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GROUP GRADED HECKE INTERIOR ALGEBRAS

TIBERIU COCONEŢ and ANDREI MARCUS

Abstract. We prove that when we consider blocks of normal subgroups of finite
groups G and G′, the OG-interior Hecke algebra introduced by L. Puig [4, Section
4] has a natural group graded structure, and its alternative descriptions yield
isomorphisms of group graded OG-interior algebras.
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1. INTRODUCTION

The study of Morita and derived equivalences between blocks of group al-
gebras is a central topic in modular representation theory. If b is a block of
a finite group algebra OG, and b′ is a block of OG′, then a a bimodule M
inducing a Morita equivalence between bOG and b′OG′ is an indecomposable
O(G×G′)-module. It therefore makes sense to investigate the local structure
of the Morita equivalence by taking a vertex P̈ ≤ G×G′ and an OP̈ -source N̈

of M , and look at the O(G×G′)-interior algebra EndO(Ind
G×G′

P̈
(N̈)). This is

done in great detail in the book [4] by L. Puig. One of the important technical
tools there is a description, given in [4, Theorem 4.4], of the so-called Hecke
OG-interior algebra IndG×G′

Ḧ
(Ḃ)1×G′ , where Ḧ is a subgroup of G×G′ and B̈ is

an OḦ-interior algebra (a particular case is when Ḧ = P̈ and B̈ = EndO(N̈)).
On the other hand, for inductive reasons, it is useful to consider, as in [2],

normal subgroups N of G and N ′ of G′ such that G/N ≃ G′/N ′ ≃ Γ, and such
that b and b′ are invariant blocks of ON and ON ′ respectively, while M is a
Γ-graded bimodule. In this case, a vertex P̈ of the identity component of M is
a subgroup of a certain Γ-diagonal subgroup of G×G′. We prove in this paper
that the above Hecke OG-interior algebra has a natural Γ-graded structure.

Our main result, Theorem 7.5 below, states that moreover, the isomorphism
of [4, Theorem 4.4] is an isomorphism of Γ-graded OG-interior algebras. The
starting point in this analysis is the observation that the endomorphism algebra
EndO(M) has a structure of Γ-graded O(G × G′)-interior algebras, and its
various fixed subalgebras are also Γ-graded. This is done in the next four
sections, while that last two sections are devoted to the study of the Γ-graded
OG-interior Hecke algebra.

The authors acknowledges the support by a grant of the Ministry of National Education,
CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0100.
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Throughout the paper O is a commutative ring, and all modules over this
ring are considered to be O-free. For general notions and results on G-algebras
and group graded algebras we refer to [4], [5] and [3].

2. PRELIMINARIES

2.1. We fix the finite groups G, G′ and Γ, and the group epimorphisms
γ : G → Γ and γ′ : G′ → Γ, and we set N := Ker(γ) and N ′ := Ker(γ′).

The group Γ is organized as a left G×G′-set as follows. For any x ∈ Γ and
(g, g′) ∈ G×G′ we define

(g, g′) · x := γ(g)xγ′(g′)−1.

Let
K := {(g, g′) ∈ G×G′ | γ(g) = γ′(g)}

be the stabilizer of the identity element of Γ. Obviously, (G × G′)/K is a
transitive left G×G′-set via

(g, g′) · ((h, h′)K) = (gh, g′h′)K.

The following statements are easy to check.

Lemma 2.2. 1) The map

(G×G′)/K → Γ, (g, g′)K 7→ γ(g(g1)
−1),

where γ(g1) = γ′(g′), is an isomorphism of left (G×G′)-sets.
2) The map

(G×G′)/K → Γ, (g, g′)K 7→ γ′(g′(g′1)
−1)−1) = γ′(g′1(g

′)−1),

where γ(g) = γ′(g′1), is an isomorphism of left (G×G′)-sets.

2.3. Similarly, we may view Γ as a right G × G′-set, where x · (g, g′) =
γ(g)−1xγ′(g′), for all x ∈ Γ, g ∈ G, g′ ∈ G′. Then the maps

(G×G′)/K → Γ, K(g, g′) 7→ γ(g−1g1),

where γ(g1) = γ′(g′), and

(G×G′)/K → Γ, K(g, g′) 7→ γ′((g′1)
−1g′),

where γ(g) = γ′(g′1), are isomorphisms of G×G′-sets.

