Tilting complexes for group graded algebras and Broué's abelian defect group conjecture

Andrei Marcus

"Babeş-Bolyai" University Cluj-Napoca

Madrid, August 25, 2006

Index

- 2 G-graded tilting complexes
- Stable equivalences and Rickard equivalences between symmetric algebras
- On Okuyama's tilting complexes
- 5 Extending Rickard's construction
- 6 Splendid stable and derived equivalences
- Equivalences between blocks of alternating groups

8 References

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

Motivation

• Let $K \leq H$, G = H/K, b is a G-invariant block with defect group D of the group algebra kK.

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

- Let $K \leq H$, G = H/K, b is a G-invariant block with defect group D of the group algebra kK.
- The Brauer correspondent c of b in kN_K(D) is a G-invariant block of kN_K(D);

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

- Let $K \leq H$, G = H/K, b is a G-invariant block with defect group D of the group algebra kK.
- The Brauer correspondent c of b in kN_K(D) is a G-invariant block of kN_K(D);
- if *D* is abelian, Broué's conjecture predicts that there is a derived equivalence between the block algebras A = kKb and $B = kN_K(D)c$ i.e. $\mathcal{D}^b(A)$ and $\mathcal{D}^b(B)$ are equivalent as triangulated categories;

Construct derived equivalences between two algebras R and S over the commutative ring k, graded by the finite group G.

- Let $K \leq H$, G = H/K, b is a G-invariant block with defect group D of the group algebra kK.
- The Brauer correspondent c of b in kN_K(D) is a G-invariant block of kN_K(D);
- if *D* is abelian, Broué's conjecture predicts that there is a derived equivalence between the block algebras A = kKb and $B = kN_K(D)c$ i.e. $\mathcal{D}^b(A)$ and $\mathcal{D}^b(B)$ are equivalent as triangulated categories;
- moreover, such an equivalence should be compatible with p'-extensions, i.e. if $p \nmid |G|$, then the equivalence can be extended to a derived equivalence between the *G*-graded *k*-algebras S = kHb and $R = kN_H(D)c$ induced by a bounded complex of *G*-graded (R, S)-bimodules.

This talk

 We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.
- In the case of the Morita equivalence, if P is a progenerator of A-Mod, the P becomes an (A, End_A(P)^{op})-module.

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.
- In the case of the Morita equivalence, if P is a progenerator of A-Mod, the P becomes an (A, End_A(P)^{op})-module.
- A difficulty in the case of derived equivalences is that if T is an one-sided tilting complex of A-modules, then End_{H(A)}(T)^{op} acts on T only up to homotopy.

This talk

- We discuss constructions due to T. Okuyama and J. Rickard aimed to lift stable equivalences between symmetric algebras to Rickard equivalences.
- Although they end up with two-sided tilting complexes, these are based on constructions of one-sided tilting complexes.
- In the case of the Morita equivalence, if P is a progenerator of A-Mod, the P becomes an (A, End_A(P)^{op})-module.
- A difficulty in the case of derived equivalences is that if T is an one-sided tilting complex of A-modules, then End_{H(A)}(T)^{op} acts on T only up to homotopy.

Denote $A = R_1$ and $B = S_1$. The diagonal subalgebra is

$$\Delta := \Delta(R \otimes_k S^{\operatorname{op}}) = \bigoplus_{g \in \mathcal{G}} R_g \otimes_k S_{g^{-1}}.$$

Graded endomorphism rings

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$.

A complex $T \in \mathcal{H}(R\text{-}Gr)$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}Gr)$) for all $g \in G$. T is called *weakly G*-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$.

A complex $T \in \mathcal{H}(R\text{-}Gr)$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}Gr)$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}Gr)$, $E := \operatorname{End}_{\mathcal{H}(R)}(T)^{\operatorname{op}}$.

A complex $T \in \mathcal{H}(R\text{-}Gr)$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}Gr)$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \operatorname{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}Gr)$, $E := \operatorname{End}_{\mathcal{H}(R)}(T)^{\operatorname{op}}$. Assume *G* is finite. Then:

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$.

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$. b) *E* is strongly graded (crossed product) iff *T* is weakly *G*-invariant (*G*-invariant).

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$. b) *E* is strongly graded (crossed product) iff *T* is weakly *G*-invariant (*G*-invariant).

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$. b) *E* is strongly graded (crossed product) iff *T* is weakly *G*-invariant (*G*-invariant).

Group graded functors

• Consider the conjugation functors $\mathcal{S}_g = (-)(g), \, g \in G.$

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$. b) *E* is strongly graded (crossed product) iff *T* is weakly *G*-invariant (*G*-invariant).

- Consider the conjugation functors $\mathcal{S}_g = (-)(g), \ g \in \mathcal{G}.$
- A functor $F : \mathcal{D}(S Gr) \to \mathcal{D}(R Gr)$ is said to be *G-graded* if $F \circ S_g = S_g \circ F$ for all $g \in G$.

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$. b) *E* is strongly graded (crossed product) iff *T* is weakly *G*-invariant (*G*-invariant).

- Consider the conjugation functors $\mathcal{S}_g = (-)(g), \ g \in G.$
- A functor $F : \mathcal{D}(S \mathrm{Gr}) \to \mathcal{D}(R \mathrm{Gr})$ is said to be *G-graded* if $F \circ S_g = S_g \circ F$ for all $g \in G$.
- A complex $X = \bigoplus_{g \in G} X_g$ of G-graded (R, S)-bimodules, yields an adjoint pair of G-graded functors:

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$. b) *E* is strongly graded (crossed product) iff *T* is weakly *G*-invariant (*G*-invariant).

- Consider the conjugation functors $\mathcal{S}_g = (-)(g), \ g \in G.$
- A functor $F : \mathcal{D}(S \operatorname{-Gr}) \to \mathcal{D}(R \operatorname{-Gr})$ is said to be *G*-graded if $F \circ S_g = S_g \circ F$ for all $g \in G$.
- A complex $X = \bigoplus_{g \in G} X_g$ of *G*-graded (*R*, *S*)-bimodules, yields an adjoint pair of *G*-graded functors: $X \bigotimes_{S}^{\mathsf{L}} : \mathcal{D}(S\text{-}\mathrm{Gr}) \to \mathcal{D}(R\text{-}\mathrm{Gr}).$

A complex $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$ is called *G*-invariant if $T(g) \simeq T$ (in the category $\mathcal{H}(R\text{-}\mathrm{Gr})$) for all $g \in G$. *T* is called *weakly G*-invariant if $T(g) \in \mathrm{add}(T)$ for all $g \in G$. Let $T \in \mathcal{H}(R\text{-}\mathrm{Gr})$, $E := \mathrm{End}_{\mathcal{H}(R)}(T)^{\mathrm{op}}$. Assume *G* is finite. Then: a) *E* is a *G*-graded algebra, $E_g \simeq \mathrm{Hom}_{\mathcal{H}(R\text{-}\mathrm{Gr})}(T, T(g))$. b) *E* is strongly graded (crossed product) iff *T* is weakly *G*-invariant (*G*-invariant).

- Consider the conjugation functors $\mathcal{S}_g = (-)(g), \ g \in G.$
- A functor $F : \mathcal{D}(S \operatorname{-Gr}) \to \mathcal{D}(R \operatorname{-Gr})$ is said to be *G*-graded if $F \circ S_g = S_g \circ F$ for all $g \in G$.
- A complex $X = \bigoplus_{g \in G} X_g$ of *G*-graded (*R*, *S*)-bimodules, yields an adjoint pair of *G*-graded functors:

$$X \stackrel{\scriptstyle{\sim}}{\otimes}_{S} - : \mathcal{D}(S\operatorname{-Gr}) \to \mathcal{D}(R\operatorname{-Gr}).$$

 $\mathbb{R}\operatorname{Hom}_{R}(X, -) : \mathcal{D}(R\operatorname{-Gr}) \to \mathcal{D}(S\operatorname{-Gr}).$

Definition

 $T \in \mathcal{D}(R ext{-Gr})$ is a *G*-graded tilting complex over *R* if

Definition

 $T \in \mathcal{D}(R$ -Gr) is a *G*-graded tilting complex over *R* if a) $T \in R$ - perf.

Definition

 $T \in \mathcal{D}(R$ -Gr) is a *G*-graded tilting complex over *R* if a) $T \in R$ - perf. b) Hom_{$\mathcal{D}(R)$}(T, T[n]) = 0 for all $n \neq 0$.

Definition

 $T \in \mathcal{D}(R$ -Gr) is a *G*-graded tilting complex over *R* if a) $T \in R$ - perf. b) Hom_{$\mathcal{D}(R)$}(T, T[n]) = 0 for all $n \neq 0$. c) add(*T*) generates *R*-perf as a triangulated category.

Definition

 $T \in \mathcal{D}(R$ -Gr) is a *G*-graded tilting complex over *R* if a) $T \in R$ - perf. b) Hom_{$\mathcal{D}(R)$}(T, T[n]) = 0 for all $n \neq 0$. c) add(*T*) generates *R*-perf as a triangulated category.

Theorem

The following statements are equivalent.

Definition

 $T \in \mathcal{D}(R$ -Gr) is a *G*-graded tilting complex over *R* if a) $T \in R - \text{perf.}$ b) $\text{Hom}_{\mathcal{D}(R)}(T, T[n]) = 0$ for all $n \neq 0$. c) add(T) generates *R*-perf as a triangulated category.

Theorem

The following statements are equivalent. (i) There is a G-graded tilting complex $T \in \mathcal{D}(R\text{-}Gr)$ and an isomorphism $S \to \text{End}_{\mathcal{D}(R)}(T)^{\text{op}}$ of G-graded algebras.

Definition

 $T \in \mathcal{D}(R$ -Gr) is a *G*-graded tilting complex over *R* if a) $T \in R - \text{perf.}$ b) $\text{Hom}_{\mathcal{D}(R)}(T, T[n]) = 0$ for all $n \neq 0$. c) add(T) generates *R*-perf as a triangulated category.

Theorem

The following statements are equivalent. (i) There is a *G*-graded tilting complex $T \in \mathcal{D}(R$ -Gr) and an isomorphism $S \to \operatorname{End}_{\mathcal{D}(R)}(T)^{\operatorname{op}}$ of *G*-graded algebras. (ii) There is a complex X of *G*-graded (*R*, *S*)-bimodules such that the functor

$$X \overset{\mathsf{L}}{\otimes}_{S} - : \mathcal{D}(S) \to \mathcal{D}(R)$$

is an equivalence.

