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Abstract. Starting with P -interior algebras, where P is a finite p-group, we prove two theorems
establishing certain group graded Morita equivalences. These apply, in particular, to the case of
blocks with normal defect groups, and defect zero blocks of normal subgroups, respectively.

1. Introduction

This paper is motivated by several results on the existence of Morita equivalences in the context
of the Glauberman-Watanabe correspondence (see [10], [9], [7], [25], [21] and the references given
there). In order to explain this, let (K,O, k) be a p-modular system, let G be a finite group and
let A a solvable finite group acting on G such that G and A have coprime order. Let b be an
A-invariant block of OG. Under some additional conditions, there exists a Morita equivalence
between bOG and w(b)OGA induced by a (bOG,w(b)OGA)-bimodule M with the property that
regarded as a G×GA-module, M has a source which is an endopermutation module. Moreover,
when we have a splitting p-modular system, this Morita equivalence induces a bijection

π(G,A) : IrrK(G, b) → IrrK(G
A, w(b)),

which coincides with the Glauberman correspondence, where the block w(b) of OGA is the
Watanabe correspondent of b (see [24]).

By induction, the problem of finding such a Morita equivalence is reduced to the case when we
have blocks lying over a block of a normal p′-subgroup of G, actually of Op′(G). More generally,
instead of a normal p′-subgroup, it is usefuel to consider blocks of defect zero of a normal subgroup
(see [8]).

In this paper, we consider an even more general situation. We start with a strongly G-graded
P -interior O-algebra R whose identity component R1 is an O-simple algebra, where we assume
that the p-group P is also a normal subgroup of G. Then the identity of R1 has a defect group
Q isomorphic to P , and the second G-graded algebra R′ is constructed as a crossed product
between the Brauer quotient R′

1 := R1(Q) and G. Theorem 4.7 below establishes a G-graded
Morita equivalence over k between k ⊗O R and R′. This generalizes the main result of Dade [2,
(6)] on correspondences above the Glauberman correspondence. On this subject, we also refer to
Turull [23] and Ladisch [13]), but our approach is more in the spirit of [2] and [3], by systematical
use of Clifford extensions.

Our proof of Theorem 4.7 is inspired by the proof of [5, Theorem 3.4], and therefore, our
first main result Theorem 3.9 is a generalization of Külshammer’s theorem [11, Theorem A] on
the structure of blocks with normal defect groups. Külshammer’s theorem states that, in the
situation of a splitting p-modular system, if e is a block of OG with normal defect group D, then
the block algebra eOG is Morita equivalent to a twisted group algebra OβDE of the semidirect
product DE, where E = Ge/DCG(D), and Ge is the stabilizer of e in G. Other approaches and
generalizations can be found in Puig [19, Proposition 14.6], Alperin, Linckelmann and Rouquier
[1], Fan and Puig [6, Theorem 1.17]).
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In this paper, instead of starting with a block of the group algebra OG, we only consider a
separable algebra extension OP → B, where P is a finite p-group and B has finite O-rank, and
then we construct our Morita equivalent group graded algebras from this data. The connection
with Külshammer’s theorem is explained in 3.11. The techniques used in the proof of Theorem
3.9 are also used in the proof of Theorem 4.7.
Our general assumptions and notations are standard. In general, modules are left and finitely

generated. We refer the reader to [22] and [20] for basic results on G-algebras, and to [14] for
group graded algebras. Some other needed facts are recalled in the next section.

2. Modular group graded algebras

2.1. We consider a p-modular system (K,O, k), where k is a perfect field. An important particular
case is when K = Qp, O = Zp and k = Fp.
Our main objects of study are G-graded crossed products R =

⊕
g∈GRg, where R is assumed

to be free of finite rank over O, so G is a finite group. We have an exact sequence of groups

1 → R×
1 → hU(R) → G→ 1,

where hU(R) :=
∪
(R×∩Rg) is the group of homogeneous units of R. We usually denote A := R1

and kR := k ⊗O R.
We will later consider the situation when A is an O-simple algebra, that is, A is free as a

O-algebra and the k-algebra kA := A/J(O)A is simple.

Example 2.2. Let K be a normal subgroup of H, let G = H/K and let b be a block of OK. The
group H acts on OK by conjugation, while G acts on Z(OK), and denote by Gb the stabilizer
of b in G. Then R := bOHb is a Gb-graded crossed product with 1-component R1 = bOK. In
this case we have that R = bOHb, and the algebra R is Morita equivalent to OGbOG, so we can
assume without much loss of generality that b is G-invariant.
Our intention is to no longer work with K and H, and refer only to R, G and to the defect

groups of the block.

