and $S=c^{+} \mathcal{O H}=\mathcal{O} H e \mathcal{O} H$. R is Morita equivalent to $e \mathcal{O} G e$ and S is Morita equivalent to fOHf .

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O} G^{+}$covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$. C_{n} acts by conjugation of the blocks of $\mathcal{O} G^{+}$and $\mathcal{O H}^{+}$. The Brauer correspondent of $g e$ is g.
Consider the central idempotent $b^{+}=\sum_{\hat{\rho} \in\left[\hat{C}_{n} / \hat{C}_{n, b}\right]}{ }^{\hat{\rho}} b=\sum_{g \in\left[C_{n} / C_{n, e}\right]}{ }^{g} e$ of $\mathcal{O} G^{+}$. Let c^{+}be the similarly defined central idempotent of $\mathcal{O} H^{+}$. Consider the strongly C_{n}-graded algebras $R=b^{+} \mathcal{O G}=\mathcal{O G e O G}$ and $S=c^{+} \mathcal{O H}=\mathcal{O H e O H}$. R is Morita equivalent to $e \mathcal{O} G e$ and S is Morita equivalent to fOHf .

Theorem

Let X be a complex of $(b \mathcal{O} G, c \mathcal{O H})$-bimodules inducing a Rickard equivalence between $b \mathcal{O} G$ and $c \mathcal{O H}$, and consider the complex $Y=\bigoplus_{\hat{\rho} \in\left[\hat{C}_{n} / \hat{c}_{n, b}\right]}^{\hat{\rho}} X$ of (R, S)-bimodules.

A descent theorem

Let $G^{+} \unlhd G$, with $G / G^{+} \simeq C_{n}$. Let b be a block of $\mathcal{O} G$ with defect group $D \leq G^{+}, H=N_{G}(D), H^{+}=N_{G^{+}}(D)$. Let $c \in \mathcal{O H}$ be the Brauer correspondent of b. If e is a block of $\mathcal{O} G^{+}$covered by b, then the Brauer correspondent $f \in \mathcal{O} H^{+}$of e is covered by c (Harris-Knörr). \hat{C}_{n} acts on on the blocks of $\mathcal{O} G$ and $\mathcal{O H}$. The Brauer correspondent of ${ }^{\hat{\rho}} b$ is ${ }^{\hat{\rho}} c$. C_{n} acts by conjugation of the blocks of $\mathcal{O} G^{+}$and $\mathcal{O H}^{+}$. The Brauer correspondent of g_{e} is g_{f}.
Consider the central idempotent $b^{+}=\sum_{\hat{\rho} \in\left[\hat{C}_{n} / \hat{C}_{n, b}\right]}{ }^{\hat{\rho}} b=\sum_{g \in\left[C_{n} / C_{n, e}\right]}{ }^{g} e$ of $\mathcal{O} G^{+}$. Let c^{+}be the similarly defined central idempotent of $\mathcal{O} H^{+}$. Consider the strongly C_{n}-graded algebras $R=b^{+} \mathcal{O G}=\mathcal{O G e O G}$ and $S=c^{+} \mathcal{O H}=\mathcal{O H e O H}$. R is Morita equivalent to $e \mathcal{O} G e$ and S is Morita equivalent to fOHf .

Theorem

Let X be a complex of $(b \mathcal{O} G, c \mathcal{O H})$-bimodules inducing a Rickard equivalence between $b \mathcal{O} G$ and $c \mathcal{O H}$, and consider the complex $Y=\bigoplus_{\hat{\rho} \in\left[\hat{c}_{n} / \hat{c}_{n, b}\right]}^{\hat{\rho}} X$ of (R, S)-bimodules.
If ${ }^{\hat{\rho}} Y \simeq Y$ as complexes of (R, S)-bimodules for all $\hat{\rho} \in \hat{C}_{n}$, then the block algebras eOG^{+}and $f \mathrm{OH}^{+}$are Rickard equivalent.

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$.

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$. Indeed, if $p=2$, then $D \simeq C_{2} \times C_{2}$. In this case Broué's conjecture holds (Rouquier).

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$. Indeed, if $p=2$, then $D \simeq C_{2} \times C_{2}$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let $p>2, G=S_{n}, G^{+}=A_{n}, \tilde{G}=\operatorname{Aut}\left(G^{+}\right), b^{+}$a block of $\mathcal{O} G^{+}$with nontrivial abelian defect group $D, H^{+}=N_{G^{+}}(D)$, and $c^{+} \in \mathcal{O} H^{+}$the Brauer correspondent of b^{+}.

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$. Indeed, if $p=2$, then $D \simeq C_{2} \times C_{2}$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let $p>2, G=S_{n}, G^{+}=A_{n}, \tilde{G}=\operatorname{Aut}\left(G^{+}\right), b^{+}$a block of $\mathcal{O} G^{+}$with nontrivial abelian defect group $D, H^{+}=N_{G^{+}}(D)$, and $c^{+} \in \mathcal{O H}^{+}$the Brauer correspondent of b^{+}.
Then there exists a splendid tilting complex of \tilde{G} / G^{+}-graded $\left(b^{+} \mathcal{O} \tilde{G}, c^{+} \mathcal{O} \tilde{H}\right)$-bimodules.