Definition

 $T \in \mathcal{D}(R$ -Gr) is a *G*-graded tilting complex over *R* if a) $T \in R - \text{perf.}$ b) $\text{Hom}_{\mathcal{D}(R)}(T, T[n]) = 0$ for all $n \neq 0$. c) add(T) generates *R*-perf as a triangulated category.

Theorem

The following statements are equivalent. (i) There is a *G*-graded tilting complex $T \in \mathcal{D}(R$ -Gr) and an isomorphism $S \to \operatorname{End}_{\mathcal{D}(R)}(T)^{\operatorname{op}}$ of *G*-graded algebras. (ii) There is a complex X of *G*-graded (*R*, *S*)-bimodules such that the functor

$$X \overset{\mathsf{L}}{\otimes}_{\mathcal{S}} - : \mathcal{D}(\mathcal{S}) \to \mathcal{D}(\mathcal{R})$$

is an equivalence.

(iii) There are triangle equivalences $F : \mathcal{D}(S) \to \mathcal{D}(R)$ and $F^{\mathrm{gr}} : \mathcal{D}(S \operatorname{-Gr}) \to \mathcal{D}(R \operatorname{-Gr})$ such that F^{gr} is a *G*-graded functor and commutes with the ungrading functor.

(iv) (*R* and *S* strongly graded) There are (bounded) complexes X_1 of $\Delta(R \otimes_k S^{\mathrm{op}})$ modules and Y_1 of $\Delta(S \otimes_k R^{\mathrm{op}})$ modules, and isomorphisms

$$\begin{split} X_1 & \stackrel{\mathsf{L}}{\otimes}_{S_1} Y_1 \simeq R_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(R \otimes_k R^{\operatorname{op}})), \\ Y_1 & \stackrel{\mathsf{L}}{\otimes}_{R_1} X_1 \simeq S_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(S \otimes_k S^{\operatorname{op}})). \end{split}$$
(iv) (*R* and *S* strongly graded) There are (bounded) complexes X_1 of $\Delta(R \otimes_k S^{\text{op}})$ modules and Y_1 of $\Delta(S \otimes_k R^{\text{op}})$ modules, and isomorphisms

$$\begin{split} X_1 & \otimes_{S_1} Y_1 \simeq R_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(R \otimes_k R^{\operatorname{op}})), \\ Y_1 & \otimes_{R_1} X_1 \simeq S_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(S \otimes_k S^{\operatorname{op}})). \end{split}$$

Proposition (Inducing one-sided tilting complexes)

(iv) (*R* and *S* strongly graded) There are (bounded) complexes X_1 of $\Delta(R \otimes_k S^{\text{op}})$ modules and Y_1 of $\Delta(S \otimes_k R^{\text{op}})$ modules, and isomorphisms

$$\begin{split} X_1 & \stackrel{\mathsf{L}}{\otimes}_{S_1} Y_1 \simeq R_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(R \otimes_k R^{\operatorname{op}})), \\ Y_1 & \stackrel{\mathsf{L}}{\otimes}_{R_1} X_1 \simeq S_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(S \otimes_k S^{\operatorname{op}})). \end{split}$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded.

(iv) (*R* and *S* strongly graded) There are (bounded) complexes X_1 of $\Delta(R \otimes_k S^{\text{op}})$ modules and Y_1 of $\Delta(S \otimes_k R^{\text{op}})$ modules, and isomorphisms

$$\begin{split} X_1 & \otimes_{S_1} Y_1 \simeq R_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(R \otimes_k R^{\operatorname{op}})), \\ Y_1 & \otimes_{R_1} X_1 \simeq S_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(S \otimes_k S^{\operatorname{op}})). \end{split}$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded. Let T be a G-invariant object of $\mathcal{H}^b(A)$.

(iv) (*R* and *S* strongly graded) There are (bounded) complexes X_1 of $\Delta(R \otimes_k S^{\text{op}})$ modules and Y_1 of $\Delta(S \otimes_k R^{\text{op}})$ modules, and isomorphisms

$$\begin{split} X_1 & \stackrel{\mathsf{L}}{\otimes}_{S_1} Y_1 \simeq R_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(R \otimes_k R^{\operatorname{op}})), \\ Y_1 & \stackrel{\mathsf{L}}{\otimes}_{R_1} X_1 \simeq S_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(S \otimes_k S^{\operatorname{op}})). \end{split}$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded. Let T be a G-invariant object of $\mathcal{H}^b(A)$. Denote $\tilde{T} = R \otimes_A T$ and $S = \operatorname{End}_{\mathcal{H}(R)}(\tilde{T})^{\operatorname{op}}$.

(iv) (*R* and *S* strongly graded) There are (bounded) complexes X_1 of $\Delta(R \otimes_k S^{\text{op}})$ modules and Y_1 of $\Delta(S \otimes_k R^{\text{op}})$ modules, and isomorphisms

$$\begin{split} X_1 & \stackrel{\mathsf{L}}{\otimes}_{S_1} Y_1 \simeq R_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(R \otimes_k R^{\operatorname{op}})), \\ Y_1 & \stackrel{\mathsf{L}}{\otimes}_{R_1} X_1 \simeq S_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(S \otimes_k S^{\operatorname{op}})). \end{split}$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded. Let T be a G-invariant object of $\mathcal{H}^b(A)$. Denote $\tilde{T} = R \otimes_A T$ and $S = \operatorname{End}_{\mathcal{H}(R)}(\tilde{T})^{\operatorname{op}}$. a) T is a tilting complex for A if and only if \tilde{T} is a G-graded tilting complex for R.

(iv) (*R* and *S* strongly graded) There are (bounded) complexes X_1 of $\Delta(R \otimes_k S^{\text{op}})$ modules and Y_1 of $\Delta(S \otimes_k R^{\text{op}})$ modules, and isomorphisms

$$\begin{split} X_1 & \stackrel{\mathsf{L}}{\otimes}_{S_1} Y_1 \simeq R_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(R \otimes_k R^{\operatorname{op}})), \\ Y_1 & \stackrel{\mathsf{L}}{\otimes}_{R_1} X_1 \simeq S_1 \quad \text{in} \quad \mathcal{D}^b(\Delta(S \otimes_k S^{\operatorname{op}})). \end{split}$$

Proposition (Inducing one-sided tilting complexes)

Assume that G is finite and R is strongly graded. Let T be a G-invariant object of $\mathcal{H}^b(A)$. Denote $\tilde{T} = R \otimes_A T$ and $S = \operatorname{End}_{\mathcal{H}(R)}(\tilde{T})^{\operatorname{op}}$. a) T is a tilting complex for A if and only if \tilde{T} is a G-graded tilting complex for R. b) If T is a tilting complex for A and R is a finite dimensional symmetric crossed product, then S is a symmetric crossed product of $B := S_1 \simeq \operatorname{End}_{\mathcal{H}(A)}(T)^{\operatorname{op}}$ and G.

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

Let \mathcal{T}^{\bullet} be an one-sided tilting complex of *G*-graded *R*-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}(\mathcal{T}^{\bullet})^{\operatorname{op}} \simeq S$.

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of *G*-graded *R*-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}(T^{\bullet})^{\operatorname{op}} \simeq S$. There is a two-sided tilting complex X^{\bullet} of *G*-graded (*R*, *S*)-bimodules.

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of *G*-graded *R*-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}(T^{\bullet})^{\operatorname{op}} \simeq S$. There is a two-sided tilting complex X^{\bullet} of *G*-graded (*R*, *S*)-bimodules. Then X_1^{\bullet} is a complex of Δ -modules, and also a two-sided tilting complex of (*R*₁, *S*₁)-bimodules.

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

Let \mathcal{T}^{\bullet} be an one-sided tilting complex of *G*-graded *R*-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}(\mathcal{T}^{\bullet})^{\operatorname{op}} \simeq S$. There is a two-sided tilting complex X^{\bullet} of *G*-graded (*R*, *S*)-bimodules. Then X_1^{\bullet} is a complex of Δ -modules, and also a two-sided tilting complex of (*R*₁, *S*₁)-bimodules.

Let Y_1^{\bullet} be a projective resolution of X_1^{\bullet} as Δ -modules.

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of *G*-graded *R*-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}(T^{\bullet})^{\operatorname{op}} \simeq S$. There is a two-sided tilting complex X^{\bullet} of *G*-graded (*R*, *S*)-bimodules. Then X_1^{\bullet} is a complex of Δ -modules, and also a two-sided tilting complex of (*R*₁, *S*₁)-bimodules. Let Y_1^{\bullet} be a projective resolution of X_1^{\bullet} as Δ -modules.

It is possible (Rickard), to truncate Y_1^{\bullet} and obtain a bounded complex

$$Z_1^{\bullet} := (\dots \to 0 \to \mathsf{Ker} d^n \to Y_1^n \to Y_1^{n+1} \to \dots),$$

of Δ -modules quasi-isomorphic to X_1^{\bullet} , such that:

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

Let \mathcal{T}^{\bullet} be an one-sided tilting complex of *G*-graded *R*-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}(\mathcal{T}^{\bullet})^{\operatorname{op}} \simeq S$. There is a two-sided tilting complex X^{\bullet} of *G*-graded (*R*, *S*)-bimodules. Then X_1^{\bullet} is a complex of Δ -modules, and also a two-sided tilting

complex of (R_1, S_1) -bimodules.

Let Y_1^{\bullet} be a projective resolution of X_1^{\bullet} as Δ -modules. It is possible (Rickard), to truncate Y_1^{\bullet} and obtain a bounded complex

$$Z_1^{ullet} := (\dots \to 0 \to \operatorname{Ker} d^n \to Y_1^n \to Y_1^{n+1} \to \dots),$$

of Δ -modules quasi-isomorphic to X_1^{\bullet} , such that:

- all the terms of Z_1^{\bullet} but Ker d^n are projective Δ -modules;

G is a p'-group, R and S are G-graded symmetric crossed products over a field k of characteristic p.

A and B are connected non-semisimple symmetric algebras.

Let T^{\bullet} be an one-sided tilting complex of *G*-graded *R*-module with endomorphism ring $\operatorname{End}_{\mathcal{H}(R)}(T^{\bullet})^{\operatorname{op}} \simeq S$. There is a two-sided tilting complex X^{\bullet} of *G*-graded (*R*, *S*)-bimodules.

Then X_1° is a complex of Δ -modules, and also a two-sided tilting complex of (R_1, S_1) -bimodules.