Example 2.3. We will frequently use the following construction from [20, Chapter 9] (see also
[4, Section 2]), which gives a bijection between K-interior H-algebras and G-graded H-interior
algebras, where H is a group, K is a normal subgroup of H, G = H/K, and OH is regarded as
a G-graded O-algebra in the obvious way.
A K-interior H-algebra is an O-algebra A with group homomorphisms

φ : H → Aut(A) and ψ : K → A×

such that, for any x ∈ H, y ∈ K and a ∈ A, we have

(y · a)x = yx · ax and ay = y−1 · a · y,
where y · a and a · y denote ψ(y)a and aψ(y) respectively, while ax := φ(x)−1(a) and xa := ax

−1
.

Then A determines the G-graded O-algebra R :=
⊕

g∈GRg by letting

R := A⊗OK OH =
⊕

x∈[H/K]

A⊗ x,

with multiplication defined by

(a⊗ x)(b⊗ y) = a(xb)⊗ xy

for all a, b ∈ A and x, y ∈ H. In particular, we have (1 ⊗ x)(1 ⊗ y) = 1 ⊗ xy, so there exists a
homomorphism

ψ : OH → R, ψ(h) = 1⊗ h

of G-graded algebras.
Conversely, if ψ : OH → R is a homomorphism of G-graded O-algebras, then A := R1 is a

K-interior H-algebra, where

φ : H → Aut(A), φ(h)(a) = ψ(h)aψ(h)−1,
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and ψ : K → A× is the restriction of ψ.

2.4. We denote by Jgr(R) the Jacobson radical of the crossed product R, and let R̄ = R/Jgr(R).
Notice that the canonical ring epimorphism R → R̄ induces the commutative diagram

1

��

1

��
1 + J(A)

��

1 + J(A)

��
1 // A× //

��

hU(R) //

��

G // 1

1 // Ā× //

��

hU(R̄) //

��

G // 1

1 1 .

We need a connection between the splittings of the group extension hU(R) and the splittings
of hU(R̄). The following theorem is a generalization of a theorem by E. Dade, proved in [14,
Theorem 3.1.8].

Theorem 2.5. Assume that

(1) the extension hU(R̄) of Ā× by G splits,
(2) there is ā ∈ Ā such that TrG1 (ā) = 1.

Then there is a bijection between the splittings of hU(R̄) and the (1+ J(A))-conjugacy classes of
splittings of hU(R).

2.6. Let P be a finite p-group. Recall that a kP -moduleM is called endopermutation if Endk(M)

has a P -stable basis. By [23, Theorem 3.3], if k̂/k is a field extension and M is an endopermu-

tation k̂P -module, then there is an endopermutation kP -module M0 such that M ≃ k̂ ⊗k M0.
We will also need Dade’s theorem [2], [3] on Clifford extensions of indecomposable endoper-

mutation kP -modules (see also [17] and [23, Theorem 3.10] for alternative approaches).

Theorem 2.7. Let R be a G-graded crossed product such that R1 = kP , and let M be a G-
invariant indecomposable endopermutation kP -module. Let E = EndR(R ⊗R1 M)op, and let
Ē = E/Jgr(R). Then the group extension

1 → Ē×
1 → hU(Ē) → G→ 1

splits.

3. The “normal defect group” situation

The main result of this section is a generalization of the structure theorem for blocks with
normal defect group, originally due to Külshammer [11]. There is another approach in [1] using
modules, and here we generalize the main result of [5], by establishing a Morita equivalence
between strongly graded algebras. We lay down our assumptions in 3.1 and 3.2, while the
algebras in discussion are defined after several steps in 3.5 and 3.8 below.

3.1. Let (K,O, k) be a p-modular system as in 2.1, and let D be a finite p-group. Let B be a
OD-interior O-algebra, free of finite rank over O, having a D-stable basis, and such that the
modules ODB and BOD are projective (and actually free, because OD is a local ring). We suppose
that the identity element 1 of B is a primitive idempotent in Z(B) (so B is a block algebra), and
that B has defect group D. By this we mean the following.
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(1) The ring extensionOD → B is separable, that is, the homomorphism of (B,B)-bimodules

B ⊗OD B
µ−→ B

that takes b⊗ b′ to bb′ for all b, b′ ∈ B splits, hence BBB is a direct summand of B⊗ODB
(see also [12] for other characterizations).

(2) The Brauer homomorphism BrD : BD → B(D) satisfies BrD(1) ̸= 0, where recall that

B(D) = k ⊗O (BD/
∑
Q<D

TrDQ(B
Q))

is the Brauer quotient of B (see [22, Section 11]).

