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Abstract

We prove that block induction and the categorical version of the Green correspondence are
compatible with block covers and module covers.
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1. Introduction

It is well-known that the Green correspondence can be expressed as an equivalence
between certain quotient categories of modules over group algebras. This result is due to
J.A. Green [9], while M. Auslander and M. Kleiner [2] established a very general category
equivalence using only the properties of adjoint functors.

Very recently, M.E. Harris [10] combined this approach with the Nagao-Green theorem
on block induction, obtaining a version “with blocks” of the above mentioned equivalence.
We briefly recall his result in Section 4.

In this note, we also deal with block covers and with module covers in the sense of
Alperin [1]. To explain this, fix a finite group G, a normal subgroup N of G, and a com-
plete discrete valuation ring O with residue field of characteristic p > 0. Our main result,
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stated in Theorem 4.3 below, says that if one starts with an indecomposable OG-module V
covering an indecomposable ON-module U such that V and U are objects of appropriate
quotient categories, then the images of V and U under Harris’ functors also cover each
other. Moreover, by restricting this correspondence to covering modules, one still gets a
bijection.

In Section 2 we present some needed facts on block induction, while in Section 3 we
discuss block induction in relation with module covers. The last section is devoted to the
categorical Green correspondence and to the proof of the main result. Three corollaries are
also derived, one of them being the well-known Harris-Knörr correspondence for covering
blocks.

We denote by S (G) the set of subgroups of the finite group G, and by Bl(OG) the set
of block idempotents of the group algebra OG. If V and W are OG-modules, then V |W
means that V is a direct summand of W . We assume that all categories and functors are ad-
ditive. Otherwise, our assumptions and notations are standard, and our general references
are [5], [8] and [12].

2. On block induction

There exist several notions of block induction, and we refer the reader to [3] (and to the
references given there) for a comparison between them. Here we use the block induction
in the sense of Brauer, as in [8, Chapter 3, Section 9] and [12, Chapter 5, Section 3], but
see also [5, Section 6.2]. We will freely use the fact that reduction modulo p induces a
defect groups preserving bijection between the blocks of OG and the blocks of kG.

2.1. Let k̂ be a finite extension of the field k, such that k̂ is a splitting field for every
subgroup of G. Let H be a subgroup of G and let B̃ ∈ Bl(OH). Denote by

w∗
B̃ : k̂H → k̂

the central character associated with B̃, and consider the k-linear map

s∗H : Z(k̂G)→ Z(k̂H), ∑
x∈C

x 7→ ∑
x∈C∩H

x,

where C runs through the conjugacy classes of G.

Definition 2.2. The induced block B̃G is defined if the map w∗
B̃◦s∗H : Z(kG)→ k is a central

character.
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2.3. If Q is a p-subgroup of G, we will also consider the Brauer map

BrQ : Z(kG)→ Z(kCG(Q)).

Recall that if the subgroup H satisfies QCG(Q) ≤ H ≤ NG(Q), then every idempotent in
Z(kH) belongs in fact to kCG(Q).

By [12, Chapter 5, Theorem 3.5] and [5, Chapter 6, Paragraph 6.2], we have the fol-
lowing important situation.

Lemma 2.1. Assume that QCG(Q) ≤ H ≤ NG(Q) for some p-subgroup of Q of G. Then
the induction to G of any block of OH is defined. Moreover, if B̃ is a block of OH, then the
block B̃G =: B of OG is determined by the equality

B̃ = B̃ ·BrQ(B).

We also need the following consequence of the transitivity property of block induction.

Lemma 2.2. Assume that the subgroup H of G contains QCG(Q) for some p-subgroup Q
of G. Then, for any block b ∈ Bl(ONH(Q)), the blocks bH , bG and (bH)G are defined and
we have bG = (bH)G.

Proof. By our choice of H, we obtain QCG(Q) ≤ NH(Q) ≤ NG(Q), and also QCH(Q) ≤
NH(Q) ≤ NG(Q), since CG(Q) = CH(Q). If b is block of ONH(Q), then bH and bG are
defined, hence by applying [12, Chapter 5, Lemma 3.4] to the situation NH(Q)≤ H ≤ G,
the claim follows.

