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Abstract

We prove that block induction and the categorical version of the Green correspondence are
compatible with block covers and module covers.
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1. Introduction

It is well-known that the Green correspondence can be expressed as an equivalence
between certain quotient categories of modules over group algebras. This result is due to
J.A. Green [9], while M. Auslander and M. Kleiner [2] established a very general category
equivalence using only the properties of adjoint functors.

Very recently, M.E. Harris [10] combined this approach with the Nagao-Green theorem
on block induction, obtaining a version “with blocks” of the above mentioned equivalence.
We briefly recall his result in Section 4.

In this note, we also deal with block covers and with module covers in the sense of
Alperin [1]. To explain this, fix a finite group G, a normal subgroup N of G, and a com-
plete discrete valuation ring &’ with residue field of characteristic p > 0. Our main result,
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stated in Theorem 4.3 below, says that if one starts with an indecomposable &'G-module V
covering an indecomposable &’ N-module U such that V and U are objects of appropriate
quotient categories, then the images of V and U under Harris’ functors also cover each
other. Moreover, by restricting this correspondence to covering modules, one still gets a
bijection.

In Section 2 we present some needed facts on block induction, while in Section 3 we
discuss block induction in relation with module covers. The last section is devoted to the
categorical Green correspondence and to the proof of the main result. Three corollaries are
also derived, one of them being the well-known Harris-Knorr correspondence for covering
blocks.

We denote by .¥(G) the set of subgroups of the finite group G, and by BI(&'G) the set
of block idempotents of the group algebra 0'G. If V and W are &'G-modules, then V|W
means that V is a direct summand of W. We assume that all categories and functors are ad-
ditive. Otherwise, our assumptions and notations are standard, and our general references
are [5], [8] and [12].

2. On block induction

There exist several notions of block induction, and we refer the reader to [3] (and to the
references given there) for a comparison between them. Here we use the block induction
in the sense of Brauer, as in [8, Chapter 3, Section 9] and [12, Chapter 5, Section 3], but
see also [5, Section 6.2]. We will freely use the fact that reduction modulo p induces a
defect groups preserving bijection between the blocks of &'G and the blocks of kG.

2.1. Let k be a finite extension of the field k, such that k is a splitting field for every
subgroup of G. Let H be a subgroup of G and let B € BI(0'H). Denote by

wg kH — k
the central character associated with B, and consider the k-linear map

sk Z(kG) — Z(kH), Y x Y x
xeC xeCNH

where C runs through the conjugacy classes of G.

Definition 2.2. The induced block BY is defined if the map wgosy 1 Z(kG) — kis a central
character.



2.3. If Q is a p-subgroup of G, we will also consider the Brauer map
Brg : Z(kG) — Z(kCg(Q)).

Recall that if the subgroup H satisfies QCs(Q) < H < Ng(Q), then every idempotent in
Z(kH) belongs in fact to kC;(Q).

By [12, Chapter 5, Theorem 3.5] and [5, Chapter 6, Paragraph 6.2], we have the fol-
lowing important situation.

Lemma 2.1. Assume that QC(Q) < H < Ng(Q) for some p-subgroup of Q of G. Then
the induction to G of any block of OH is defined. Moreover, if B is a block of OH, then the
block B¢ =: B of O'G is determined by the equality

B =B Bry(B).
We also need the following consequence of the transitivity property of block induction.

Lemma 2.2. Assume that the subgroup H of G contains QC¢(Q) for some p-subgroup Q
of G. Then, for any block b € BI(ONy(Q)), the blocks b, b® and (b")© are defined and
we have b% = (b")0,

Proof. By our choice of H, we obtain QCs(Q) < Ny (Q) < Ng(Q), and also QCy(Q) <
Ng(Q) < Ng(Q), since Cg(Q) = Cy(Q). If b is block of &Ny (Q), then b and bC are
defined, hence by applying [12, Chapter 5, Lemma 3.4] to the situation Ny (Q) < H < G,
the claim follows. [

Remark 2.4. With the notations of the previous lemma, we see that the blocks of OH as
well as the blocks of &G, which do not lie in the kernel of the Brauer map, determine
partitions of the set BI(0Ny(Q)). Explicitly, for a fixed block B € BI(0'H), the blocks
b € BI(ONy(Q)) that satisfy b7 = B are exactly the blocks that satisfy Bro(B)b = b. The
same argument holds for the blocks of G.

Proposition 2.3. Assume that QCs(Q) < H < G for a p-subgroup of G. The following
hold:

(1) If B € BI(OG) with Bro(B) # 0, then any block B € BI(OH) with Brg(B) # 0 veri-
fies BC = B if and only if Brg(B)Brg(B) # 0.

