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The problem

Problem

Construct derived equivalences between two algebras R and S over the
commutative ring k, graded by the finite group G .

Motivation

Let K E H, G = H/K , b is a G -invariant block with defect group D
of the group algebra kK .

The Brauer correspondent c of b in kNK (D) is a G -invariant block
of kNK (D);

if D is abelian, Broué’s conjecture predicts that there is a derived
equivalence between the block algebras A = kKb and B = kNK (D)c
i.e. Db(A) and Db(B) are equivalent as triangulated categories;

moreover, such an equivalence should be compatible with
p′-extensions, i.e. if p - |G |, then the equivalence can be extended to
a derived equivalence between the G -graded k-algebras S = kHb
and R = kNH(D)c induced by a bounded complex of G -graded
(R,S)-bimodules.
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The problem

This talk

We discuss constructions due to T. Okuyama and J. Rickard aimed
to lift stable equivalences between symmetric algebras to Rickard
equivalences.

Although they end up with two-sided tilting complexes, these are
based on constructions of one-sided tilting complexes.

In the case of the Morita equivalence, if P is a progenerator of
A-Mod, the P becomes an (A,EndA(P)op)-module.

A difficulty in the case of derived equivalences is that if T is an
one-sided tilting complex of A-modules, then EndH(A)(T )op acts on
T only up to homotopy.

Denote A = R1 and B = S1. The diagonal subalgebra is

∆ := ∆(R ⊗k Sop) =
⊕
g∈G

Rg ⊗k Sg−1 .
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G -graded tilting complexes

Graded endomorphism rings

A complex T ∈ H(R-Gr) is called G -invariant if T (g) ' T (in the
category H(R-Gr)) for all g ∈ G . T is called weakly G-invariant if
T (g) ∈ add(T ) for all g ∈ G .
Let T ∈ H(R-Gr), E := EndH(R)(T )op. Assume G is finite. Then:
a) E is a G -graded algebra, Eg ' HomH(R-Gr)(T ,T (g)).
b) E is strongly graded (crossed product) iff T is weakly G -invariant
(G -invariant).

Group graded functors

Consider the conjugation functors Sg = (−)(g), g ∈ G .

A functor F : D(S-Gr) → D(R-Gr) is said to be G -graded if
F ◦ Sg = Sg ◦ F for all g ∈ G .

A complex X =
⊕

g∈G Xg of G -graded (R,S)-bimodules, yields an
adjoint pair of G -graded functors:

X
L
⊗S− : D(S-Gr) → D(R-Gr).

RHomR(X ,−) : D(R-Gr) → D(S-Gr).
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G -graded tilting complexes

Definition

T ∈ D(R-Gr) is a G -graded tilting complex over R if

a) T ∈ R − perf.
b) HomD(R)(T ,T [n]) = 0 for all n 6= 0.
c) add(T ) generates R-perf as a triangulated category.

Theorem

The following statements are equivalent.
(i) There is a G-graded tilting complex T ∈ D(R-Gr) and an
isomorphism S → EndD(R)(T )op of G-graded algebras.
(ii) There is a complex X of G-graded (R,S)-bimodules such that the
functor

X
L
⊗S− : D(S) → D(R)

is an equivalence.
(iii) There are triangle equivalences F : D(S) → D(R) and
F gr : D(S-Gr) → D(R-Gr) such that F gr is a G-graded functor and
commutes with the ungrading functor.
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G -graded tilting complexes

(iv) (R and S strongly graded) There are (bounded) complexes X1 of
∆(R ⊗k Sop) modules and Y1 of ∆(S ⊗k Rop) modules, and
isomorphisms

X1

L
⊗S1Y1 ' R1 in Db(∆(R ⊗k Rop)),

Y1

L
⊗R1X1 ' S1 in Db(∆(S ⊗k Sop)).

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded.
Let T be a G -invariant object of Hb(A).
Denote T̃ = R ⊗A T and S = EndH(R)(T̃ )op.

a) T is a tilting complex for A if and only if T̃ is a G -graded tilting
complex for R.
b) If T is a tilting complex for A and R is a finite dimensional symmetric
crossed product, then S is a symmetric crossed product of
B := S1 ' EndH(A)(T )op and G .
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Stable equivalences and Rickard equivalences

G is a p′-group, R and S are G -graded symmetric crossed products over
a field k of characteristic p.
A and B are connected non-semisimple symmetric algebras.