Remark 2.4. With the notations of the previous lemma, we see that the blocks of OH as
well as the blocks of OG, which do not lie in the kernel of the Brauer map, determine
partitions of the set Bl(ONH(Q)). Explicitly, for a fixed block B̃ ∈ Bl(OH), the blocks
b ∈ Bl(ONH(Q)) that satisfy bH = B̃ are exactly the blocks that satisfy BrQ(B̃)b = b. The
same argument holds for the blocks of OG.

Proposition 2.3. Assume that QCG(Q) ≤ H ≤ G for a p-subgroup of G. The following
hold:

(1) If B ∈ Bl(OG) with BrQ(B) ̸= 0, then any block B̃ ∈ Bl(OH) with BrQ(B̃) ̸= 0 veri-
fies B̃G = B if and only if BrQ(B)BrQ(B̃) ̸= 0.

(2) If B̃ ∈ Bl(OH) with BrQ(B̃) ̸= 0, then there is a unique block B ∈ Bl(OG) such that
B̃G = B, and B is given by BrQ(B)BrQ(B̃) ̸= 0.
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Proof. To prove (1), assume that

BrQ(B)BrQ(B̃) = ∑bi,

where bi are blocks of kNH(Q). Clearly, BrQ(B)bi = bi and BrQ(B̃)bi = bi for all bi. Then
for all blocks appearing in the above decomposition we have bH

i = B̃ and bG
i = B, hence

((bi)
H)G = B̃G = B.

Conversely, for any block b̃ of kNG(Q) satisfying b̃ = b̃BrQ(B̃), we have b̃H = B̃, and
b̃G is defined. This forces b̃G = B, that is b̃ = b̃BrQ(B), and therefore BrQ(B)BrQ(B̃) ̸= 0.

For the proof of (2), we observe that BrQ(B̃)bi = bi for some blocks bi of kNH(Q). For
any such bi, the unique block B := bG

i is defined, as well as bH
i = B̃. A similar argument

already used gives B̃G = B.

Remark 2.5. Assume that in Proposition 2.3 we choose the subgroup H such that it con-
tains NG(Q), for a p-subgroup Q of G. In this situation, any of the two assertions determine
the Brauer correspondent of B or of B̃ provided that Q is a defect group of B or of B̃.

3. Block induction and normal subgroups

Let G be a finite group, let B ∈ Bl(OG), and let N be a normal subgroup of G, and
b ∈ Bl(ON). Let V be an indecomposable OGB-module, and let U be an indecomposable
ONb-module. Recall that B is said to cover the block b of ON, if bB ̸= 0. Recall also the
following definition due to Alperin [1].

Definition 3.1. The indecomposable OG-module V covers the indecomposable ON-module
U if U |VN , and V contains a vertex R ≤ G such that R∩N is a vertex of U.

The notions of module covering is clearly compatible with block covering.

Lemma 3.1. With the above notations, if V covers U, then B covers b.

Proof. Since V covers U , we have bU = U | bVN , and assuming by contradiction that
bB = 0, we would get U = 0.

The main result of this section says that block induction is also compatible with cov-
erings.

Theorem 3.2. Let H be a subgroup of G and denote H ′ := H ∩N. Let β ′ ∈ Bl(OH ′), and
let W ′ be an indecomposable OH ′β ′-module. Let b ∈ Bl(ON), and let U be an indecom-
posable ONb-module. Let β ∈ Bl(OH), and let W be an indecomposable OHβ -module.
Finally, let B ∈ Bl(OG), and let V be an indecomposable OGB-module.

Assume that NG(Q)≤ H for some vertex Q of W ′. Then the following statements hold:
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1. If the module W covers W ′, then the block β ∈ Bl(OH) covers β ′.