Let Y_1^{\bullet} be a projective resolution of X_1^{\bullet} as Δ -modules. It is possible (Rickard), to truncate Y_1^{\bullet} and obtain a bounded complex

$$Z_1^{\bullet} := (\dots \to 0 \to \operatorname{Ker} d^n \to Y_1^n \to Y_1^{n+1} \to \dots),$$

of Δ -modules quasi-isomorphic to X_1^{\bullet} , such that:

- all the terms of Z_1^{\bullet} but Ker d^n are projective Δ -modules;
- Ker d^n is projective as an R_1 -module and as a right S_1 -module.

Let

$$\begin{split} M_1 &:= \Omega^n(\mathrm{Ker} d^n), \quad N_1 &:= \Omega^{-n}(\mathrm{Hom}_{R_1}(\mathrm{Ker} d^n, R_1)), \\ M &:= (R \otimes_k S^{\mathrm{op}}) \otimes_\Delta M_1, \quad Z^\bullet &:= (R \otimes_k S^{\mathrm{op}}) \otimes_\Delta Z_1^\bullet. \end{split}$$

Let

$$M_{1} := \Omega^{n}(\operatorname{Ker} d^{n}), \quad N_{1} := \Omega^{-n}(\operatorname{Hom}_{R_{1}}(\operatorname{Ker} d^{n}, R_{1})),$$
$$M := (R \otimes_{k} S^{\operatorname{op}}) \otimes_{\Lambda} M_{1}, \quad Z^{\bullet} := (R \otimes_{k} S^{\operatorname{op}}) \otimes_{\Lambda} Z_{1}^{\bullet}.$$

Then we have: a) The functor

$$Z^{ullet}\otimes_{S} - : \mathcal{H}^{b}(S) \to \mathcal{H}^{b}(R)$$

is an equivalence, and it is also a graded functor. The inverse equivalence is induced by the k-dual of Z^{\bullet} .

Let

$$\begin{split} M_1 &:= \Omega^n(\mathrm{Ker} d^n), \quad N_1 &:= \Omega^{-n}(\mathrm{Hom}_{R_1}(\mathrm{Ker} d^n, R_1)), \\ M &:= (R \otimes_k S^{\mathrm{op}}) \otimes_\Delta M_1, \quad Z^\bullet &:= (R \otimes_k S^{\mathrm{op}}) \otimes_\Delta Z_1^\bullet. \end{split}$$

Then we have: a) The functor

$$Z^{ullet}\otimes_{S} - : \mathcal{H}^{b}(S) \to \mathcal{H}^{b}(R)$$

is an equivalence, and it is also a graded functor. The inverse equivalence is induced by the k-dual of Z^{\bullet} . The complex Z^{\bullet} is called a *Rickard tilting complex* or a split endomorphism tilting complex.

Let

$$M_1 := \Omega^n(\operatorname{Ker} d^n), \quad N_1 := \Omega^{-n}(\operatorname{Hom}_{R_1}(\operatorname{Ker} d^n, R_1)),$$

$$M:=(R\otimes_k S^{\operatorname{op}})\otimes_\Delta M_1,\quad Z^ullet:=(R\otimes_k S^{\operatorname{op}})\otimes_\Delta Z_1^ullet.$$

Then we have: a) The functor

$$Z^{\bullet} \otimes_{S} - : \mathcal{H}^{b}(S) \to \mathcal{H}^{b}(R)$$

is an equivalence, and it is also a graded functor. The inverse equivalence is induced by the k-dual of Z^{\bullet} . The complex Z^{\bullet} is called a *Rickard tilting complex* or a split endomorphism tilting complex.

b) M is a Δ -module, $N_1 \simeq M_1^{\vee}$ as $\Delta(S \otimes_k R^{\mathrm{op}})$ -modules, and M_1 and N_1 induce a stable Morita equivalence between R_1 and S_1 .

Let

$$M_1 := \Omega^n(\operatorname{Ker} d^n), \quad N_1 := \Omega^{-n}(\operatorname{Hom}_{R_1}(\operatorname{Ker} d^n, R_1)),$$

$$M := (R \otimes_k S^{\operatorname{op}}) \otimes_\Delta M_1, \quad Z^{ullet} := (R \otimes_k S^{\operatorname{op}}) \otimes_\Delta Z_1^{ullet}.$$

Then we have: a) The functor

$$Z^{\bullet} \otimes_{S} - : \mathcal{H}^{b}(S) \to \mathcal{H}^{b}(R)$$

is an equivalence, and it is also a graded functor. The inverse equivalence is induced by the k-dual of Z^{\bullet} . The complex Z^{\bullet} is called a *Rickard tilting complex* or a split endomorphism tilting complex. b) M is a Δ -module, $N_1 \simeq M_1^{\vee}$ as $\Delta(S \otimes_k R^{\mathrm{op}})$ -modules, and M_1 and N_1 induce a stable Morita equivalence between R_1 and S_1 . c) It follows that M and its k-dual N induce a graded stable Morita equivalence between R and S.

Definition (Rouquier)

The complex *C* of *G*-graded exact (*R*, *S*)-bimodules induces a *G*-graded stable equivalence between *R* and *S* if $C \otimes_S C^{\vee} \simeq R \oplus Z$, $C^{\vee} \otimes_R C \simeq S \oplus W$ in the bounded homotopy category of f. gen. *G*-graded bimodules, where *Z* and *W* are complexes of projective bimodules.

Definition (Rouquier)

The complex *C* of *G*-graded exact (*R*, *S*)-bimodules induces a *G*-graded stable equivalence between *R* and *S* if $C \otimes_S C^{\vee} \simeq R \oplus Z$, $C^{\vee} \otimes_R C \simeq S \oplus W$ in the bounded homotopy category of f. gen. *G*-graded bimodules, where *Z* and *W* are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_1 agrees on each simple module, up to isomorphism, with that induced by C_1 .

Definition (Rouquier)

The complex *C* of *G*-graded exact (*R*, *S*)-bimodules induces a *G*-graded stable equivalence between *R* and *S* if $C \otimes_S C^{\vee} \simeq R \oplus Z$, $C^{\vee} \otimes_R C \simeq S \oplus W$ in the bounded homotopy category of f. gen. *G*-graded bimodules, where *Z* and *W* are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_1 agrees on each simple module, up to isomorphism, with that induced by C_1 . Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that:

Definition (Rouquier)

The complex *C* of *G*-graded exact (*R*, *S*)-bimodules induces a *G*-graded stable equivalence between *R* and *S* if $C \otimes_S C^{\vee} \simeq R \oplus Z$, $C^{\vee} \otimes_R C \simeq S \oplus W$ in the bounded homotopy category of f. gen. *G*-graded bimodules, where *Z* and *W* are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_1 agrees on each simple module, up to isomorphism, with that induced by C_1 . Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that: 1) $X = C \oplus P$, where P is a complex of G-graded projective bimodules;

Definition (Rouquier)

The complex *C* of *G*-graded exact (*R*, *S*)-bimodules induces a *G*-graded stable equivalence between *R* and *S* if $C \otimes_S C^{\vee} \simeq R \oplus Z$, $C^{\vee} \otimes_R C \simeq S \oplus W$ in the bounded homotopy category of f. gen. *G*-graded bimodules, where *Z* and *W* are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_1 agrees on each simple module, up to isomorphism, with that induced by C_1 . Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that: 1) $X = C \oplus P$, where P is a complex of G-graded projective bimodules;

2) X induces a G-graded Rickard equivalence between R and S;

Definition (Rouquier)

The complex *C* of *G*-graded exact (*R*, *S*)-bimodules induces a *G*-graded stable equivalence between *R* and *S* if $C \otimes_S C^{\vee} \simeq R \oplus Z$, $C^{\vee} \otimes_R C \simeq S \oplus W$ in the bounded homotopy category of f. gen. *G*-graded bimodules, where *Z* and *W* are complexes of projective bimodules.

Proposition

Let C and D be bounded complexes of G-graded (R, S)-bimodules such that C induces a stable equivalence, D induces a derived equivalence, and the stable equivalence between A and B induced by D_1 agrees on each simple module, up to isomorphism, with that induced by C_1 . Then there is a bounded complex X of finitely generated G-graded (R, S)-bimodules such that: 1) $X = C \oplus P$, where P is a complex of G-graded projective bimodules;

2) X induces a G-graded Rickard equivalence between R and S;

3) In the derived category of G-graded (R, S)-bimodules, X is isomorphic to the composition between D and a G-graded Morita autoequivalence of R.

 S_i , $i \in I$ are the simple A-modules, P_i is a projective cover of S_i .

 $S_i, i \in I$ are the simple A-modules, P_i is a projective cover of S_i . I becomes a G-set via the action of G on simple A-modules. For a subset I_0 of I let $P^{\bullet}(I_0) = \bigoplus_{i \in I} P_i^{\bullet} = (\dots \to 0 \to P^{-1} \xrightarrow{\delta_0} P^0 \to 0 \to \dots),$ where, $\delta_0 = \bigoplus_{i \in I} \delta_i$, and for $i \in I_0$ $P_i^{\bullet} = (\dots \to 0 \to R_i \xrightarrow{\delta_i} P_i \to 0 \to \dots),$ with R_i in degree $-1, P_i$ in degree 0, and $\delta_i : R_i \to P_i$ is a minimal right $\bigoplus_{i \in I_0} P_i$ -approximation of P_i , and for $i \notin I_0$, $P_i^{\bullet} = (\dots \to 0 \to P_i \xrightarrow{\delta_i} 0 \to \dots),$ with P_i in degree -1.