Let T • be an one-sided tilting complex of G -graded R-module with
endomorphism ring EndH(R)(T

•)op ' S .
There is a two-sided tilting complex X • of G -graded (R,S)-bimodules.
Then X •

1 is a complex of ∆-modules, and also a two-sided tilting
complex of (R1,S1)-bimodules.
Let Y •

1 be a projective resolution of X •
1 as ∆-modules.

It is possible (Rickard), to truncate Y •
1 and obtain a bounded complex

Z•1 := (· · · → 0 → Kerdn → Y n
1 → Y n+1

1 → · · · ),

of ∆-modules quasi-isomorphic to X •
1 , such that:

- all the terms of Z•1 but Ker dn are projective ∆-modules;
- Ker dn is projective as an R1-module and as a right S1-module.
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Stable equivalences and Rickard equivalences

Let
M1 := Ωn(Kerdn), N1 := Ω−n(HomR1(Kerdn,R1)),

M := (R ⊗k Sop)⊗∆ M1, Z• := (R ⊗k Sop)⊗∆ Z•1 .

Then we have:
a) The functor

Z• ⊗S − : Hb(S) → Hb(R)

is an equivalence, and it is also a graded functor.
The inverse equivalence is induced by the k-dual of Z•.
The complex Z• is called a Rickard tilting complex or a split
endomorphism tilting complex.
b) M is a ∆-module, N1 ' M∨

1 as ∆(S ⊗k Rop)-modules, and M1 and
N1 induce a stable Morita equivalence between R1 and S1.
c) It follows that M and its k-dual N induce a graded stable Morita
equivalence between R and S .
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Stable equivalences and Rickard equivalences

Definition (Rouquier)

The complex C of G -graded exact (R,S)-bimodules induces a G -graded
stable equivalence between R and S if
C ⊗S C∨ ' R ⊕ Z , C∨ ⊗R C ' S ⊕W
in the bounded homotopy category of f. gen. G -graded bimodules, where
Z and W are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R,S)-bimodules such
that C induces a stable equivalence, D induces a derived equivalence,
and the stable equivalence between A and B induced by D1 agrees on
each simple module, up to isomorphism, with that induced by C1.
Then there is a bounded complex X of finitely generated G-graded
(R,S)-bimodules such that:
1) X = C ⊕ P, where P is a complex of G-graded projective bimodules;
2) X induces a G-graded Rickard equivalence between R and S;
3) In the derived category of G-graded (R,S)-bimodules, X is isomorphic
to the composition between D and a G-graded Morita autoequivalence of
R.
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On Okuyama’s tilting complexes

Si , i ∈ I are the simple A-modules, Pi is a projective cover of Si .
I becomes a G -set via the action of G on simple A-modules.
For a subset I0 of I let

P•(I0) =
⊕

i∈I P•i = (· · · → 0 → P−1 δ0−→ P0 → 0 → · · · ),
where, δ0 =

⊕
i∈I δi , and for i ∈ I0

P•i = (· · · → 0 → Ri
δi−→ Pi → 0 → · · · ),

with Ri in degree −1, Pi in degree 0, and δi : Ri → Pi is a minimal right⊕
i∈I0

Pi -approximation of Pi , and for i /∈ I0,

P•i = (· · · → 0 → Pi
δi−→ 0 → · · · ), with Pi in degree −1.

Let C := EndH(A)(P
•(I0))

op and E := EndH(R)(R ⊗A P•(I0))
op.

For i ∈ I , let P̂i be the indecomposable projective C -module
corresponding to the indecomposable direct summand P•i of P•(I0), so

Ŝi = P̂i/ rad P̂i is a simple C -module.

Proposition

a) P•(I0) is a tilting complex for A.
b) If I0 is a G-subset of I , then E is a crossed product of C and G.

c) There is an isomorphism ĝSi ' gŜi of C-modules.
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On Okuyama’s tilting complexes

Si , i ∈ I are the simple A-modules, Pi is a projective cover of Si .
I becomes a G -set via the action of G on simple A-modules.
For a subset I0 of I let

P•(I0) =
⊕

i∈I P•i = (· · · → 0 → P−1 δ0−→ P0 → 0 → · · · ),
where, δ0 =

⊕
i∈I δi , and for i ∈ I0

P•i = (· · · → 0 → Ri
δi−→ Pi → 0 → · · · ),

with Ri in degree −1, Pi in degree 0, and δi : Ri → Pi is a minimal right⊕
i∈I0

Pi -approximation of Pi , and for i /∈ I0,

P•i = (· · · → 0 → Pi
δi−→ 0 → · · · ), with Pi in degree −1.