2. If W ′ |UH ′ , then the block (β ′)N is defined, and we have (β ′)N = b.
3. If W covers W ′ and W |VH , then the block β G is defined, and β G = B.
4. If the modules W ′, W , U and V satisfy all the above, then the OG-module V covers

U, and hence the block B covers b.

Proof. Statement (1) follows immediately by Lemma 3.1.
For statement (2), observe that our assumptions on Q imply that H ′ contains CN(Q).

Then we may readily apply [10, Theorem 1.14] (which is essentially the Nagao-Green
theorem, see [12, Chapter 5, Theorem 3.12]), to conclude that (β ′)N is defined and that
(β ′)N = b.

For (3) we use again [10, Theorem 1.14], observing that the OH-module W has a
vertex P ≤ H such that Q ≤ P, so it follows that CG(P)≤CG(Q)≤ H.

For the last statement we use the Burry-Carlson-Puig Theorem, see [5, Theorem 3.12.3]
or [4, Theorem 5]. Notice that since W ′ |UH ′ and NN(Q)≤ H ′, it follows that U has vertex
Q. Similarly, since we have W |VH and NG(P)≤ H, it follows that V has vertex P. More-
over, we have that P∩N = P∩H ′ = Q, since P ≤ NG(Q) and NN(Q) ≤ H ′ (because Q is
normal in P). By the Burry-Carlson-Puig Theorem we also have that U | VN , and finally
we apply again Lemma 3.1.

4. Above the Green correspondence

Remark 4.1. Fix a p-subgroup R of G. Let H be a subgroup of G that contains NG(R),
and let

∆ := {A | A ≤ R}.

Consider the sets

X := {A ∈ ∆ | A ≤ R∩Rg for some g ∈ G\H},

Y := {A ∈ ∆ | A ≤ H ∩Rg for some g ∈ G\H}

and
A := {A ∈ ∆ | A /∈G X.}

We have the following consequence of Theorem 3.2.

Proposition 4.1. Let V be an indecomposable OGB-module with vertex T ∈A, and let W
be its Green correspondent with respect to T and H. Then W lies in a block β of OH that
satisfies β G = B, BrD(β ) ̸= 0 and BrD(B) ̸= 0 for some p-subgroup D of G that contains
a vertex of V .
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Proof. Since T ≤ NG(T )≤ H, and T is also a vertex of W , it follows by Theorem 3.2 that
β G = B. Moreover, since W | VH , we get Bβ ̸= 0. Now the idempotent Bβ of the subal-
gebra OGH of H-fixed elements of OG admits a decomposition into pairwise orthogonal
primitive idempotents

Bβ = ∑
j

f j.

For every j, denote by D j a defect group in H of f j. Since we have

W | βVH = βBVH ,

we obtain T ≤H D j for some j. Clearly, the equality Bβ f j = f j implies that BrD j(B) ̸= 0
and BrD j(β ) ̸= 0.

Remark 4.2. Let N be a normal subgroup of G, and fix the p-subgroup P := R∩N of
N. Assume that the subgroup H of G contains NG(P) (so it also contains NG(R)), and set
H ′ := H ∩N, and

∆′ := {A | A ≤ P}.

Then we have ∆′ = ∆∩S (N), and denoting

X′ := {A ∈ ∆′ | A ≤ P∩Pg for some g ∈ N \H ′},

Y′ := {A ∈ ∆′ | A ≤ H ′∩Pg for some g ∈ N \H ′},

and
A′ := {A ∈ ∆′ | A /∈N X′},

we obtain the inclusions X′ ⊆ X and Y′ ⊆Y.
We also assume that the following equalities hold:

X′ = X∩S (N) and A′ = A∩S (N). (4.3.1)

Remark 4.3. We have the disjoint unions

∆′ = A′∪X′ ⊆ ∆ = A∪X,

and note also that the equalities X′ = X∩S (N) and A′ = A∩S(N) of (4.3.1) hold when
R is a defect group of B and b is G-invariant. Moreover, because ∆′ and X′ are NG(P)-
invariant, so is A′.