3.2. Since B is indecomposable as a (B,B)-bimodule, there exists a primitive idempotent i ∈ BD

such that B | Bi⊗OD iB as (B,B)-bimodules. Let

γ =
{
aia−1 | a ∈ (BD)×

}
the (BD)×-conjugacy class of i. Then the pair (D, γ) = Dγ is called a defect pointed group of
B (a notion due to Puig, see [22]). Moreover, BrD(i) is a primitive idempotent in B(D), and
BrD(γ) is a point of B(D), because BrD : BD → B(D) is surjective.
There is a unique maximal ideal of BD, denoted by mγ, such that γ ̸⊂ mγ, and a unique

maximal ideal of B(D), denoted by mBrD(γ), such that BrD(γ) ̸⊂ mBrD(γ). Moreover, we have
that

BD/mγ ≃ B(D)/mBrD(γ),

and we denote by S the simple k-algebra B(D)/mBrD(γ).
Let V̄ be the unique (up to a isomorphism) simple S-module. There is a unique primitive

idempotent eγ ∈ Z(B(D)) such that eγBrγ(i) ̸= 0, and then the image ēγ of eγ via the canonical
map B(D) → S is actually the identity of S.

We will assume that S has Schur index 1, that is, k̂ := EndS(V̄ ) is a field. In this case we have

that k̂ = Z(S), and moreover,

S ≃ Endk̂(V̄ ) ≃Mm(k̂),

where m := dimk̂V̄ .

3.3. Let CB×(D) and NB×(D) be the centralizer and the normalizer of D in B×, respectively.
Then CB×(D) is a normal subgroup of NB×(D), and we denote

G := NB×(D)/CB×(D)

and
Ḡ := NB×(D)/DCB×(D).

Note that NB×(D) acts on BD and on B(D) as algebra automorphisms. Moreover, we have the
maps

CB×(D) ↪→ BD → B(D),

compatible with the action of NB×(D), so B(D) is a CB×(D)-interior NB×(D)-algebra.

3.4. We consider the stabilizer

NB×(D)γ :=
{
a ∈ NB×(D) | aγa−1 = γ

}
of γ in NB×(D). Clearly, CB×(D) ⊆ NB×(D)γ, and let

Gγ := NB×(D)γ/CB×(D)

be the stabilizer of γ in G. Note that the stabilizer of eγ in NB×(D) coincides with NB×(D)γ.
We also have that D ⊆ NB×(D)γ, and we denote

Ḡγ := NB×(D)γ/DCB×(D)

and
D̄ := D/Z(D) ≃ DCB×(D)/CB×(D).
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Since the modules ODB and BOD are free, the map D → B× is injective, hence we have that
Z(D) = D ∩ CB×(D), so Ḡγ ≃ Gγ/D̄.

3.5. Notice that all the homomorphisms in the diagram

BD BrD //

��

B(D)

��
BD/mγ

// B(D)/mBr(γ) = S

are NB×(D)γ-algebra homomorphisms. Moreover eγB(D) is a CB×(D)-interior NB×(D)-acted
k-algebra. Then, as in 2.3 we may construct the strongly Gγ-graded crossed product

R := eγB(D) ∗Gγ ,

with 1-component R1 = eγB(D).

In addition, since k̂ is a perfect field and D is a p-group, there is a group homomorphism

σ : D → S×

such that for all u ∈ D and all s ∈ S we have us = σ(u)sσ(u)−1, hence the D-algebra S is

actually a D-interior algebra. Consequently, S is a DCB×(D)-interior NB×(D)γ-acted k̂-algebra,
and again as in 2.3, we can construct the Ḡγ-graded crossed product k-algebra

R̄ := S ∗ Ḡγ.

3.6. We will assume that γ is G-invariant, that is, G = Gγ, because in general, passing from G
to Gγ is a Morita equivalence, by making use of the Fong-Reynolds theorem. Summarizing, we
have the commutative diagrams

1 // Z(D)

��

// D //

��

D̄ //

��

1

1 // (eγB(D))× // hU(R) // G // 1

and

D̄

��

D̄

��
1 // S× // hU(R̄) // G // 1.

where the lines are exact and the vertical maps are injective.

3.7. The group NB×(D) also acts by conjugation on D, and CB×(D) acts trivially, so we have
the group homomorphisms

G→ Aut(D) and Ḡ→ Out(D).

Notice that this implies that the group Ḡ (and hence G) is finite, because the map Ḡ→ Out(D)
is injective.

The group Ḡ acts on the field k̂, because NB×(D) acts on S and on the center Z(S) = k̂ of S.

Moreover, DCB×(D) acts trivially on k̂, so we have a group homomorphism

θ : Ḡ→ Gal(k̂/k).