(2) If B € BI(OH) with Bro(B) # 0, then there is a unique block B € BI(O'G) such that
BY = B, and B is given by Bro(B)Brg(B) # 0.



Proof. To prove (1), assume that

BI‘Q BI‘Q Zb”

where b; are blocks of kNg (Q). Clearly, BrQ( )bi = b; and Bro(B)b; = b; for all b;. Then
for all blocks appearing in the above decomposition we have b = B and bG B, hence
((6:)")¢ =B =B.

Conversely, for any block b of kN(;(Q) satisfying b= bBrQ (B), we have b = B, and
bC is defined. This forces b” = B, that is b = bBrQ(B) and therefore Brg(B)Brg(B) # 0.

For the proof of (2), we observe that Bry(B)b; = b; for some blocks b; of kNg (Q). For
any such b;, the unique block B := bG is defined, as well as bH B. A similar argument
already used gives B¢ = B. ]

Remark 2.5. Assume that in Proposition 2.3 we choose the subgroup H such that it con-
tains Ng(Q), for a p-subgroup Q of G. In this situation, any of the two assertions determine
the Brauer correspondent of B or of B provided that Q is a defect group of B or of B.

3. Block induction and normal subgroups

Let G be a finite group, let B € BI(0'G), and let N be a normal subgroup of G, and
b € BI(ON). Let V be an indecomposable ¢'GB-module, and let U be an indecomposable
ONb-module. Recall that B is said to cover the block b of N, if bB # 0. Recall also the
following definition due to Alperin [1].

Definition 3.1. The indecomposable &’'G-module V covers the indecomposable &’N-module
U if U | Vy, and V contains a vertex R < G such that RN N is a vertex of U.

The notions of module covering is clearly compatible with block covering.
Lemma 3.1. With the above notations, if V covers U, then B covers b.

Proof. Since V covers U, we have bU = U | bVy, and assuming by contradiction that
bB =0, we would get U = 0. U

The main result of this section says that block induction is also compatible with cov-
erings.

Theorem 3.2. Let H be a subgroup of G and denote H' := HNN. Let B’ € BI(OH'), and
let W’ be an indecomposable OH'B'-module. Let b € BI(ON), and let U be an indecom-
posable ONb-module. Let B € BI(OH), and let W be an indecomposable O'H B-module.
Finally, let B € BI(OG), and let V be an indecomposable 0 GB-module.

Assume that Ng(Q) < H for some vertex Q of W'. Then the following statements hold:
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If the module W covers W', then the block B € BI(OH) covers f3'.

IfW' | Uy, then the block (B") is defined, and we have (B')N = b.

IfW covers W' and W | Vi, then the block BC is defined, and B¢ = B.

If the modules W', W, U and V satisfy all the above, then the 0 G-module V covers
U, and hence the block B covers b.

e =

Proof. Statement (1) follows immediately by Lemma 3.1.

For statement (2), observe that our assumptions on Q imply that H' contains Cy(Q).
Then we may readily apply [10, Theorem 1.14] (which is essentially the Nagao-Green
theorem, see [12, Chapter 5, Theorem 3.12]), to conclude that (B’)" is defined and that
(BN =b.

For (3) we use again [10, Theorem 1.14], observing that the ¢/H-module W has a
vertex P < H such that Q < P, so it follows that C(P) < Cs(Q) < H.

For the last statement we use the Burry-Carlson-Puig Theorem, see [5, Theorem 3.12.3]
or [4, Theorem 5]. Notice that since W’ | Uy and Ny(Q) < H', it follows that U has vertex
Q. Similarly, since we have W | Vi and Ng(P) < H, it follows that V has vertex P. More-
over, we have that PNN = PNH' = Q, since P < Ng(Q) and Ny(Q) < H’' (because Q is
normal in P). By the Burry-Carlson-Puig Theorem we also have that U | Vy, and finally
we apply again Lemma 3.1. U

4. Above the Green correspondence

Remark 4.1. Fix a p-subgroup R of G. Let H be a subgroup of G that contains Ng(R),
and let
A:={A|A<R}.

Consider the sets

X:={A€A|A<RNRSE forsome gc G\H},
D :={AcA|A<HNRE forsome gc G\H}
and
A:={AcA|AdcX.}
We have the following consequence of Theorem 3.2.