Proposition 4.2. Assume that H = NG(P). Then the following statements hold.
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1) Let W be an indecomposable OH-module with vertex in A. Then any indecompos-
able OH ′-module W ′ covered by W has vertex in A′.

2) Let W ′ be an indecomposable OH ′-module with vertex in A′. Then any indecompos-
able OH-module W that covers W ′ has vertex in A.

Proof. 1) Since W covers W ′, it follows by Definition 3.1 that there is a vertex T ≤ H of
W such that T ′ := T ∩H ′ is a vertex of W ′. There is x ∈ NG(P) such that T x = A ∈ A, and
then Ax−1 ∩H ′ = (A∩H ′)x−1

= T ′ ∈ A′, by Remark 4.3.
For the proof of 2) we argue as follows. There is a vertex T ≤ H of W such that T ∩H ′

is a vertex of W ′. Then, there is y ∈ H ′ such that A′ := T y ∩H ′ ∈ A′ is a vertex of W ′,
forcing T y to be a vertex of W lying in A.

Remark 4.4. Let, as above, H = NG(P) and H ′ = NN(P), and we fix a block B of G
covering some block b of N. Finally, we consider the sets of blocks

B = {β | β ∈ Bl(OH) with β G is defined and β G = B}

and
B′ = {β ′ | β ′ ∈ Bl(OH ′) with (β ′)N is defined and (β ′)N = b}.

According to Harris [10, Theorem 2.7], there is an equivalence of categories, de-
noted by Φ̃b, between the quotient category of finite direct sums of indecomposable ONb-
modules having vertices in ∆′, denoted bmod(N,∆′)/bmod(N,X′), and the direct product
of quotient categories of OH ′β ′-indecomposable modules

P ′ := ∏
β ′∈B′

β ′mod(H ′,∆′∪Y′)/β ′mod(H ′,Y′).

Similarly, for the block B ∈ Bl(OG), there is an equivalence of categories, denote by Φ̃B,
between Bmod(G,∆)/Bmod(G,X) and the direct product

P := ∏
β∈B

βmod(H,∆∪Y)/βmod(H,Y).

Note also that any non-zero indecomposable object of any of these four categories has a
vertex which belongs to A or to A′.

In order to formulate our main result in terms of equivalences of categories, we need
to introduce two subcategories.
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4.5. 1) Let C (B|b) be the full additive subcategory of the quotient category

Bmod(G,∆)/Bmod(G,X)

consisting of those objects whose indecomposable summands cover some indecomposable
ONb-module which is a nonzero object of bmod(N,∆′)/bmod(N,X′).

2) Let P(B|B′) be the full additive subcategory of P defined as follows. For each
indecomposable object in P(B|B′), there is an indecomposable OHβ -module for some
block β ∈ B, covering an indecomposable OH ′β ′-module which is a nonzero object of
the quotient category

β ′mod(H ′,∆′∪Y′)/β ′mod(H ′,Y′)

for some block β ′ ∈ B′ covered by the block β .

With the assumptions and notations of 4.1, 4.2, 4.4 and 4.5, we may state the main
result of this paper.

Theorem 4.3. The functor Φ̃B induces an equivalence between C (B|b) and P(B|B′)

Proof. Let V be a non-zero indecomposable object of Bmod(G,∆)/Bmod(G,X) covering
a non-zero object U of bmod(N,∆′)/bmod(N,X ′). By [10, Lemma 2.8], the indecompos-
able OH-module W := Φ̃B(V ) is a non-zero object of P . Similarly, the indecomposable
OH ′-module W ′ := Φ̃b(U) is a non-zero object of P ′. If A′ ∈ A′ is a vertex of U and of
W ′ then, by Definition 3.1 and Remark 4.3, both V and W have a vertex A ∈ A such that
A∩N = A′. We have that W ′ | UH ′, U | VN and W | VH , which forces W ′ | VH ′. Assume
that VH = W ⊕X , so X is a direct sum of indecomposable Y-projective modules. Hence
W ′ | (W ⊕X)H ′ , and since W ′ has vertex A′ ∈ A′, using Remark 4.3, we conclude that
W ′ |WH ′ and W ∈ P(B|B′). We have obtained a one-to-one map which we only need to
show that it is surjective.