 $\begin{array}{l} S_i, \ i \in I \ \text{are the simple } A\text{-modules, } P_i \ \text{is a projective cover of } S_i. \\ I \ \text{becomes a } G\text{-set via the action of } G \ \text{on simple } A\text{-modules.} \\ \text{For a subset } I_0 \ \text{of } I \ \text{let} \\ P^{\bullet}(I_0) = \bigoplus_{i \in I} P_i^{\bullet} = (\cdots \rightarrow 0 \rightarrow P^{-1} \xrightarrow{\delta_0} P^0 \rightarrow 0 \rightarrow \cdots), \\ \text{where, } \delta_0 = \bigoplus_{i \in I} \delta_i, \ \text{and for } i \in I_0 \\ P_i^{\bullet} = (\cdots \rightarrow 0 \rightarrow R_i \xrightarrow{\delta_i} P_i \rightarrow 0 \rightarrow \cdots), \\ \text{with } R_i \ \text{in degree } -1, \ P_i \ \text{in degree } 0, \ \text{and } \delta_i : R_i \rightarrow P_i \ \text{is a minimal right} \\ \bigoplus_{i \in I_0} P_i\text{-approximation of } P_i, \ \text{and for } i \notin I_0, \\ P_i^{\bullet} = (\cdots \rightarrow 0 \rightarrow P_i \xrightarrow{\delta_i} 0 \rightarrow \cdots), \\ \text{with } P_i \ \text{in degree } -1. \\ \text{Let } C := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(I_0))^{\operatorname{op}} \ \text{and } E := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(I_0))^{\operatorname{op}}. \end{array}$

 S_i , $i \in I$ are the simple A-modules, P_i is a projective cover of S_i . I becomes a G-set via the action of G on simple A-modules. For a subset I_0 of I let $P^{\bullet}(I_0) = \bigoplus_{i \in I} P_i^{\bullet} = (\cdots \to 0 \to P^{-1} \xrightarrow{\delta_0} P^0 \to 0 \to \cdots).$ where, $\delta_0 = \bigoplus_{i \in I} \delta_i$, and for $i \in I_0$ $P_i^{\bullet} = (\cdots \to 0 \to R_i \xrightarrow{\delta_i} P_i \to 0 \to \cdots),$ with R_i in degree -1, P_i in degree 0, and $\delta_i : R_i \to P_i$ is a minimal right $\bigoplus_{i \in I_0} P_i$ -approximation of P_i , and for $i \notin I_0$, $P_i^{\bullet} = (\cdots \rightarrow 0 \rightarrow P_i \xrightarrow{\delta_i} 0 \rightarrow \cdots)$, with P_i in degree -1. Let $C := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(I_0))^{\operatorname{op}}$ and $E := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(I_0))^{\operatorname{op}}$. For $i \in I$, let \hat{P}_i be the indecomposable projective C-module corresponding to the indecomposable direct summand P_i^{\bullet} of $P^{\bullet}(I_0)$, so $\hat{S}_i = \hat{P}_i / \operatorname{rad} \hat{P}_i$ is a simple *C*-module.

 S_i , $i \in I$ are the simple A-modules, P_i is a projective cover of S_i . I becomes a G-set via the action of G on simple A-modules. For a subset I_0 of I let $P^{\bullet}(I_0) = \bigoplus_{i \in I} P_i^{\bullet} = (\dots \to 0 \to P^{-1} \xrightarrow{\delta_0} P^0 \to 0 \to \dots).$ where, $\delta_0 = \bigoplus_{i \in I} \delta_i$, and for $i \in I_0$ $P_i^{\bullet} = (\cdots \to 0 \to R_i \xrightarrow{\delta_i} P_i \to 0 \to \cdots),$ with R_i in degree -1, P_i in degree 0, and $\delta_i : R_i \to P_i$ is a minimal right $\bigoplus_{i \in I_0} P_i$ -approximation of P_i , and for $i \notin I_0$, $P_i^{\bullet} = (\cdots \rightarrow 0 \rightarrow P_i \xrightarrow{\delta_i} 0 \rightarrow \cdots)$, with P_i in degree -1. Let $C := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(I_0))^{\operatorname{op}}$ and $E := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(I_0))^{\operatorname{op}}$. For $i \in I$, let \hat{P}_i be the indecomposable projective C-module corresponding to the indecomposable direct summand P_i^{\bullet} of $P^{\bullet}(I_0)$, so $\hat{S}_i = \hat{P}_i / \operatorname{rad} \hat{P}_i$ is a simple *C*-module.

Proposition

a) $P^{\bullet}(I_0)$ is a tilting complex for A.

 S_i , $i \in I$ are the simple A-modules, P_i is a projective cover of S_i . I becomes a G-set via the action of G on simple A-modules. For a subset I_0 of I let $P^{\bullet}(I_0) = \bigoplus_{i \in I} P_i^{\bullet} = (\cdots \to 0 \to P^{-1} \xrightarrow{\delta_0} P^0 \to 0 \to \cdots).$ where, $\delta_0 = \bigoplus_{i \in I} \delta_i$, and for $i \in I_0$ $P_i^{\bullet} = (\cdots \to 0 \to R_i \xrightarrow{\delta_i} P_i \to 0 \to \cdots),$ with R_i in degree -1, P_i in degree 0, and $\delta_i : R_i \to P_i$ is a minimal right $\bigoplus_{i \in I_0} P_i$ -approximation of P_i , and for $i \notin I_0$, $P_i^{\bullet} = (\cdots \to 0 \to P_i \xrightarrow{\delta_i} 0 \to \cdots)$, with P_i in degree -1. Let $C := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(I_0))^{\operatorname{op}}$ and $E := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(I_0))^{\operatorname{op}}$. For $i \in I$, let \hat{P}_i be the indecomposable projective C-module corresponding to the indecomposable direct summand P_i^{\bullet} of $P^{\bullet}(I_0)$, so $\hat{S}_i = \hat{P}_i / \operatorname{rad} \hat{P}_i$ is a simple *C*-module.

Proposition

a) $P^{\bullet}(I_0)$ is a tilting complex for A.

b) If I_0 is a G-subset of I, then E is a crossed product of C and G.

 S_i , $i \in I$ are the simple A-modules, P_i is a projective cover of S_i . I becomes a G-set via the action of G on simple A-modules. For a subset I_0 of I let $P^{\bullet}(I_0) = \bigoplus_{i \in I} P_i^{\bullet} = (\cdots \to 0 \to P^{-1} \xrightarrow{\delta_0} P^0 \to 0 \to \cdots).$ where, $\delta_0 = \bigoplus_{i \in I} \delta_i$, and for $i \in I_0$ $P_i^{\bullet} = (\cdots \to 0 \to R_i \xrightarrow{\delta_i} P_i \to 0 \to \cdots),$ with R_i in degree -1, P_i in degree 0, and $\delta_i : R_i \to P_i$ is a minimal right $\bigoplus_{i \in I_0} P_i$ -approximation of P_i , and for $i \notin I_0$, $P_i^{\bullet} = (\cdots \to 0 \to P_i \xrightarrow{\delta_i} 0 \to \cdots)$, with P_i in degree -1. Let $C := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(I_0))^{\operatorname{op}}$ and $E := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(I_0))^{\operatorname{op}}$. For $i \in I$, let \hat{P}_i be the indecomposable projective C-module corresponding to the indecomposable direct summand P_i^{\bullet} of $P^{\bullet}(I_0)$, so $\hat{S}_i = \hat{P}_i / \operatorname{rad} \hat{P}_i$ is a simple *C*-module.

Proposition

- a) $P^{\bullet}(I_0)$ is a tilting complex for A.
- b) If I_0 is a G-subset of I, then E is a crossed product of C and G.
- c) There is an isomorphism $\widehat{{}^{g}S_{i}} \simeq {}^{g}\hat{S}_{i}$ of *C*-modules.
Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B.

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{op})$ -approximation of M.

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{\mathrm{op}})$ -approximation of M. $A^{(1)} := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(M, I_0))^{\mathrm{op}}, R^{(1)} := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(M, I_0))^{\mathrm{op}}.$

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{\mathrm{op}})$ -approximation of M. $A^{(1)} := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(M, I_0))^{\mathrm{op}}, R^{(1)} := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(M, I_0))^{\mathrm{op}}.$ Regarded as a complex of A-modules, $P^{\bullet}(M, I_0))$ is a direct sum of complexes isomorphic to $P_i^{\bullet}, i \in I.$

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{\mathrm{op}})$ -approximation of M. $A^{(1)} := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(M, I_0))^{\mathrm{op}}, R^{(1)} := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(M, I_0))^{\mathrm{op}}.$ Regarded as a complex of A-modules, $P^{\bullet}(M, I_0)$ is a direct sum of complexes isomorphic to $P_i^{\bullet}, i \in I$. Let $S_i^{(1)}$ be a simple $A^{(1)}$ -modules corresponding to an indecomposable summand isomorphic to P_i^{\bullet} of $_AP^{\bullet}(M, I_0)$.

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{\mathrm{op}})$ -approximation of M. $A^{(1)} := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(M, I_0))^{\mathrm{op}}, R^{(1)} := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(M, I_0))^{\mathrm{op}}.$ Regarded as a complex of A-modules, $P^{\bullet}(M, I_0)$ is a direct sum of complexes isomorphic to $P_i^{\bullet}, i \in I$. Let $S_i^{(1)}$ be a simple $A^{(1)}$ -modules corresponding to an indecomposable summand isomorphic to P_i^{\bullet} of $_AP^{\bullet}(M, I_0)$.

Proposition

Assume that I_0 is a *G*-subset of *I*, and *M* is a $\Delta(R \otimes_k S^{op})$ -module.

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{\mathrm{op}})$ -approximation of M. $A^{(1)} := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(M, I_0))^{\mathrm{op}}, R^{(1)} := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(M, I_0))^{\mathrm{op}}.$ Regarded as a complex of A-modules, $P^{\bullet}(M, I_0)$ is a direct sum of complexes isomorphic to $P_i^{\bullet}, i \in I$. Let $S_i^{(1)}$ be a simple $A^{(1)}$ -modules corresponding to an indecomposable summand isomorphic to P_i^{\bullet} of $_AP^{\bullet}(M, I_0)$.

Proposition

Assume that I_0 is a G-subset of I, and M is a $\Delta(R \otimes_k S^{\mathrm{op}})$ -module.

9 $R^{(1)}$ is a G-graded crossed product, graded Morita equivalent to E.

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{\mathrm{op}})$ -approximation of M. $A^{(1)} := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(M, I_0))^{\mathrm{op}}, R^{(1)} := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(M, I_0))^{\mathrm{op}}.$ Regarded as a complex of A-modules, $P^{\bullet}(M, I_0)$ is a direct sum of complexes isomorphic to $P_i^{\bullet}, i \in I$. Let $S_i^{(1)}$ be a simple $A^{(1)}$ -modules corresponding to an indecomposable summand isomorphic to P_i^{\bullet} of $_AP^{\bullet}(M, I_0)$.

Proposition

Assume that I_0 is a *G*-subset of *I*, and *M* is a $\Delta(R \otimes_k S^{\mathrm{op}})$ -module.