Proposition 4.1. Let V be an indecomposable O GB-module with vertex T € 2, and let W
be its Green correspondent with respect to T and H. Then W lies in a block B of OH that
satisfies B = B, Brp(B) # 0 and Brp(B) # 0 for some p-subgroup D of G that contains
a vertex of V.



Proof. Since T < Ng(T) < H, and T is also a vertex of W, it follows by Theorem 3.2 that
G = B. Moreover, since W | Vi, we get BB # 0. Now the idempotent Bf3 of the subal-
gebra 0G" of H-fixed elements of &’'G admits a decomposition into pairwise orthogonal

primitive idempotents
BB =) ;.
J

For every j, denote by D; a defect group in H of f;. Since we have
W | BVy = BBVy,

we obtain 7 <p D; for some j. Clearly, the equality B f; = f; implies that Brp,(B) # 0
and Brp,(B) # 0. O

Remark 4.2. Let N be a normal subgroup of G, and fix the p-subgroup P := RN N of
N. Assume that the subgroup H of G contains Ng(P) (so it also contains Ng(R)), and set
H' :=HNN, and

A :={A|A<P}.

Then we have A" = AN.¥(N), and denoting
X' :={AeAN|A<PNPEforsomege N\H'},

) :={AcAN|A<HNPSforsomegec N\H'},

and
A :={AcAN|AdgyX'},

we obtain the inclusions X' C X and )’ C 9).
We also assume that the following equalities hold:

X=xXNn.7(N) and A =AN.Z(N). (4.3.1)
Remark 4.3. We have the disjoint unions
N=AUX CA=AUX,

and note also that the equalities X’ = X N.7(N) and 2" = AN S(N) of (4.3.1) hold when
R is a defect group of B and b is G-invariant. Moreover, because A" and X’ are Ng(P)-
invariant, so is 2.

Proposition 4.2. Assume that H = Ng(P). Then the following statements hold.



1) Let W be an indecomposable O'H-module with vertex in 2. Then any indecompos-
able OH'-module W' covered by W has vertex in 2.

2) Let W' be an indecomposable O'H'-module with vertex in 2U'. Then any indecompos-
able OH-module W that covers W' has vertex in 2.

Proof. 1) Since W covers W', it follows by Definition 3.1 that there is a vertex T < H of
W such that T’ := T N H’ is a vertex of W’. There is x € Ng(P) such that T* = A € 2, and
then A NH' = (ANH')* ' =T’ € A, by Remark 4.3.

For the proof of 2) we argue as follows. There is a vertex T < H of W such that T N H’
is a vertex of W’. Then, there is y € H' such that A’ := T"NH' € A is a vertex of W/,
forcing 77 to be a vertex of W lying in . [

Remark 4.4. Let, as above, H = Ng(P) and H' = Ny(P), and we fix a block B of G
covering some block b of N. Finally, we consider the sets of blocks

% ={B | B € BI(OH) with B is defined and B¢ = B}

and
A ={B'| B’ € BI(0H") with (B')" is defined and (B')" = b}.

According to Harris [10, Theorem 2.7], there is an equivalence of categories, de-
noted by ®;, between the quotient category of finite direct sums of indecomposable O'Nb-
modules having vertices in A’, denoted bmod(N,A") /bmod(N, X’), and the direct product
of quotient categories of ¢'H'3’-indecomposable modules

P = [] B'mod(H',A'UY")/B'mod(H',Y’).

ﬁ/eﬂl

Similarly, for the block B € BI(€'G), there is an equivalence of categories, denote by ®p,
between Bmod(G,A)/Bmod(G, X) and the direct product

P = H Bmod(H,AUY))/Bmod(H,Y)).

BeB

Note also that any non-zero indecomposable object of any of these four categories has a
vertex which belongs to 2( or to 2.

In order to formulate our main result in terms of equivalences of categories, we need
to introduce two subcategories.



4.5. 1) Let €'(B|b) be the full additive subcategory of the quotient category
Bmod(G,A)/Bmod(G, X)

consisting of those objects whose indecomposable summands cover some indecomposable
O'Nb-module which is a nonzero object of bmod(N,A’) /bmod(N, X').

2) Let Z(A|#') be the full additive subcategory of &2 defined as follows. For each
indecomposable object in (2| %'), there is an indecomposable ¢'H 3-module for some
block B € %, covering an indecomposable &’H’’-module which is a nonzero object of
the quotient category

B'mod(H',A'UY)")/B'mod(H', )
for some block B’ € %’ covered by the block .

With the assumptions and notations of 4.1, 4.2, 4.4 and 4.5, we may state the main
result of this paper.