Let C := EndH(A)(P
•(I0))

op and E := EndH(R)(R ⊗A P•(I0))
op.

For i ∈ I , let P̂i be the indecomposable projective C -module
corresponding to the indecomposable direct summand P•i of P•(I0), so
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Ŝi = P̂i/ rad P̂i is a simple C -module.

Proposition

a) P•(I0) is a tilting complex for A.
b) If I0 is a G-subset of I , then E is a crossed product of C and G.

c) There is an isomorphism ĝSi ' gŜi of C-modules.
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On Okuyama’s tilting complexes

Assume that the (A,B)-bimodule M induces a stable Morita equivalence
between A and B.

Consider the complex of (A,B)-bimodules

P•(M, I0) = (· · · → 0 → P
δ−→ M → 0 → · · · ),

with P in degree −1 and M in degree 0, where δ : P → M is a right
minimal ((

⊕
i∈I Pi )⊗k Bop)-approximation of M.

A(1) := EndH(A)(P
•(M, I0))

op, R(1) := EndH(R)(R ⊗A P•(M, I0))
op.

Regarded as a complex of A-modules, P•(M, I0)) is a direct sum of
complexes isomorphic to P•i , i ∈ I .

Let S
(1)
i be a simple A(1)-modules corresponding to an indecomposable

summand isomorphic to P•i of AP•(M, I0).

Proposition

Assume that I0 is a G-subset of I , and M is a ∆(R ⊗k Sop)-module.

1 R(1) is a G-graded crossed product, graded Morita equivalent to E .

2 There is a G-graded algebra map S → R(1), and the
(S ,R(1))-bimodule R(1) induces a graded stable equivalence of
Morita type between S and R(1).

3 There is an isomorphism of B-modules BS
(1)
gi ' gS

(1)
i .
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On Okuyama’s tilting complexes

Graded version of Okuyama’s method

Let {Ti | i ∈ I} be a set of representatives for the isomorphism classes of
simple B-modules.
Consider the A-modules Xi = M ⊗B Ti , i ∈ I .
If all Xi are are simple A-modules, then by a theorem of Linckelmann, A
and B are Morita equivalent, so if M is a ∆-module, then R and S are
graded Morita equivalent.
Otherwise, choose a subset I0 of I and replace A by
A(1) = EndA(P•(M, I0))

op (which is Morita equivalent to
C = EndA(P•(I0))

op) and M by a (B,A(1))-bimodule M(1) inducing a
stable equivalence between B and A(1).
If I0 is a G -subset of I , then we have that R(1) is G -graded derived
equivalent to R, and M(1) is a ∆(S ⊗k R(1)op)-module.
This procedure continues until a stage t when simple B-modules will
correspond to simple A(t)-modules.
The point is that the G -invariance of a set Is of simple A(s)-modules can
be established from the knowledge of the action of G on the simple
A-modules.
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On Okuyama’s tilting complexes

Another method

I is a G -set via the action on the set {Ti | i ∈ I} of simple B-modules.
Let τi : Qi → Ti and πi : Pi → M ⊗B Ti be projective covers.
A projective cover of M has the form

⊕
i∈I δi :

⊕
i∈I Pi ⊗k Q∗

i → M.
Let I0 be a subset of I , P = P(I0) =

⊕
i∈I0

Pi ⊗k Q∗
i , and let

δ = δ(I0) =
⊕

i∈I0
δi : P → M.

Let AM•
B = M•(I0) = (· · · → 0 → P

δ−→ M → 0 → · · · ), with M in
degree 0. AM• is a tilting complex iff a certain condition is satisfied.
Denote C = EndH(A)(M

•(I0))
op and E = EndH(R)(R ⊗A M•(I0))

op.