- **9** $R^{(1)}$ is a G-graded crossed product, graded Morita equivalent to E.
- Or There is a G-graded algebra map S → R⁽¹⁾, and the (S, R⁽¹⁾)-bimodule R⁽¹⁾ induces a graded stable equivalence of Morita type between S and R⁽¹⁾.

Assume that the (A, B)-bimodule M induces a stable Morita equivalence between A and B. Consider the complex of (A, B)-bimodules $P^{\bullet}(M, I_0) = (\dots \rightarrow 0 \rightarrow P \xrightarrow{\delta} M \rightarrow 0 \rightarrow \dots),$ with P in degree -1 and M in degree 0, where $\delta : P \rightarrow M$ is a right minimal $((\bigoplus_{i \in I} P_i) \otimes_k B^{\mathrm{op}})$ -approximation of M. $A^{(1)} := \operatorname{End}_{\mathcal{H}(A)}(P^{\bullet}(M, I_0))^{\mathrm{op}}, R^{(1)} := \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A P^{\bullet}(M, I_0))^{\mathrm{op}}.$ Regarded as a complex of A-modules, $P^{\bullet}(M, I_0)$ is a direct sum of complexes isomorphic to $P_i^{\bullet}, i \in I$. Let $S_i^{(1)}$ be a simple $A^{(1)}$ -modules corresponding to an indecomposable summand isomorphic to P_i^{\bullet} of $_AP^{\bullet}(M, I_0)$.

Proposition

Assume that I_0 is a G-subset of I, and M is a $\Delta(R \otimes_k S^{\mathrm{op}})$ -module.

- **9** $R^{(1)}$ is a G-graded crossed product, graded Morita equivalent to E.
- Or There is a G-graded algebra map S → R⁽¹⁾, and the (S, R⁽¹⁾)-bimodule R⁽¹⁾ induces a graded stable equivalence of Morita type between S and R⁽¹⁾.

• There is an isomorphism of B-modules ${}_{B}S^{(1)}_{s_{i}} \simeq {}^{g}S^{(1)}_{i}$.

Graded version of Okuyama's method

Let $\{T_i \mid i \in I\}$ be a set of representatives for the isomorphism classes of simple *B*-modules.

Let $\{T_i \mid i \in I\}$ be a set of representatives for the isomorphism classes of simple *B*-modules.

Consider the A-modules $X_i = M \otimes_B T_i$, $i \in I$.

Let $\{T_i \mid i \in I\}$ be a set of representatives for the isomorphism classes of simple *B*-modules.

Consider the A-modules $X_i = M \otimes_B T_i$, $i \in I$.

If all X_i are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ -module, then R and S are graded Morita equivalent.

Let $\{T_i \mid i \in I\}$ be a set of representatives for the isomorphism classes of simple *B*-modules.

Consider the A-modules $X_i = M \otimes_B T_i$, $i \in I$.

If all X_i are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ -module, then R and S are graded Morita equivalent.

Otherwise, choose a subset I_0 of I and replace A by

 $A^{(1)} = \operatorname{End}_A(P^{\bullet}(M, I_0))^{\operatorname{op}}$ (which is Morita equivalent to $C = \operatorname{End}_A(P^{\bullet}(I_0))^{\operatorname{op}}$) and M by a $(B, A^{(1)})$ -bimodule $M^{(1)}$ inducing a

stable equivalence between B and $A^{(1)}$.

Let $\{T_i \mid i \in I\}$ be a set of representatives for the isomorphism classes of simple *B*-modules.

Consider the A-modules $X_i = M \otimes_B T_i$, $i \in I$.

If all X_i are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ -module, then R and S are graded Morita equivalent.

Otherwise, choose a subset I_0 of I and replace A by

 $A^{(1)} = \operatorname{End}_A(P^{\bullet}(M, I_0))^{\operatorname{op}}$ (which is Morita equivalent to

 $C = \text{End}_A(P^{\bullet}(I_0))^{\text{op}}$ and M by a $(B, A^{(1)})$ -bimodule $M^{(1)}$ inducing a stable equivalence between B and $A^{(1)}$.

If I_0 is a *G*-subset of *I*, then we have that $R^{(1)}$ is *G*-graded derived equivalent to *R*, and $M^{(1)}$ is a $\Delta(S \otimes_k R^{(1)^{\text{op}}})$ -module.

Let $\{T_i \mid i \in I\}$ be a set of representatives for the isomorphism classes of simple *B*-modules.

Consider the A-modules $X_i = M \otimes_B T_i$, $i \in I$.

If all X_i are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ -module, then R and S are graded Morita equivalent.

Otherwise, choose a subset I_0 of I and replace A by

 $A^{(1)} = \operatorname{End}_A(P^{\bullet}(M, I_0))^{\operatorname{op}}$ (which is Morita equivalent to

 $C = \text{End}_A(P^{\bullet}(I_0))^{\text{op}})$ and M by a $(B, A^{(1)})$ -bimodule $M^{(1)}$ inducing a stable equivalence between B and $A^{(1)}$.

If I_0 is a *G*-subset of *I*, then we have that $R^{(1)}$ is *G*-graded derived equivalent to *R*, and $M^{(1)}$ is a $\Delta(S \otimes_k R^{(1)^{\text{op}}})$ -module.

This procedure continues until a stage t when simple B-modules will correspond to simple $A^{(t)}$ -modules.

Let $\{T_i \mid i \in I\}$ be a set of representatives for the isomorphism classes of simple *B*-modules.

Consider the A-modules $X_i = M \otimes_B T_i$, $i \in I$.

If all X_i are simple A-modules, then by a theorem of Linckelmann, A and B are Morita equivalent, so if M is a Δ -module, then R and S are graded Morita equivalent.

Otherwise, choose a subset I_0 of I and replace A by

 $A^{(1)} = \operatorname{End}_A(P^{\bullet}(M, I_0))^{\operatorname{op}}$ (which is Morita equivalent to

 $C = \text{End}_A(P^{\bullet}(I_0))^{\text{op}}$ and M by a $(B, A^{(1)})$ -bimodule $M^{(1)}$ inducing a stable equivalence between B and $A^{(1)}$.

If I_0 is a *G*-subset of *I*, then we have that $R^{(1)}$ is *G*-graded derived equivalent to *R*, and $M^{(1)}$ is a $\Delta(S \otimes_k R^{(1)^{\text{op}}})$ -module.

This procedure continues until a stage t when simple B-modules will correspond to simple $A^{(t)}$ -modules.

The point is that the *G*-invariance of a set I_s of simple $A^{(s)}$ -modules can be established from the knowledge of the action of *G* on the simple *A*-modules.

Another method

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$. Let I_0 be a subset of *I*, $P = P(I_0) = \bigoplus_{i \in I_0} P_i \otimes_k Q_i^*$, and let $\delta = \delta(I_0) = \bigoplus_{i \in I_0} \delta_i : P \to M$.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$. Let I_0 be a subset of $I, P = P(I_0) = \bigoplus_{i \in I_0} P_i \otimes_k Q_i^*$, and let $\delta = \delta(I_0) = \bigoplus_{i \in I_0} \delta_i : P \to M$. Let $_AM_B^{\bullet} = M^{\bullet}(I_0) = (\dots \to 0 \to P \xrightarrow{\delta} M \to 0 \to \dots)$, with *M* in degree 0. $_AM^{\bullet}$ is a tilting complex iff a certain condition is satisfied.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$. Let I_0 be a subset of $I, P = P(I_0) = \bigoplus_{i \in I_0} P_i \otimes_k Q_i^*$, and let $\delta = \delta(I_0) = \bigoplus_{i \in I_0} \delta_i : P \to M$. Let ${}_AM^{\bullet}_B = M^{\bullet}(I_0) = (\dots \to 0 \to P \xrightarrow{\delta} M \to 0 \to \dots)$, with *M* in degree 0. ${}_AM^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C = \operatorname{End}_{\mathcal{H}(A)}(M^{\bullet}(I_0))^{\operatorname{op}}$ and $E = \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A M^{\bullet}(I_0))^{\operatorname{op}}$.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$. Let I_0 be a subset of $I, P = P(I_0) = \bigoplus_{i \in I_0} P_i \otimes_k Q_i^*$, and let $\delta = \delta(I_0) = \bigoplus_{i \in I_0} \delta_i : P \to M$. Let ${}_AM^{\bullet}_B = M^{\bullet}(I_0) = (\dots \to 0 \to P \xrightarrow{\delta} M \to 0 \to \dots)$, with *M* in degree 0. ${}_AM^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C = \operatorname{End}_{\mathcal{H}(A)}(M^{\bullet}(I_0))^{\operatorname{op}}$ and $E = \operatorname{End}_{\mathcal{H}(B)}(R \otimes_A M^{\bullet}(I_0))^{\operatorname{op}}$.

Proposition

Assume that $_AM^{\bullet}$ tilting complex, $M \bigtriangleup$ -module, I_0 G-subset of I. Then

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$. Let I_0 be a subset of $I, P = P(I_0) = \bigoplus_{i \in I_0} P_i \otimes_k Q_i^*$, and let $\delta = \delta(I_0) = \bigoplus_{i \in I_0} \delta_i : P \to M$. Let ${}_AM^{\bullet}_B = M^{\bullet}(I_0) = (\dots \to 0 \to P \xrightarrow{\delta} M \to 0 \to \dots)$, with *M* in degree 0. ${}_AM^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C = \operatorname{End}_{\mathcal{H}(A)}(M^{\bullet}(I_0))^{\operatorname{op}}$ and $E = \operatorname{End}_{\mathcal{H}(B)}(R \otimes_A M^{\bullet}(I_0))^{\operatorname{op}}$.

Proposition

Assume that $_AM^{\bullet}$ tilting complex, $M \bigtriangleup$ -module, I_0 G-subset of I. Then

• M^{\bullet} extends to a complex of Δ -modules.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$. Let I_0 be a subset of $I, P = P(I_0) = \bigoplus_{i \in I_0} P_i \otimes_k Q_i^*$, and let $\delta = \delta(I_0) = \bigoplus_{i \in I_0} \delta_i : P \to M$. Let ${}_AM^{\bullet}_B = M^{\bullet}(I_0) = (\dots \to 0 \to P \xrightarrow{\delta} M \to 0 \to \dots)$, with *M* in degree 0. ${}_AM^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C = \operatorname{End}_{\mathcal{H}(A)}(M^{\bullet}(I_0))^{\operatorname{op}}$ and $E = \operatorname{End}_{\mathcal{H}(B)}(R \otimes_A M^{\bullet}(I_0))^{\operatorname{op}}$.