Let K ≤ Ḡ the kernel of θ. By hypothesis, the extension OD → B is separable, so by an
application of Mackey decomposition with respect to the pair (D,D) as in [22, Proposition 14.7],
we deduce that the identity eγ of B(D) belongs to the image of TrGDCB∗ (D), hence the identity ēγ

of S belongs to TrḠ1 (k̂). It follows that k̂ is a projective module over the group algebra k̂K, so
by Maschke’s theorem p - |K|.
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The action of NB×(D) on D and on k̂ induces the commutative diagram

1 // D̄ //

��

G //

��

Ḡ //

σ

wwp p p p p p

��

1

1 // Int(k̂D) // Autk(k̂D) // Outk(k̂D) // 1,

By [6, Corollary 3.13], there exists a group homomorphism σ : Ḡ → Autk(k̂D) that lifts the

homomorphism Ḡ→ Outk(k̂D).

3.8. Since we have assumed V̄ to be Ḡ-invariant, by Clifford theory we have the isomorphism of
Ḡ-graded algebras

EndR̄(R̄⊗S V̄ )op ≃ k̂θβḠ,

where k̂θβḠ is a Ḡ-graded crossed product of k̂ and Ḡ determined by the 2-cocycle β : Ḡ×Ḡ→ k̂×

and the action θ : Ḡ → Gal(k̂/k). In this case we have a Ḡ-graded Morita equivalence between

R̄ = S ∗ Ḡ and k̂θβḠ, and moreover, we have the isomorphism

R̄ ≃ S ⊗k̂ (k̂
θ
βḠ), sḡ 7→ s⊗k̂ g

of Ḡ-graded algebras.
By using the homomorphism σ : Ḡ → Autk(k̂D), we can construct the strongly Ḡ-graded

crossed product (k̂D)σβḠ, with 1̄-component k̂D.

In fact, (k̂D)σβḠ can be viewed as a strongly G-graded algebra with the 1-component k̂Z(D),

which means that we refine the grading by viewing k̂D as a D̄-graded algebra. Let

R′ := (k̂D)σβḠ,

viewed as a G-graded algebra, with 1-component R′
1 = k̂Z(D).

Now we are able to state one of the main theorems of this paper.

Theorem 3.9. Let B be an OD-interior algebra satisfying Assumption 3.1. There exists a
G-graded Morita equivalence between R = eγB(D) ∗G and R′ = (k̂D)σβḠ.

Proof. The following diagram presents the steps of the proof, which is done by working from
the bottom row upwards, where the horizontal relations are Morita equivalences induced by the
respective bimodules.

R

�
�
�

W
R′

�
�
� G-graded and Ḡ-graded

R1̄ = RD̄

�
�
�

U
R′

D̄
= R1̄

�
�
�

D̄-graded

R1
V

R′
1.

We first prove that there is a Morita equivalence between R1 = eγB(D) and R′
1 = k̂Z(D). We

have that V̄ is a (S, k̂)-bimodule, and here is a surjective k-algebra homomorphism

R1 ⊗k k̂ → S ⊗k k̂.

Let V be the projective cover of V̄ through this homomorphism, hence there exists a surjective
(R1, k̂)-bimodule homomorphism V → V̄ . Obviously, V is an indecomposable (R1, k̂)-bimodule.

By construction, V is a generator of the category R1-mod. Because k̂Z(D) is commutative, we

can view V as a (R1, k̂Z(D))-bimodule, hence we have an algebra homomorphism k̂Z(D) →



MORITA EQUIVALENCES RELATED TO THE GLAUBERMAN CORRESPONDENCE 7

EndR1(V )op. Because V is projective as a left R1-module, and R1 is a projective kD-module,

this map is injective, as any k̂Z(D)-module is free. Since

EndR1(V )/J(EndR1(V ) ≃ EndS(V̄ ) ≃ k̂,

by Nakayama’s lemma this map is also surjective. Hence, EndR1(V )op ≃ k̂Z(D) = R′
1, and

consequently, R1VR′
1
induces a Morita equivalence between R1 and R′

1.

For the second step, consider the D̄-graded k-algebra

RD̄ = eγB(D) ∗ D̄
obtained from R by truncation, that is, RD̄ =

⊕
x∈D̄ Rx. Consider the D̄-graded k-algebra

R′
D̄ := k̂D.

We want to show that the Morita equivalence between R1 and R
′
1 induced by V lifts to a D̄-graded

Morita equivalence between RD̄ and R′
D̄
. For this we need to show that the (R1, R

′
1)-bimodule

V extends to a ∆(RD̄ ⊗k R
′op
D̄
)-module. We have the diagonal subgroup

δD = {(u, u◦) | u ∈ D}
of D ×D◦, where u◦ = u−1 regarded in D◦, so that element u⊗k u

◦ belongs to ∆(RD̄ ⊗k R
′op
D̄
).