Theorem 4.3. The functor ®p induces an equivalence between € (B|b) and P (%8| B')

Proof. Let V be a non-zero indecomposable object of Bmod(G,A)/Bmod(G,X) covering
anon-zero object U of bmod(N,A’) /bmod(N, Z”). By [10, Lemma 2.8], the indecompos-
able ¢H-module W := ®p(V) is a non-zero object of . Similarly, the indecomposable
OH'-module W’ := &, (U) is a non-zero object of 2'. If A’ € ' is a vertex of U and of
W' then, by Definition 3.1 and Remark 4.3, both V and W have a vertex A € 2l such that
ANN = A’. We have that W’ | Uys, U | Vy and W | Vi, which forces W' | Vi, Assume
that Vg = W @ X, so X is a direct sum of indecomposable 2)-projective modules. Hence
W' | (W & X)yr, and since W’ has vertex A’ € 2, using Remark 4.3, we conclude that
W' | Wy and W € (9| %4'). We have obtained a one-to-one map which we only need to
show that it is surjective.

Since @, is an equivalence of categories we may consider U and W’ as before and
choose W € H2(%| '), an indecomposable & H-module that covers W’. Proposition 4.2
assures that W has vertex in [, implying that it is a non-zero object of Z. Since we have
A’ € ', for any g € Ng(A") \ Ng(P) we get A’ = (A")$ < PNPS$ € X', which is a con-
tradiction. Now Theorem 3.2 applies, and we obtain that CTDEI (W) is an indecomposable
O'GB-module that covers U. O

Corollary 4.4. The functor ®p induces a bijection between the set of isomorphism classes
of indecomposable 0 GB-modules that are non-zero objects in

Bmod(G,A)/Bmod(G, X)

and cover some non-zero object in bmod(N,A’) /bmod(N,X’), and the set of isomorphism
classes of indecomposable modules that are non-zero objects of &7 and cover some non-
zero object of &',



Corollary 4.5. The correspondence of Theorem 4.3 determines the subset of % containing
blocks that cover the blocks of %'

Proof. 1Tt is clear that any block in 4, containing a module that corresponds to a module
in B that covers a covers a non-zero object lying in b, covers a block in %’. So all we
need to prove is that for any B’ € %’ there exists a block B € 4 that covers it. Let W’
be an indecomposable ¢H'B’-module with vertex A’ € 2. Then U := &, ' (W’) is an
O'Nb-module with vertex A’. Now [7, Lemma 0.5] affirms that there is an ¢ GB-module V
such that U | V. Remark 4.3 forces U to lie in the restriction to N of an indecomposable
component X of V with vertex in (. By Theorem 3.2, ®3(X) lies in a block 8 € % that
covers f3’. O

The main result of Harris and Knérr [11] also follows from the above discussion ap-
plied in a certain particular case.

We assume that the block b of &'N has defect group P. Fix an indecomposable object
U € bmod(N,A")/bmod(N, X'), where the sets X’ and A" are determined by the p-subgroup
P, such that U has vertex P. As above we set H' := Ny(P) and we assume that b is G-
invariant. Denote by B’ the block of ¢’H’ that contains the Green correspondent W’ of
U. In this situation Theorem 3.2 and Remark 2.5 show that the block B’ is the Brauer
correspondent of b. In this setting we have:

Corollary 4.6 (Harris-Knorr). There is a one-to-one correspondence between the blocks of
G that cover b and the blocks of H := Ng(P) that cover ', moreover this correspondence
coincides with the Brauer correspondence for blocks.

Proof. Let B € BI(€'G) covering b. Denote by R a defect group of B with RNN = P
and define the sets X, 2l and A with respect to R. Note that condition (4.3.1) is satisfied.
According to [7, Lemma 0.5] we have an &¢GB-module V such that U | Vi, and then
there is an indecomposable direct summand V; of V such that U | (V})y. By Mackey
decomposition we can choose a vertex T of V| such that P < T NN and 78 < R, for some
g € G. Since RNN = P we get that V| covers U and by our assumptions V] is a non-zero
object of Bmod(G,A)/Bmod(G, X). Moreover Remark 2.5 forces the Green correspondent
of V1 to lie in the Brauer correspondent of B which, according to Theorem 3.2 and Theorem
4.3, covers 8.

Conversely, if § € BI(0'H) covers B/, arguing in a similar way as above we may choose
an indecomposable ¢’H 3-module W that covers W'. We redefine the sets X, 2l and A with
respect to a defect group of 8 that contains P. Then Theorem 4.3 assures that the non-zero
object W of & has its Green correspondent lying in a block of &'G that covers b.

[
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