Proposition

Assume that $_AM^{\bullet}$ tilting complex, $M \Delta$ -module, I_0 G-subset of I. Then

- M^{\bullet} extends to a complex of Δ -modules.
- E is a crossed product, and there is a G-graded stable Morita equivalence between E and S.

Another method

I is a *G*-set via the action on the set $\{T_i \mid i \in I\}$ of simple *B*-modules. Let $\tau_i : Q_i \to T_i$ and $\pi_i : P_i \to M \otimes_B T_i$ be projective covers. A projective cover of *M* has the form $\bigoplus_{i \in I} \delta_i : \bigoplus_{i \in I} P_i \otimes_k Q_i^* \to M$. Let I_0 be a subset of $I, P = P(I_0) = \bigoplus_{i \in I_0} P_i \otimes_k Q_i^*$, and let $\delta = \delta(I_0) = \bigoplus_{i \in I_0} \delta_i : P \to M$. Let ${}_AM^{\bullet}_B = M^{\bullet}(I_0) = (\dots \to 0 \to P \xrightarrow{\delta} M \to 0 \to \dots)$, with *M* in degree 0. ${}_AM^{\bullet}$ is a tilting complex iff a certain condition is satisfied. Denote $C = \operatorname{End}_{\mathcal{H}(A)}(M^{\bullet}(I_0))^{\operatorname{op}}$ and $E = \operatorname{End}_{\mathcal{H}(R)}(R \otimes_A M^{\bullet}(I_0))^{\operatorname{op}}$.

Proposition

Assume that $_AM^{\bullet}$ tilting complex, $M \Delta$ -module, I_0 G-subset of I. Then

- M^{\bullet} extends to a complex of Δ -modules.
- E is a crossed product, and there is a G-graded stable Morita equivalence between E and S.
- One of the second second

k is algebraically closed, A is finite-dimensional.

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in D^b(A \text{-mod})$ corresponding to simple *B*-modules satisfy:

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A \text{-mod})$ corresponding to simple *B*-modules satisfy: (a) Hom $(X_i, X_j[m]) = 0$ for m < 0.

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A\text{-mod})$ corresponding to simple *B*-modules satisfy: (a) Hom $(X_i, X_j[m]) = 0$ for m < 0. (b) Hom $(X_i, X_j) = k$ if i = j and 0 otherwise.

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A \text{-mod})$ corresponding to simple *B*-modules satisfy: (a) $\text{Hom}(X_i, X_j[m]) = 0$ for m < 0. (b) $\text{Hom}(X_i, X_j) = k$ if i = j and 0 otherwise. (c) X_i , $i \in I$ generate $\mathcal{D}^b(A \text{-mod})$ as a triangulated category.

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A\operatorname{-mod})$ corresponding to simple *B*-modules satisfy: (a) $\operatorname{Hom}(X_i, X_j[m]) = 0$ for m < 0. (b) $\operatorname{Hom}(X_i, X_j) = k$ if i = j and 0 otherwise. (c) X_i , $i \in I$ generate $\mathcal{D}^b(A\operatorname{-mod})$ as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_i \in \mathcal{D}^b(A\text{-mod})$, $i \in I$, be objects satisfying (a), (b), (c).

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A\operatorname{-mod})$ corresponding to simple *B*-modules satisfy: (a) $\operatorname{Hom}(X_i, X_j[m]) = 0$ for m < 0. (b) $\operatorname{Hom}(X_i, X_j) = k$ if i = j and 0 otherwise. (c) X_i , $i \in I$ generate $\mathcal{D}^b(A\operatorname{-mod})$ as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_i \in \mathcal{D}^b(A \text{-mod})$, $i \in I$, be objects satisfying (a), (b), (c). Assume that X_i satisfy the additional condition (d) $R_g \otimes_A X_i \simeq X_{\mathfrak{s}_i}$ in $\mathcal{D}^b(A \text{-mod})$, for all $i \in I$ and $g \in G$.

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A \text{-mod})$ corresponding to simple *B*-modules satisfy: (a) $\text{Hom}(X_i, X_j[m]) = 0$ for m < 0. (b) $\text{Hom}(X_i, X_j) = k$ if i = j and 0 otherwise. (c) X_i , $i \in I$ generate $\mathcal{D}^b(A \text{-mod})$ as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_i \in D^b(A \text{-mod})$, $i \in I$, be objects satisfying (a), (b), (c). Assume that X_i satisfy the additional condition (d) $R_g \otimes_A X_i \simeq X_{s_i}$ in $D^b(A \text{-mod})$, for all $i \in I$ and $g \in G$. Then there is another symmetric crossed product R' of A' and G, and a G-graded derived equivalence between R and R', whose restriction to Asends X_i , $i \in I$, to the simple A'-modules.
Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A \text{-mod})$ corresponding to simple *B*-modules satisfy: (a) $\text{Hom}(X_i, X_j[m]) = 0$ for m < 0. (b) $\text{Hom}(X_i, X_j) = k$ if i = j and 0 otherwise. (c) X_i , $i \in I$ generate $\mathcal{D}^b(A \text{-mod})$ as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_i \in D^b(A \text{-mod})$, $i \in I$, be objects satisfying (a), (b), (c). Assume that X_i satisfy the additional condition (d) $R_g \otimes_A X_i \simeq X_{s_i}$ in $D^b(A \text{-mod})$, for all $i \in I$ and $g \in G$. Then there is another symmetric crossed product R' of A' and G, and a G-graded derived equivalence between R and R', whose restriction to Asends X_i , $i \in I$, to the simple A'-modules.

Corollary

Let $_RM_S$ be inducing a G-graded Morita stable equivalence.

Extending Rickard's construction

k is algebraically closed, A is finite-dimensional.

Under a derived equivalence, the objects $X_i \in \mathcal{D}^b(A\operatorname{-mod})$ corresponding to simple *B*-modules satisfy: (a) $\operatorname{Hom}(X_i, X_j[m]) = 0$ for m < 0. (b) $\operatorname{Hom}(X_i, X_j) = k$ if i = j and 0 otherwise. (c) X_i , $i \in I$ generate $\mathcal{D}^b(A\operatorname{-mod})$ as a triangulated category.

Theorem

Let I be a finite G-set, and let $X_i \in D^b(A \text{-mod})$, $i \in I$, be objects satisfying (a), (b), (c). Assume that X_i satisfy the additional condition (d) $R_g \otimes_A X_i \simeq X_{s_i}$ in $D^b(A \text{-mod})$, for all $i \in I$ and $g \in G$. Then there is another symmetric crossed product R' of A' and G, and a G-graded derived equivalence between R and R', whose restriction to Asends X_i , $i \in I$, to the simple A'-modules.

Corollary

Let $_{R}M_{S}$ be inducing a G-graded Morita stable equivalence. If in addition X_{i} is stably isomorphic to $M_{1} \otimes_{B} T_{i}$, for all $i \in I$, then there is a G-graded derived equivalence between R and S.

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group.

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_R C_S^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_RC_5^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$.

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_R C_S^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$. Then there is a complex X of G-graded (R, S)-bimodules such that:

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_RC_5^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$. Then there is a complex X of G-graded (R, S)-bimodules such that: 1) The image of X_1 in Δ -stmod $\simeq \mathcal{D}^b(\Delta$ -mod)/ $\mathcal{H}^b(\Delta$ -proj) is C_1 ;

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_RC_5^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$. Then there is a complex X of G-graded (R, S)-bimodules such that: 1) The image of X_1 in Δ -stmod $\simeq \mathcal{D}^b(\Delta$ -mod)/ $\mathcal{H}^b(\Delta$ -proj) is C_1 ; 2) X induces a splendid derived equivalence between R and S;

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_RC_5^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$. Then there is a complex X of G-graded (R, S)-bimodules such that: 1) The image of X_1 in Δ -stmod $\simeq \mathcal{D}^b(\Delta$ -mod)/ $\mathcal{H}^b(\Delta$ -proj) is C_1 ; 2) X induces a splendid derived equivalence between R and S; 3) $X_1 \otimes_B T_i \simeq X_i$ in $\mathcal{D}^b(A$ -mod), for all $i \in I$.

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_RC_S^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$. Then there is a complex X of G-graded (R, S)-bimodules such that: 1) The image of X_1 in Δ -stmod $\simeq \mathcal{D}^b(\Delta$ -mod)/ $\mathcal{H}^b(\Delta$ -proj) is C_1 ; 2) X induces a splendid derived equivalence between R and S; 3) $X_1 \otimes_B T_i \simeq X_i$ in $\mathcal{D}^b(A$ -mod), for all $i \in I$.

Example

a) T.I. situation: take $M_1 := {}_A A_B$ and $M = {}_R R_S$.

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_RC_S^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$. Then there is a complex X of G-graded (R, S)-bimodules such that: 1) The image of X_1 in Δ -stmod $\simeq \mathcal{D}^b(\Delta$ -mod)/ $\mathcal{H}^b(\Delta$ -proj) is C_1 ; 2) X induces a splendid derived equivalence between R and S; 3) $X_1 \otimes_B T_i \simeq X_i$ in $\mathcal{D}^b(A$ -mod), for all $i \in I$.

Example

a) T.I. situation: take $M_1 := {}_A A_B$ and $M = {}_R R_S$.

b) Let D elementary abelian of order p^2 , b the principal block of $\mathcal{O}K$. Then there is a splendid complex of (A, B)-bimodules inducing a stable equivalence (Rouquier).

Let S = kHb, B = kKb, $R = kN_H(D)c$, $A = N_K(D)$, $H' = N_H(D)$, $K' = N_K(D)$, and assume that G = H/K is a p'-group. $_RC_S^{\bullet}$ is *splendid*, if the indecomposable summands of C^i are $\delta(D)$ -projective p-permutation $k(H' \times H)$ -modules.

Corollary

Assume that C induces a G-graded splendid stable equivalence, and X_i is stably isomorphic to $C_1 \otimes_B T_i$ for all $i \in I$. Then there is a complex X of G-graded (R, S)-bimodules such that: 1) The image of X_1 in Δ -stmod $\simeq \mathcal{D}^b(\Delta$ -mod)/ $\mathcal{H}^b(\Delta$ -proj) is C_1 ; 2) X induces a splendid derived equivalence between R and S; 3) $X_1 \otimes_B T_i \simeq X_i$ in $\mathcal{D}^b(A$ -mod), for all $i \in I$.