Proposition

Assume that AM• tilting complex, M ∆-module, I0 G-subset of I . Then

1 M• extends to a complex of ∆-modules.

2 E is a crossed product, and there is a G-graded stable Morita
equivalence between E and S.

3 There is a complex N• = N•(I0) of ∆(R ⊗k E op)-modules such that

AN•
C is a tilting complex, and N• is homotopy equivalent to M• as

complexes of ∆-modules.

Okuyama’s methods led to the verification of Broué’s conjecture when D
is elementary abelian of order 9, and for the principal p-block of
SL(2, pn).
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AN•
C is a tilting complex, and N• is homotopy equivalent to M• as

complexes of ∆-modules.

Okuyama’s methods led to the verification of Broué’s conjecture when D
is elementary abelian of order 9, and for the principal p-block of
SL(2, pn).



Extending Rickard’s construction
k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects Xi ∈ Db(A-mod) corresponding
to simple B-modules satisfy:
(a) Hom(Xi ,Xj [m]) = 0 for m < 0.
(b) Hom(Xi ,Xj) = k if i = j and 0 otherwise.
(c) Xi , i ∈ I generate Db(A-mod) as a triangulated category.

Theorem

Let I be a finite G-set, and let Xi ∈ Db(A-mod), i ∈ I , be objects
satisfying (a), (b), (c). Assume that Xi satisfy the additional condition
(d) Rg ⊗A Xi ' Xgi in Db(A-mod), for all i ∈ I and g ∈ G.
Then there is another symmetric crossed product R ′ of A′ and G, and a
G-graded derived equivalence between R and R ′, whose restriction to A
sends Xi , i ∈ I , to the simple A′-modules.

Corollary

Let RMS be inducing a G-graded Morita stable equivalence.
If in addition Xi is stably isomorphic to M1 ⊗B Ti , for all i ∈ I , then there
is a G-graded derived equivalence between R and S.
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Splendid stable and derived equivalences
Let S = kHb, B = kKb, R = kNH(D)c , A = NK (D), H ′ = NH(D),
K ′ = NK (D), and assume that G = H/K is a p′-group.

RC•S is splendid, if the indecomposable summands of C i are
δ(D)-projective p-permutation k(H ′ × H)-modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and Xi is
stably isomorphic to C1 ⊗B Ti for all i ∈ I .
Then there is a complex X of G-graded (R,S)-bimodules such that:
1) The image of X1 in ∆-stmod ' Db(∆-mod)/Hb(∆-proj) is C1;
2) X induces a splendid derived equivalence between R and S;
3) X1 ⊗B Ti ' Xi in Db(A-mod), for all i ∈ I .

Example

a) T.I. situation: take M1 := AAB and M = RRS .
b) Let D elementary abelian of order p2, b the principal block of OK .
Then there is a splendid complex of (A,B)-bimodules inducing a stable
equivalence (Rouquier). This applies to the examples considered by
M. Holloway (5-blocks of 2.J2, U3(4) and Sp4(4)), and Y. Usami and
N. Yoshida (principal 5-blocks of G2(2

n), 5 | 2n + 1, 25 - 2n + 1).
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Algebras graded by a cyclic group

Cn = 〈σ〉 the cyclic group of order n, (K,O, k) be a p-modular system,
p - n, K contains a primitive n-th root ε of unity. The group
Ĉn := Hom(Cn,K×) is isomorphic to Cn. Ĉn = 〈σ̂〉, where σ̂(σ) = ε.

Let R =
⊕

g∈Cn
Rg be a Cn-graded O-algebra.

Ĉn acts on R by ρ̂rg = ρ̂(g)rg . Rσj = {r ∈ R | σ̂r = εj r}, for

j = 0, . . . , n − 1. Let R ∗ Ĉn := {r ρ̂ | r ∈ R, ρ̂ ∈ Ĉn}.

Proposition

The category R-Gr of Cn-graded R-modules is isomorphic to R ∗ Ĉn-Mod.