Since Φ̃b is an equivalence of categories we may consider U and W ′ as before and
choose W ∈ P(B|B′), an indecomposable OH-module that covers W ′. Proposition 4.2
assures that W has vertex in A, implying that it is a non-zero object of P. Since we have
A′ ∈ A′, for any g ∈ NG(A′) \NG(P) we get A′ = (A′)g ≤ P∩Pg ∈ X′, which is a con-
tradiction. Now Theorem 3.2 applies, and we obtain that Φ̃−1

B (W ) is an indecomposable
OGB-module that covers U.

Corollary 4.4. The functor Φ̃B induces a bijection between the set of isomorphism classes
of indecomposable OGB-modules that are non-zero objects in

Bmod(G,∆)/Bmod(G,X)

and cover some non-zero object in bmod(N,∆′)/bmod(N,X′), and the set of isomorphism
classes of indecomposable modules that are non-zero objects of P and cover some non-
zero object of P ′.
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Corollary 4.5. The correspondence of Theorem 4.3 determines the subset of B containing
blocks that cover the blocks of B′.

Proof. It is clear that any block in B, containing a module that corresponds to a module
in B that covers a covers a non-zero object lying in b, covers a block in B′. So all we
need to prove is that for any β ′ ∈ B′ there exists a block β ∈ B that covers it. Let W ′

be an indecomposable OH ′β ′-module with vertex A′ ∈ A′. Then U := Φ̃−1
b (W ′) is an

ONb-module with vertex A′. Now [7, Lemma 0.5] affirms that there is an OGB-module V
such that U | VN . Remark 4.3 forces U to lie in the restriction to N of an indecomposable
component X of V with vertex in A. By Theorem 3.2, Φ̃B(X) lies in a block β ∈ B that
covers β ′.

The main result of Harris and Knörr [11] also follows from the above discussion ap-
plied in a certain particular case.

We assume that the block b of ON has defect group P. Fix an indecomposable object
U ∈ bmod(N,∆′)/bmod(N,X′), where the sets X′ and ∆′ are determined by the p-subgroup
P, such that U has vertex P. As above we set H ′ := NN(P) and we assume that b is G-
invariant. Denote by β ′ the block of OH ′ that contains the Green correspondent W ′ of
U. In this situation Theorem 3.2 and Remark 2.5 show that the block β ′ is the Brauer
correspondent of b. In this setting we have:

Corollary 4.6 (Harris-Knörr). There is a one-to-one correspondence between the blocks of
G that cover b and the blocks of H := NG(P) that cover β ′, moreover this correspondence
coincides with the Brauer correspondence for blocks.

Proof. Let B ∈ Bl(OG) covering b. Denote by R a defect group of B with R∩N = P
and define the sets X, A and ∆ with respect to R. Note that condition (4.3.1) is satisfied.
According to [7, Lemma 0.5] we have an OGB-module V such that U | VN , and then
there is an indecomposable direct summand V1 of V such that U | (V1)N . By Mackey
decomposition we can choose a vertex T of V1 such that P ≤ T ∩N and T g ≤ R, for some
g ∈ G. Since R∩N = P we get that V1 covers U and by our assumptions V1 is a non-zero
object of Bmod(G,∆)/Bmod(G,X). Moreover Remark 2.5 forces the Green correspondent
of V1 to lie in the Brauer correspondent of B which, according to Theorem 3.2 and Theorem
4.3, covers β ′.

Conversely, if β ∈Bl(OH) covers β ′, arguing in a similar way as above we may choose
an indecomposable OHβ -module W that covers W ′. We redefine the sets X, A and ∆ with
respect to a defect group of β that contains P. Then Theorem 4.3 assures that the non-zero
object W of P has its Green correspondent lying in a block of OG that covers b.
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