Example

a) T.I. situation: take $M_1 := {}_A A_B$ and $M = {}_R R_S$.

b) Let *D* elementary abelian of order p^2 , *b* the principal block of \mathcal{OK} . Then there is a splendid complex of (A, B)-bimodules inducing a stable equivalence (Rouquier). This applies to the examples considered by M. Holloway (5-blocks of 2.*J*₂, *U*₃(4) and Sp₄(4)), and Y. Usami and N. Yoshida (principal 5-blocks of $G_2(2^n)$, $5 \mid 2^n + 1$, $25 \nmid 2^n + 1$).

 $C_n = \langle \sigma \rangle$ the cyclic group of order *n*, $(\mathcal{K}, \mathcal{O}, k)$ be a *p*-modular system, $p \nmid n$, \mathcal{K} contains a primitive *n*-th root ϵ of unity.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n .

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

Let $R = \bigoplus_{g \in C_n} R_g$ be a C_n -graded \mathcal{O} -algebra.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

Let $R = \bigoplus_{g \in C_n} R_g$ be a C_n -graded \mathcal{O} -algebra. \hat{C}_n acts on R by $\hat{\rho}r_g = \hat{\rho}(g)r_g$. $R_{\sigma^j} = \{r \in R \mid \hat{\sigma}r = e^jr\}$, for $j = 0, \dots, n-1$.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

Let $R = \bigoplus_{g \in C_n} R_g$ be a C_n -graded \mathcal{O} -algebra. \hat{C}_n acts on R by $\hat{\rho}r_g = \hat{\rho}(g)r_g$. $R_{\sigma^j} = \{r \in R \mid \hat{\sigma}r = \epsilon^j r\}$, for $j = 0, \dots, n-1$. Let $R * \hat{C}_n := \{r\hat{\rho} \mid r \in R, \ \hat{\rho} \in \hat{C}_n\}$.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

Let
$$R = \bigoplus_{g \in C_n} R_g$$
 be a C_n -graded \mathcal{O} -algebra.
 \hat{C}_n acts on R by $\hat{\rho}r_g = \hat{\rho}(g)r_g$. $R_{\sigma^j} = \{r \in R \mid \hat{\sigma}r = \epsilon^j r\}$, for
 $j = 0, \dots, n-1$. Let $R * \hat{C}_n := \{r\hat{\rho} \mid r \in R, \ \hat{\rho} \in \hat{C}_n\}$.

Proposition

The category R-Gr of C_n -graded R-modules is isomorphic to $R * \hat{C}_n$ -Mod.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

Let
$$R = \bigoplus_{g \in C_n} R_g$$
 be a C_n -graded \mathcal{O} -algebra.
 \hat{C}_n acts on R by $\hat{\rho}r_g = \hat{\rho}(g)r_g$. $R_{\sigma^j} = \{r \in R \mid \hat{\sigma}r = \epsilon^j r\}$, for
 $j = 0, \dots, n-1$. Let $R * \hat{C}_n := \{r\hat{\rho} \mid r \in R, \ \hat{\rho} \in \hat{C}_n\}$.

Proposition

The category R-Gr of C_n -graded R-modules is isomorphic to $R * \hat{C}_n$ -Mod.

Let R and S be two C_n -graded \mathcal{O} -algebras. Then \hat{C}_n acts on $R \otimes_{\mathcal{O}} S^{\mathrm{op}}$ diagonally, by ${}^{\hat{\rho}}(r \otimes s) = {}^{\hat{\rho}}r \otimes {}^{\hat{\rho}^{-1}}s$.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

Let
$$R = \bigoplus_{g \in C_n} R_g$$
 be a C_n -graded \mathcal{O} -algebra.
 \hat{C}_n acts on R by $\hat{\rho}r_g = \hat{\rho}(g)r_g$. $R_{\sigma^j} = \{r \in R \mid \hat{\sigma}r = \epsilon^j r\}$, for
 $j = 0, \dots, n-1$. Let $R * \hat{C}_n := \{r\hat{\rho} \mid r \in R, \ \hat{\rho} \in \hat{C}_n\}$.

Proposition

The category R-Gr of C_n -graded R-modules is isomorphic to $R * \hat{C}_n$ -Mod.

Let *R* and *S* be two C_n -graded \mathcal{O} -algebras. Then \hat{C}_n acts on $R \otimes_{\mathcal{O}} S^{\mathrm{op}}$ diagonally, by $\hat{\rho}(r \otimes s) = \hat{\rho}r \otimes \hat{\rho}^{-1}s$. The category *R*-Gr-*S* of C_n -graded (R, S)-bimodules is isomorphic to $(R \otimes_{\mathcal{O}} S^{\mathrm{op}}) * \hat{C}_n$ -Mod.

 $C_n = \langle \sigma \rangle$ the cyclic group of order n, $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system, $p \nmid n$, \mathcal{K} contains a primitive n-th root ϵ of unity. The group $\hat{C}_n := \operatorname{Hom}(C_n, \mathcal{K}^{\times})$ is isomorphic to C_n . $\hat{C}_n = \langle \hat{\sigma} \rangle$, where $\hat{\sigma}(\sigma) = \epsilon$.

Let
$$R = \bigoplus_{g \in C_n} R_g$$
 be a C_n -graded \mathcal{O} -algebra.
 \hat{C}_n acts on R by $\hat{\rho}r_g = \hat{\rho}(g)r_g$. $R_{\sigma^j} = \{r \in R \mid \hat{\sigma}r = \epsilon^j r\}$, for
 $j = 0, \dots, n-1$. Let $R * \hat{C}_n := \{r\hat{\rho} \mid r \in R, \ \hat{\rho} \in \hat{C}_n\}$.

Proposition

The category R-Gr of C_n -graded R-modules is isomorphic to $R * \hat{C}_n$ -Mod.

Let R and S be two C_n -graded \mathcal{O} -algebras. Then \hat{C}_n acts on $R \otimes_{\mathcal{O}} S^{\text{op}}$ diagonally, by $\hat{\rho}(r \otimes s) = \hat{\rho}r \otimes \hat{\rho}^{-1}s$. The category R-Gr-S of C_n -graded (R, S)-bimodules is isomorphic to $(R \otimes_{\mathcal{O}} S^{\text{op}}) * \hat{C}_n$ -Mod. If M is an (R, S)-bimodule and $\hat{\rho} \in \hat{C}_n$, then the $\hat{\rho}$ -th conjugate $\hat{\rho}M$ of Mis defined by $\hat{\rho}M = (R \otimes_{\mathcal{O}} S^{\text{op}})\hat{\rho} \otimes_{R \otimes_{\mathcal{O}} S^{\text{op}}} M$.

Let $G^+ \trianglelefteq G$, with $G/G^+ \simeq C_n$.

Let $G^+ \trianglelefteq G$, with $G/G^+ \simeq C_n$. Let *b* be a block of $\mathcal{O}G$ with defect group $D \le G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$.

Let $G^+ \subseteq G$, with $G/G^+ \simeq C_n$. Let *b* be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of *b*.

Let $G^+ \subseteq G$, with $G/G^+ \simeq C_n$. Let *b* be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of *b*. If *e* is a block of $\mathcal{O}G^+$ covered by *b*, then the Brauer correspondent $f \in \mathcal{O}H^+$ of *e* is covered by *c* (Harris-Knörr).

Let $G^+ \subseteq G$, with $G/G^+ \simeq C_n$. Let *b* be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of *b*. If *e* is a block of $\mathcal{O}G^+$ covered by *b*, then the Brauer correspondent $f \in \mathcal{O}H^+$ of *e* is covered by *c* (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$.

Let $G^+ \trianglelefteq G$, with $G/G^+ \simeq C_n$. Let *b* be a block of $\mathcal{O}G$ with defect group $D \le G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of *b*. If *e* is a block of $\mathcal{O}G^+$ covered by *b*, then the Brauer correspondent $f \in \mathcal{O}H^+$ of *e* is covered by *c* (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$. C_n acts by conjugation of the blocks of $\mathcal{O}G^+$ and $\mathcal{O}H^+$. The Brauer correspondent of ^g *e* is ^g *f*.

Let $G^+ riangleq G$, with $G/G^+ \simeq C_n$. Let b be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of b. If e is a block of $\mathcal{O}G^+$ covered by b, then the Brauer correspondent $f \in \mathcal{O}H^+$ of e is covered by c (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$. C_n acts by conjugation of the blocks of $\mathcal{O}G^+$ and $\mathcal{O}H^+$. The Brauer correspondent of ${}^g e$ is ${}^g f$. Consider the central idempotent $b^+ = \sum_{\hat{\rho} \in [\hat{C}_n/\hat{C}_{n,b}]} \hat{\rho}b = \sum_{g \in [C_n/C_{n,e}]} {}^g e$ of $\mathcal{O}G^+$.

Let $G^+ riangleq G$, with $G/G^+ \simeq C_n$. Let b be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of b. If e is a block of $\mathcal{O}G^+$ covered by b, then the Brauer correspondent $f \in \mathcal{O}H^+$ of e is covered by c (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$. C_n acts by conjugation of the blocks of $\mathcal{O}G^+$ and $\mathcal{O}H^+$. The Brauer correspondent of ${}^g e$ is ${}^g f$. Consider the central idempotent $b^+ = \sum_{\hat{\rho} \in [\hat{C}_n/\hat{C}_n, p]} \hat{\rho}b = \sum_{g \in [C_n/C_n, p]} {}^g e$

of $\mathcal{O}G^+$. Let c^+ be the similarly defined central idempotent of $\mathcal{O}H^+$.

Let $G^+ \subseteq G$, with $G/G^+ \simeq C_n$. Let *b* be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of *b*. If *e* is a block of $\mathcal{O}G^+$ covered by *b*, then the Brauer correspondent $f \in \mathcal{O}H^+$ of *e* is covered by *c* (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$. C_n acts by conjugation of the blocks of $\mathcal{O}G^+$ and $\mathcal{O}H^+$. The Brauer correspondent of ge is gf . Consider the central idempotent $b^+ = \sum_{\hat{\rho} \in [\hat{C}_n/\hat{C}_{n,b}]} \hat{\rho}b = \sum_{g \in [C_n/C_{n,e}]} {}^ge$ of $\mathcal{O}G^+$. Let c^+ be the similarly defined central idempotent of $\mathcal{O}H^+$. Consider the strongly C_n -graded algebras $R = b^+\mathcal{O}G = \mathcal{O}Ge\mathcal{O}G$ and $S = c^+\mathcal{O}H = \mathcal{O}He\mathcal{O}H$.