Notice that the diagonal subalgebra

∆(RD̄ ⊗k (k̂D)op) = (B(D)eγ ⊗k 1)k̂(δ(D))

is a group algebra, hence there exists a surjective k-algebra homomorphism

∆(RD̄ ⊗k R
′op
D̄
) → B(D)eγ .

This implies that V extends to ∆(RD̄ ⊗k R
′op
D̄
), where u⊗k u

◦ ∈ k̂(δ(D)) acts trivially on V . By

[14, Theorem 5.1.2] the D̄-graded (RD̄, R
′
D̄
)-bimodule

U := RD̄ ⊗R1 V ≃ V ⊗R′
1
R′

D̄ ≃ (RD̄ ⊗k R
′op
D̄
)⊗∆(RD̄⊗kR

′op
D̄

) V

induces a D̄-graded Morita equivalence between RD̄ and R′
D̄
.

For the third step of the proof, observe that because D̄ is a normal subgroup of G, we can
view R and R′ as Ḡ = G/D̄-graded, such that

R1̄ = DD̄ = eγB(D) ∗ D̄ and R′
1̄ = k̂D.

Let

W := R⊗R1̄
U ≃ R⊗R1̄

(R1̄ ⊗R1 V ) ≃ R⊗R1 V,

where 1 denotes the identity of G, and 1̄ the identity of Ḡ. Then W is a Ḡ-graded left R-module
that can also be viewed as G-graded R-module. Moreover, W1 = V , W1̄ = U , and W is a
Ḡ-invariant R1̄-module, because V is a G-invariant R1-module.

The tensor product R⊗kR
′op can be viewed as a Ḡ×Ḡ-graded k-algebra. Consider its diagonal

subalgebra

∆ := ∆(R⊗k R
′op) =

⊕
ḡ∈Ḡ

Rḡ ⊗k R
′op
ḡ ,

which is also Ḡ-graded, with the 1̄-component

∆1̄ = R1̄ ⊗k R
′op
1̄

= (eγB(D) ∗ D̄)⊗k (k̂D)op.

Then W is a ∆1-module, and we claim that it extends to a ∆-module. Indeed, consider the
Ḡ-graded Jacobson radicals Jgr(R) and Jgr(R

′). We have that

R/Jgr(R) ≃ S ∗ Ḡ = R̄.

Let also

R̄′ := R′/Jgr(R
′) ≃ k̂θβḠ,
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where θ : Ḡ→ Gal(k̂/k) is defined in 3.8. Let

∆̄ := ∆/Jgr(∆) ≃ ∆(R̄⊗k R̄
′op),

with 1̄-component

∆̄1̄ = ∆1̄/J(∆1̄) ≃ S ⊗k k̂,

and notice that W1̄/J(∆1̄)W1̄ ≃ V̄ is a simple ∆1-module (and also a simple ∆̄1-module). We
consider the Ḡ-graded endomorphism algebras

E := End∆(∆⊗∆1 W1)
op

and
Ē := End∆̄(∆̄⊗∆̄1

V̄ )op.

By [15, Lemma 2.4] we have the isomorphism

E/Jgr(E) ≃ Ē

of Ḡ-graded algebras. By construction, EndR̄(R̄⊗R̄1̄
V̄ )op ≃ R̄′ as Ḡ-graded algebras. This means

that V̄ extends to a ∆̄-module, hence the short exact sequence

1 → Ē×
1̄
→ hU(Ē) → Ḡ→ 1,

splits, where Ē×
1̄
= k̂×. We have the commutative diagram

1 // E×
1̄

//

��

hU(E) //

��

Ḡ // 1

1 // Ē×
1̄

// hU(Ē) // Ḡ // 1.

By Theorem 2.5 we deduce that hU(E) is a split extension of E×
1̄
by Ḡ. Hence, W1̄ = U extends

to ∆, and therefore the (R,R′)-bimodule

W = R⊗R1 W1̄ ≃ (R⊗k R
′op)⊗∆ U

induces a Ḡ-graded Morita equivalence between R and R′. But since W ≃ R ⊗R1 V is in fact
G-graded, we have that R′ ≃ EndR(W )op as G-graded algebras, and hence W is a G-graded
(R,R′)-bimodule. This implies that there is a G-graded Morita equivalence between R and
R′. �
Remark 3.10. Notice that since k is a perfect field and D̄ a p-group, it follows by Green’s
theorem that U is an indecomposable (RD̄, R

′
D̄
)-bimodule. It is not difficult to see that W is also

indecomposable as an (R,R′)-bimodule, not only as a G-graded (R,R′)-bimodule.