Let R and S be two Cn-graded O-algebras. Then Ĉn acts on R ⊗O Sop

diagonally, by ρ̂(r ⊗ s) = ρ̂r ⊗ ρ̂−1

s.
The category R-Gr-S of Cn-graded (R,S)-bimodules is isomorphic to
(R ⊗O Sop) ∗ Ĉn-Mod.
If M is an (R,S)-bimodule and ρ̂ ∈ Ĉn, then the ρ̂-th conjugate ρ̂M of M
is defined by ρ̂M = (R ⊗O Sop)ρ̂⊗R⊗OSop M.
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diagonally, by ρ̂(r ⊗ s) = ρ̂r ⊗ ρ̂−1

s.
The category R-Gr-S of Cn-graded (R,S)-bimodules is isomorphic to
(R ⊗O Sop) ∗ Ĉn-Mod.
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If M is an (R,S)-bimodule and ρ̂ ∈ Ĉn, then the ρ̂-th conjugate ρ̂M of M
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diagonally, by ρ̂(r ⊗ s) = ρ̂r ⊗ ρ̂−1

s.
The category R-Gr-S of Cn-graded (R,S)-bimodules is isomorphic to
(R ⊗O Sop) ∗ Ĉn-Mod.
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Proposition

The category R-Gr of Cn-graded R-modules is isomorphic to R ∗ Ĉn-Mod.
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A descent theorem

Let G+ E G , with G/G+ ' Cn.

Let b be a block of OG with defect
group D ≤ G+, H = NG (D), H+ = NG+(D). Let c ∈ OH be the Brauer
correspondent of b. If e is a block of OG+ covered by b, then the Brauer
correspondent f ∈ OH+ of e is covered by c (Harris-Knörr). Ĉn acts on
on the blocks of OG and OH. The Brauer correspondent of ρ̂b is ρ̂c .
Cn acts by conjugation of the blocks of OG+ and OH+. The Brauer
correspondent of ge is g f .
Consider the central idempotent b+ =

∑
ρ̂∈[Ĉn/Ĉn,b ]

ρ̂b =
∑

g∈[Cn/Cn,e ]
ge

of OG+. Let c+ be the similarly defined central idempotent of OH+.
Consider the strongly Cn-graded algebras R = b+OG = OGeOG and
S = c+OH = OHeOH. R is Morita equivalent to eOGe and S is Morita
equivalent to fOHf .

Theorem

Let X be a complex of (bOG , cOH)-bimodules inducing a Rickard
equivalence between bOG and cOH, and consider the complex
Y =

⊕
ρ̂∈[Ĉn/Ĉn,b ]

ρ̂X of (R,S)-bimodules.

If ρ̂Y ' Y as complexes of (R,S)-bimodules for all ρ̂ ∈ Ĉn, then the
block algebras eOG+ and fOH+ are Rickard equivalent.
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ρ̂∈[Ĉn/Ĉn,b ]

ρ̂X of (R,S)-bimodules.

If ρ̂Y ' Y as complexes of (R,S)-bimodules for all ρ̂ ∈ Ĉn, then the
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ρ̂∈[Ĉn/Ĉn,b ]

ρ̂X of (R,S)-bimodules.

If ρ̂Y ' Y as complexes of (R,S)-bimodules for all ρ̂ ∈ Ĉn, then the
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Y =
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ρ̂∈[Ĉn/Ĉn,b ]

ρ̂X of (R,S)-bimodules.

If ρ̂Y ' Y as complexes of (R,S)-bimodules for all ρ̂ ∈ Ĉn, then the
block algebras eOG+ and fOH+ are Rickard equivalent.
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ρ̂∈[Ĉn/Ĉn,b ]

ρ̂X of (R,S)-bimodules.

If ρ̂Y ' Y as complexes of (R,S)-bimodules for all ρ̂ ∈ Ĉn, then the
block algebras eOG+ and fOH+ are Rickard equivalent.



Blocks of symmetric and alternating groups

We only need to consider the case p > 2. Indeed, if p = 2, then
D ' C2 × C2. In this case Broué’s conjecture holds (Rouquier).

Theorem

Let p > 2, G = Sn, G+ = An, G̃ = Aut(G+), b+ a block of OG+ with
nontrivial abelian defect group D, H+ = NG+(D), and c+ ∈ OH+ the
Brauer correspondent of b+.
Then there exists a splendid tilting complex of G̃/G+-graded
(b+OG̃ , c+OH̃)-bimodules.

We use that the conjecture is known to hold for the symmetric group Sn

by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we
show how to “go down” to An, by using the above techniques.
Related results:

P. Fong and M. Harris, verified the weaker “isotypy form” of the
conjecture for An, by using Rouquier’s result on Sn.

A similar procedure was developed by E. Dade leading to the
verification of his Invariant Projective Conjecture for An.
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