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$. Indeed, if $p=2$, then $D \simeq C_{2} \times C_{2}$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let $p>2, G=S_{n}, G^{+}=A_{n}, \tilde{G}=\operatorname{Aut}\left(G^{+}\right), b^{+}$a block of $\mathcal{O} G^{+}$with nontrivial abelian defect group $D, H^{+}=N_{G^{+}}(D)$, and $c^{+} \in \mathcal{O H}^{+}$the Brauer correspondent of b^{+}.
Then there exists a splendid tilting complex of \tilde{G} / G^{+}-graded $\left(b^{+} \mathcal{O} \tilde{G}, c^{+} \mathcal{O} \tilde{H}\right)$-bimodules.

We use that the conjecture is known to hold for the symmetric group S_{n} by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_{n}, by using the above techniques.

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$. Indeed, if $p=2$, then $D \simeq C_{2} \times C_{2}$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let $p>2, G=S_{n}, G^{+}=A_{n}, \tilde{G}=\operatorname{Aut}\left(G^{+}\right), b^{+}$a block of $\mathcal{O} G^{+}$with nontrivial abelian defect group $D, H^{+}=N_{G^{+}}(D)$, and $c^{+} \in \mathcal{O H}^{+}$the Brauer correspondent of b^{+}.
Then there exists a splendid tilting complex of \tilde{G} / G^{+}-graded $\left(b^{+} \mathcal{O} \tilde{G}, c^{+} \mathcal{O} \tilde{H}\right)$-bimodules.

We use that the conjecture is known to hold for the symmetric group S_{n} by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_{n}, by using the above techniques. Related results:

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$. Indeed, if $p=2$, then $D \simeq C_{2} \times C_{2}$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let $p>2, G=S_{n}, G^{+}=A_{n}, \tilde{G}=\operatorname{Aut}\left(G^{+}\right), b^{+}$a block of $\mathcal{O} G^{+}$with nontrivial abelian defect group $D, H^{+}=N_{G^{+}}(D)$, and $c^{+} \in \mathcal{O H}^{+}$the Brauer correspondent of b^{+}.
Then there exists a splendid tilting complex of \tilde{G} / G^{+}-graded $\left(b^{+} \mathcal{O} \tilde{G}, c^{+} \mathcal{O} \tilde{H}\right)$-bimodules.

We use that the conjecture is known to hold for the symmetric group S_{n} by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_{n}, by using the above techniques. Related results:

- P. Fong and M. Harris, verified the weaker "isotypy form" of the conjecture for A_{n}, by using Rouquier's result on S_{n}.

Blocks of symmetric and alternating groups

We only need to consider the case $p>2$. Indeed, if $p=2$, then $D \simeq C_{2} \times C_{2}$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let $p>2, G=S_{n}, G^{+}=A_{n}, \tilde{G}=\operatorname{Aut}\left(G^{+}\right), b^{+}$a block of $\mathcal{O} G^{+}$with nontrivial abelian defect group $D, H^{+}=N_{G^{+}}(D)$, and $c^{+} \in \mathcal{O H}{ }^{+}$the Brauer correspondent of b^{+}.
Then there exists a splendid tilting complex of \tilde{G} / G^{+}-graded ($b^{+} \mathcal{O} \tilde{G}, c^{+} \mathcal{O} \tilde{H}$)-bimodules.

We use that the conjecture is known to hold for the symmetric group S_{n} by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_{n}, by using the above techniques. Related results:

- P. Fong and M. Harris, verified the weaker "isotypy form" of the conjecture for A_{n}, by using Rouquier's result on S_{n}.
- A similar procedure was developed by E. Dade leading to the verification of his Invariant Projective Conjecture for A_{n}.

國 Holloway，M．，Broué＇s conjecture for the Hall－Janko group and its double cover，Proc．London Math．Soc．（3） 86 （2003），109－130．

國 Marcus，A．，Tilting complexes for group graded algebras，J．Group Theory 6 （2003），175－193．
－Marcus，A．，Broué＇s abelian defect group conjecture for alternating groups，Proc．Amer．Math．Soc． 132 （2004），No．1，7－14．
國 Marcus，A．，Tilting complexes for group graded algebras II，Osaka J． Math． 42 （2005），453－462．
画 Okuyama，T．，Remarks on splendid tilting complexes，RIMS Kokyuroku，Kyoto Univ． 1149 （2000），53－59．
R Okuyama，T．，Derived equivalence in $\operatorname{SL}(2, q)$ ，preprint， 2000.
R Rickard，J．，Equivalences of derived categories for symmetric algebras，J．Algebra 257 （2002），460－481．
Rouquier，R．，Block theory via stable and Rickard equivalences． Modular representation theory of finite groups（Charlottesville，VA， 1998），de Gruyter，Berlin 2001，101－146．