3.11. Next, we deduce Külshammer’s main result [11, Theorem A] from Theorem 3.9. We will
employ the notation introduced in this section.
Consider the finite group H and the block B = bOH of the group algebra OH. Let Dγ be a

defect pointed group H{b}. Then there exist the algebra homomorphisms

OCH(D) ↪→ OH BrD−→ kCH(D),

and we have that eγB(D) = kCH(D)eγ, where eγ is, as in 3.2, the block with defect group
Z(D) of kCH(D) determined by Dγ. Moreover, eγ is also a block of kNH(D)γ with defect
group D. With the notation of 3.4, the proof of [18] implies that Gγ = NH(D)γ/CH(D) and
Ḡγ = NH(D)γ/DCH(D).

By Theorem 3.9, there is a Gγ-graded Morita equivalence between eγkNH(D)γ and (k̂D)σβḠγ,
where σ and β are defined in 3.7 and 3.8.
It is not difficult to show that this equivalence lifts to an equivalence over O, and moreover, the

proof of Theorem 3.9 gives the structure of blocks with normal defect groups in the form expressed
by Külshammer (except that we do not assume here that the p-modular system (K,O, k) is
splitting).
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Corollary 3.12. There is an isomorphism of Gγ-graded O algebras between ONH(D)γeγ and

Mm(O)⊗O (ÔD)σβḠγ, where m = dimk̂ V̄ as in 3.2.

4. G-graded OP -interior algebras

4.1. Let R be a G-graded crossed product over O, with 1-component R1 = A as in 2.1. The
assumptions in this section are as follows.

(1) kA is a simple k-algebra, and denoting k̂ := Z(A), k̂ is a Galois extension of k, and kA has
Schur index 1. Denote by V the unique (up to isomorphism) simple A-module. Thus we have

the isomorphisms EndA(V ) ≃ k̂ and kA ≃Mn(k̂), where n = dimk̂V .
(2) Let P be a defect group of the pointed group G{1} on Z(A). We assume that P is a normal

subgroup of G, and denote Ḡ := G/P .
(3) There exists a splitting φ : P → hU(RP ) of the group extension

1 → A× → hU(RP ) → P → 1,

and we denote Q = φ(P ).
(4) We consider the conjugation action of Q on A, and we assume that regarded as a central

simple k̂-algebra, kA is a Dade Q-algebra, that is, A has a Q-stable k̂-basis containing the identity
1A, and A(Q) ̸= 0.

4.2. Note that because k is perfect, there exists a unique group homomorphism

ψ : Q→ kA×

such that detψ(u) = 1, and inducing the action of Q on A (that is, ua = ψ(u)aψ(u)−1 for all
a ∈ A and u ∈ Q).

Remark 4.3. The group hU(R) acts on the simple algebra kA and on the center k̂ of Z(kA).
Moreover, we have that RP = AQ, hU(RP ) = A×Q, thus Ḡ ≃ hU(R)/hU(RP ). Since Q(kA)×

acts trivially on k̂, we have the group homomorphism

θ : Ḡ→ Gal(k̂/k),

and denote by K be the kernel of θ. By Assumption 4.1 (2) and [22, Lemma 14.1], there is an

idempotent i ∈ Z(A)P and an element a ∈ Z(A)P such that TrGP (ai) = 1. In our case, Z(kA) = k̂,
so i = 1, and one easily deduces that |K| is invertible in k.

Note that by [16], the surjectivity of the trace map

TrGP : Z(A)P → Z(A)G

is equivalent to the separability of the algebra extension RP → R.

4.4. Consider the normalizers and centralizers NA×(Q), NhU(R)(Q), CA×(Q) and ChU(R)(Q), and
observe that under our Assumption 4.1 (3), we have that

CA×(Q) = NA×(Q).

Denote

G′ := NhU(R)(Q)/CA×(Q),

so G′ can be regarded as a subgroup of G, via the group homomorphism hU(R) → G.

Lemma 4.5. The map hU(R) → G induces an isomorphism from G′ to G.

Proof. We have to show that hU(R) = A×NhU(R)(Q). Indeed, let u be a homogeneous unit of R.
Since P is normal in G, both Q and uQu−1 are subgroups of hU(RP ), and they define, via 4.2,
RP -module structures on the simple A-module V . But these RP -modules are isomorphic, hence
Q and uQu−1 are A×-conjugate, so there is a ∈ A× such that au normalizes Q. �
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4.6. There exists a group homomorphism

CA×(Q) → A(Q)×,

and moreover, this map, and the Brauer homomorphism AQ → A(Q) are compatible with the
conjugation action of NhU(R)(Q) on these objects. This means that A(Q) is a CA×(Q)-interior
NhU(R)(Q)-algebra, so we can now construct, as in 2.3, the G′-graded crossed product

R′ := A(Q) ∗G′,

with 1-component A′ := A(Q).