Let $G^+ \triangleleft G$, with $G/G^+ \simeq C_n$. Let b be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of b. If e is a block of $\mathcal{O}G^+$ covered by b, then the Brauer correspondent $f \in \mathcal{O}H^+$ of *e* is covered by *c* (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$. C_n acts by conjugation of the blocks of $\mathcal{O}G^+$ and $\mathcal{O}H^+$. The Brauer correspondent of ge is gf. Consider the central idempotent $b^+ = \sum_{\hat{\rho} \in [\hat{C}_n/\hat{C}_{n,b}]} \hat{\rho} b = \sum_{g \in [C_n/\hat{C}_{n,c}]} g e$ of $\mathcal{O}G^+$. Let c^+ be the similarly defined central idempotent of $\mathcal{O}H^+$. Consider the strongly C_n -graded algebras $R = b^+ \mathcal{O}G = \mathcal{O}Ge\mathcal{O}G$ and $S = c^+ \mathcal{O}H = \mathcal{O}He\mathcal{O}H$. R is Morita equivalent to $e\mathcal{O}Ge$ and S is Morita equivalent to fOHf.

Let $G^+ \triangleleft G$, with $G/G^+ \simeq C_n$. Let b be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of b. If e is a block of $\mathcal{O}G^+$ covered by b, then the Brauer correspondent $f \in \mathcal{O}H^+$ of *e* is covered by *c* (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$. C_n acts by conjugation of the blocks of $\mathcal{O}G^+$ and $\mathcal{O}H^+$. The Brauer correspondent of ge is gf. Consider the central idempotent $b^+ = \sum_{\hat{\rho} \in [\hat{C}_n/\hat{C}_{n,b}]} \hat{\rho} b = \sum_{g \in [C_n/\hat{C}_{n,c}]} g e$ of $\mathcal{O}G^+$. Let c^+ be the similarly defined central idempotent of $\mathcal{O}H^+$. Consider the strongly C_n -graded algebras $R = b^+ \mathcal{O}G = \mathcal{O}Ge\mathcal{O}G$ and $S = c^+ \mathcal{O}H = \mathcal{O}He\mathcal{O}H$. R is Morita equivalent to $e\mathcal{O}Ge$ and S is Morita equivalent to fOHf.

Theorem

Let X be a complex of $(b\mathcal{O}G, c\mathcal{O}H)$ -bimodules inducing a Rickard equivalence between $b\mathcal{O}G$ and $c\mathcal{O}H$, and consider the complex $Y = \bigoplus_{\hat{\rho} \in [\hat{C}_n/\hat{C}_{n,b}]} \hat{\rho}X$ of (R, S)-bimodules.

Let $G^+ \triangleleft G$, with $G/G^+ \simeq C_n$. Let b be a block of $\mathcal{O}G$ with defect group $D \leq G^+$, $H = N_G(D)$, $H^+ = N_{G^+}(D)$. Let $c \in \mathcal{O}H$ be the Brauer correspondent of b. If e is a block of $\mathcal{O}G^+$ covered by b, then the Brauer correspondent $f \in \mathcal{O}H^+$ of *e* is covered by *c* (Harris-Knörr). \hat{C}_n acts on on the blocks of $\mathcal{O}G$ and $\mathcal{O}H$. The Brauer correspondent of $\hat{\rho}b$ is $\hat{\rho}c$. C_n acts by conjugation of the blocks of $\mathcal{O}G^+$ and $\mathcal{O}H^+$. The Brauer correspondent of ge is gf. Consider the central idempotent $b^+ = \sum_{\hat{\rho} \in [\hat{C}_n/\hat{C}_{n,b}]} \hat{\rho} b = \sum_{g \in [C_n/\hat{C}_{n,c}]} g e$ of $\mathcal{O}G^+$. Let c^+ be the similarly defined central idempotent of $\mathcal{O}H^+$. Consider the strongly C_n -graded algebras $R = b^+ \mathcal{O}G = \mathcal{O}Ge\mathcal{O}G$ and $S = c^+ \mathcal{O}H = \mathcal{O}He\mathcal{O}H$. R is Morita equivalent to $e\mathcal{O}Ge$ and S is Morita equivalent to fOHf.

Theorem

Let X be a complex of $(b\mathcal{O}G, c\mathcal{O}H)$ -bimodules inducing a Rickard equivalence between $b\mathcal{O}G$ and $c\mathcal{O}H$, and consider the complex $Y = \bigoplus_{\hat{\rho} \in [\hat{C}_n/\hat{C}_{n,b}]} {}^{\hat{\rho}}X$ of (R, S)-bimodules. If $\hat{\rho}Y \simeq Y$ as complexes of (R, S)-bimodules for all $\hat{\rho} \in \hat{C}_n$, then the block algebras $e\mathcal{O}G^+$ and $f\mathcal{O}H^+$ are Rickard equivalent.

Blocks of symmetric and alternating groups
We only need to consider the case p > 2.

We only need to consider the case p > 2. Indeed, if p = 2, then $D \simeq C_2 \times C_2$. In this case Broué's conjecture holds (Rouquier).

We only need to consider the case p > 2. Indeed, if p = 2, then $D \simeq C_2 \times C_2$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let p > 2, $G = S_n$, $G^+ = A_n$, $\tilde{G} = Aut(G^+)$, b^+ a block of $\mathcal{O}G^+$ with nontrivial abelian defect group D, $H^+ = N_{G^+}(D)$, and $c^+ \in \mathcal{O}H^+$ the Brauer correspondent of b^+ .

We only need to consider the case p > 2. Indeed, if p = 2, then $D \simeq C_2 \times C_2$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let p > 2, $G = S_n$, $G^+ = A_n$, $\tilde{G} = Aut(G^+)$, b^+ a block of $\mathcal{O}G^+$ with nontrivial abelian defect group D, $H^+ = N_{G^+}(D)$, and $c^+ \in \mathcal{O}H^+$ the Brauer correspondent of b^+ . Then there exists a splendid tilting complex of \tilde{G}/G^+ -graded $(b^+\mathcal{O}\tilde{G}, c^+\mathcal{O}\tilde{H})$ -bimodules.

We only need to consider the case p > 2. Indeed, if p = 2, then $D \simeq C_2 \times C_2$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let p > 2, $G = S_n$, $G^+ = A_n$, $\tilde{G} = Aut(G^+)$, b^+ a block of $\mathcal{O}G^+$ with nontrivial abelian defect group D, $H^+ = N_{G^+}(D)$, and $c^+ \in \mathcal{O}H^+$ the Brauer correspondent of b^+ . Then there exists a splendid tilting complex of \tilde{G}/G^+ -graded $(b^+\mathcal{O}\tilde{G}, c^+\mathcal{O}\tilde{H})$ -bimodules.

We use that the conjecture is known to hold for the symmetric group S_n by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_n , by using the above techniques.

We only need to consider the case p > 2. Indeed, if p = 2, then $D \simeq C_2 \times C_2$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let p > 2, $G = S_n$, $G^+ = A_n$, $\tilde{G} = Aut(G^+)$, b^+ a block of $\mathcal{O}G^+$ with nontrivial abelian defect group D, $H^+ = N_{G^+}(D)$, and $c^+ \in \mathcal{O}H^+$ the Brauer correspondent of b^+ . Then there exists a splendid tilting complex of \tilde{G}/G^+ -graded $(b^+\mathcal{O}\tilde{G}, c^+\mathcal{O}\tilde{H})$ -bimodules.

We use that the conjecture is known to hold for the symmetric group S_n by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_n , by using the above techniques. Related results:

We only need to consider the case p > 2. Indeed, if p = 2, then $D \simeq C_2 \times C_2$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let p > 2, $G = S_n$, $G^+ = A_n$, $\tilde{G} = Aut(G^+)$, b^+ a block of $\mathcal{O}G^+$ with nontrivial abelian defect group D, $H^+ = N_{G^+}(D)$, and $c^+ \in \mathcal{O}H^+$ the Brauer correspondent of b^+ . Then there exists a splendid tilting complex of \tilde{G}/G^+ -graded $(b^+\mathcal{O}\tilde{G}, c^+\mathcal{O}\tilde{H})$ -bimodules.

We use that the conjecture is known to hold for the symmetric group S_n by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_n , by using the above techniques. Related results:

• P. Fong and M. Harris, verified the weaker "isotypy form" of the conjecture for A_n , by using Rouquier's result on S_n .

We only need to consider the case p > 2. Indeed, if p = 2, then $D \simeq C_2 \times C_2$. In this case Broué's conjecture holds (Rouquier).

Theorem

Let p > 2, $G = S_n$, $G^+ = A_n$, $\tilde{G} = \operatorname{Aut}(G^+)$, b^+ a block of $\mathcal{O}G^+$ with nontrivial abelian defect group D, $H^+ = N_{G^+}(D)$, and $c^+ \in \mathcal{O}H^+$ the Brauer correspondent of b^+ . Then there exists a splendid tilting complex of \tilde{G}/G^+ -graded $(b^+\mathcal{O}\tilde{G}, c^+\mathcal{O}\tilde{H})$ -bimodules.

We use that the conjecture is known to hold for the symmetric group S_n by the work of J. Rickard, J. Chuang, R. Kessar and R. Rouquier, and we show how to "go down" to A_n , by using the above techniques. Related results:

- P. Fong and M. Harris, verified the weaker "isotypy form" of the conjecture for A_n , by using Rouquier's result on S_n .
- A similar procedure was developed by E. Dade leading to the verification of his Invariant Projective Conjecture for A_n.

References

Holloway, M., Broué's conjecture for the Hall-Janko group and its double cover, Proc. London Math. Soc. (3) 86 (2003), 109-130.

- Marcus, A., Broué's abelian defect group conjecture for alternating groups, Proc. Amer. Math. Soc. 132 (2004), No. 1, 7-14.
- Marcus, A., Tilting complexes for group graded algebras II, Osaka J. Math. 42 (2005), 453-462.
- Okuyama, T., Remarks on splendid tilting complexes, RIMS Kokyuroku, Kyoto Univ. 1149 (2000), 53-59.
- Okuyama, T., Derived equivalence in SL(2, q), preprint, 2000.
- Rickard, J., Equivalences of derived categories for symmetric algebras, J. Algebra 257 (2002), 460-481.

Rouquier, R., Block theory via stable and Rickard equivalences. Modular representation theory of finite groups (Charlottesville, VA, 1998), de Gruyter, Berlin 2001, 101-146.