The next theorem is the second main result of this paper, and it is a generalization of the main
result of Dade [2].

Theorem 4.7. Let R be a G-graded crossed product satisfying Assumption 4.1. Then there is a
G-graded Morita equivalence over k between kR and R′ = A(Q) ∗G′.

Proof. We have that V becomes a (simple) kRP -module via the group homomorphism ψ : Q →
kA×. View kR as a G/P -graded algebra. Then EndkR(kR⊗kRP

V )op is a crossed product of

EndkR1(V )op ≃ k̂

with Ḡ, hence there exists a Ḡ-graded k-algebra isomorphism

EndkR(kR⊗kRP
V )op ≃ k̂θαḠ,

where α : Ḡ× Ḡ→ k̂ is a 2-cocycle, and θ : Ḡ→ Gal(k̂/k) is defined in 4.3.
Denote P ′ := NhU(RP )(Q)/CA×(Q), which is a p-subgroup of G′, isomorphic to P , so we have

that G′/P ′ ≃ Ḡ. Let V ′ be the unique (up to isomorphism) simple R′
1-module. As above, we

have that V ′ extends to a R′
P ′-module, and we have a G/P -graded k-algebra isomorphism

EndR′(R′ ⊗R′
P ′ V

′)op ≃ k̂θα′(G′/P ′),

where α′ : G′/P ′ × G′/P ′ → k̂ is a 2-cocycle, and note that the action of G′/P ′ on k̂ coincides

with the action of Ḡ on k̂.
The proof follows the following diagram, working from the bottom row upwards.

kR

�
�
�

Z
R′

�
�
� G-graded and Ḡ-graded

kRP

�
�
�

Y
R′

P ′

�
�
�

P -graded

kA
X

A′.

We know that kA and A′ are central simple k̂-algebras in the same Brauer class, and more
precisely, we have a Morita equivalence

kA ∼ A′

induced by the (kA,A′)-bimodule X := V ⊗k̂ V
′∨, where V ′∨ is the k-dual of V ′.

For the second step, note that because V extends to kRP , we have that

EndkRP
(kRP ⊗kA V )op ≃ k̂P,

and because V ′ extends to R′
P , we have that

EndR′
P ′ (R

′
P ′ ⊗A′ V ′)op ≃ k̂P ′.

But P ≃ P ′, so this implies by [14, Section 5.1] that there exists a P -graded Morita equivalence
between kRP and R′

P ′ induced by the bimodule

Y := kRP ⊗kA X ≃ X ⊗A′ R′
P ′ .
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For the third step, we regard kR and R′ as Ḡ-graded algebras with 1̄-components kR1̄ = kRP

and R′
1̄ = R′

P . Consider the Ḡ-graded algebra

∆ := ∆(kR⊗k R
′op) =

⊕
ḡ∈Ḡ

(kRḡ ⊗k R
′op
ḡ ).

In order to obtain a Ḡ-graded equivalence between kR and R′ we have to show that the ∆1̄-
module Y extends to a ∆-module. For this, by Dade’s criterion (see [14, Theorem 3.1.1]), we
must show that the extension

(1) 1 → E×
1 → hU(E) → Ḡ→ 1

splits, where we have denoted
E = End∆(∆⊗∆1 Y )op.

We consider the Ḡ-graded algebra
Ē = E/Jgr(E),

and let ∆̄ = ∆/Jgr(∆), kR̄ := kR/Jgr(kR) and R̄′ := R′/Jgr(R
′), where ∆, R and R′ are also

regarded here as Ḡ-graded algebras. As in the proof of Theorem 3.9, we have

∆̄ ≃ ∆(kR̄⊗k R̄
′op),

and because X ≃ Y/J(∆1), we have

Ē ≃ End∆̄(∆̄⊗∆̄1̄
X).

By 4.3, p does not divide the order of the kernel K of the map θ : Ḡ → Gal(k̂/k). Therefore,
again as in Theorem 3.9, it is enough to show that the extension

(2) 1 → Ē×
1 → hU(Ē) → Ḡ→ 1

splits, and for this, we have to show that the 2-cocycles α and α′ are cohomologous.
By Theorem 3.9, since P is a normal subgroup of hU(R), there is a P -graded Morita equivalence

between kRP and k̂P , and a G-graded Morita equivalence between kR and (k̂P )θαḠ. Similarly,

there is a P ′-graded Morita equivalence between R′
P ′ and k̂P ′, and a G-graded Morita equivalence

between R′ and (k̂P ′)θα′Ḡ′. We also have P -graded Morita equivalence between k̂P and k̂P ′

induced by an endopermutation k̂(P × P ′)-bimodule. By using the previous arguments for

(k̂P )θαḠ and (k̂P ′)θα′Ḡ′ instead of kR and R′ respectively, we deduce by Dade’s Theorem 2.7 that
α and α′ are indeed cohomologous. By 2.6, it also follows that the Morita equivalence between
kR and R′ is defined over k. �
Remark 4.8. Let us deduce Dade’s result [2, (6)] from Theorem 4.7. We will follow our notations
introduced in 4.1.

Let A := eON be a block with defect zero of the normal subgroup N of the finite group
H, where we assume that e is H-invariant. Let Q be a defect group in H of e, and assume
that M := QN is a normal subgroup of H. Denote G := H/N , P := M/N , Ḡ := H/M , and
R := eOH, which is regarded as a G-graded algebra.

The Brauer correspondent of eOM in the block e′ONM(Q) which covers the block e′OCN(Q)
of defect zero, and observe that the Brauer quotient A(Q) of A is ē′kCN(Q). By Lemma 4.5, we
have that G ≃ NH(H)/CN(Q) and Ḡ ≃ NH(H)/NN(Q). By Theorem 4.7, there is a G-graded
Morita equivalence between kR = ēkH and ē′kNH(Q).

In this situation it is easy to see that this equivalence lifts to a G-graded Morita equivalence
between R = eOH and e′ONH(Q), and therefore it induces a perfect isometry between the ordi-
nary characters of H lying over irreducible characters belonging to e and the ordinary characters
of NH(Q) lying over irreducible characters belonging to e′.

Finally, note that e is a block with normal defect group of OM , while e′ is a block with normal
defect group of ONM(Q), so Külshammer’s theorem applies to both blocks. The crucial fact in
Dade’s result is that the 2-cocycles given by Külshammer’s theorem are cohomologous.



12 DANA-DEBORA GLIŢIA AND ANDREI MARCUS

References

[1] J. L. Alperin, M. Linkelmann, and R. Rouquier, Source algebras and source modules. J. Algebra 239 (2001),
262–291.

[2] E.C. Dade, A correspondence of characters. Proc. Symp. Pure Math. 37 (1980), 401–403.
[3] E.C. Dade, Extending endo-permutation modules. Unpublished manuscript, 1982.
[4] C. Dicu and A. Marcus, Group graded algebras and the relative projectivity of pointed groups. Quart. J. Math.

(Oxford) 57 (2006), 309–318.
[5] C. Dicu and A. Marcus, Source modules of blocks with normal defect group. Arch. Math. 88 (2007), 289–296.
[6] Y. Fan and L. Puig, On blocks with nilpotent coefficient extensions. Algebras and Representation theory 1

(1998), 27–73.
[7] M.E. Harris, A Morita equivalence for blocks of finite p-solvable groups in the Glauberman-Isaacs-Watanabe

correspondence context. J. Group Theory 10 (2007), 15–34.
[8] M.E. Harris, Clifford theory of a finite group that contains a defect 0 p-block of a normal subgroup. Commun.

Algebra 41 (2013), 3509–3540.
[9] M.E.Harris and M. Linckelmann, On the Glauberman and Watanabe correspondences of blocks of finite p-

solvable groups. Trans. Amer. Math. Soc 354 (2002), 3435–3453.
[10] S. Koshitani and G.O. Michler, Glauberman correspondence of p-blocks of finite groups. J. Algebra 243

(2001), 504–517.
[11] B. Külshammer, Crossed products and blocks with normal defect groups, Commun. Algebra 13 (1985), 147–

876.
[12] B. Külshammer, T. Okuyama and A. Watanabe, A lifting theorem with applications to blocks and source

algebras, J. Algebra 232 (2000), 299–309.
[13] F. Ladisch, Character correspondences induced by magic representations. preprint 2011, arXiv:1004.4538

[math.RT].
[14] A. Marcus, Representation Theory of Group Graded Algebras. Nova Science Publishers, Commack, NY 1999.
[15] A. Marcus, Blocks with cyclic defect groups, and Clifford extensions. J. Algebra 287 (2005), 1–14.
[16] A. Marcus, Restriction to subgroups and separability. Stud. Univ. Babe-Bolyai, Math. 52 (2007), 57–63.
[17] L. Puig, Local extensions in endo-permutation modules split: A proof of Dade’s theorem, in: Séminaire sur les
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