3. BIGRADED O(G×G′)-INTERIOR ALGEBRAS AND THE ASSOCIATED

Γ-GRADED ALGEBRAS

3.1. Let A be an O-algebra which is both an OG-interior and an OG′-interior
algebra, that is, we are given two O-algebra homomorphisms

φ : OG → A and φ′ : OG′ → A.

We denote

g · a := φ(g)a, a · g = aφ(g), g′ · a := φ′(g′)a, a · g′ = aφ′(g′),
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for all g ∈ G, g′ ∈ G′ and a ∈ A. This equivalent to say that A is an O(G×G′)-
interior algebra via the map φ⊗ φ′ : O(G×G′) → A.

Note also that the maps γ and γ′ of 2.1 induce obvious Γ-gradings on OG
and OG′.

Definition 3.2. We say that the O(G×G′)-interior algebra A is Γ-bigraded,
if there is a decomposition

A =
⊕
x,y∈Γ

xAy,

as O-modules, and the following axioms hold.

(1) For all xay ∈ xAy, zat ∈ zAt we have xay · zat ∈ xAt if y = z, and the
product is 0 otherwise;

(2) g · xay ∈ (g,1)·xAy,
(3) g′ · xay ∈ (1,g′)·xAy,
(4) xay · g ∈ xAy·(1,g),
(5) xay · g′ ∈ xAy·(1,g′),

for all (g, g′) ∈ G×G′, x, y ∈ Γ. We will also denote A = ΓAΓ.

Remark 3.3. It is clear that that the axioms (2) – (5) can be replaced by
the equivalent conditions

(2′) (g, g′) · xay ∈ (g,g′)·xAy,
(3′) xay · (g, g′) ∈ xAy·(g,g′),

for all (g, g′) ∈ G×G′, x, y ∈ Γ.

Definition 3.4. Let A = ΓAΓ =
⊕

x,y∈Γ xAy be a Γ-bigraded O(G × G′)-
interior algebra. We associate to A two Γ-graded algebras denoted ΓA =⊕

y∈Γ yA and AΓ =
⊕

y∈ΓAy.
Let g ∈ G and g′ ∈ G′, let γ(g) =: y and γ′(g′) =: z, and denote

yA :=
⊕
x∈Γ

(g,1)·xAx =
⊕
x∈Γ

yxAx

and
Az :=

⊕
x∈Γ

(1,g′)·xAx =
⊕
x∈Γ

xz−1Ax =
⊕
t∈Γ

tAtz.

The proof of the following statement is left to the reader.

Proposition 3.5. With the above notations, the following hold:

(1) A =
⊕

y∈Γ yA, xA · yA ⊆ xyA for all x, y ∈ Γ, and ϕ : OG → ΓA is a
homomorphism of Γ-graded algebras.

(2) A =
⊕

y∈ΓAy, Ax · Ay ⊆ Axy for all x, y ∈ Γ, and ϕ : OG′ → AΓ is a
homomorphism of Γ-graded algebras.
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4. ACTIONS AND FIXED SUBALGEBRAS

4.1. Let A be an O(G×G′)-interior Γ-bigraded algebra. As usual, if (g, g′) ∈
G×G′ and a ∈ A we denote the action of (g, g′) on a by

a(g,g
′) := (g, g′)−1 · a · (g, g′).

Next, for any g ∈ G and g′ ∈ G′, we set ag := a(g,1) and ag
′
:= a(1,g

′).
For any subgroup H of G, any subgroup H ′ of G′, and any subset Ã of A

that is acted by H and H ′, let

ÃH := ÃH×1 = {a ∈ Ã | ah = a for all h ∈ H}
and

ÃH′
:= Ã1×H′

= {a ∈ Ã | ah′
= a for all h′ ∈ H ′}.

The following result lists the properties of this action.

Proposition 4.2. Let g ∈ G, g′ ∈ G′, x, y ∈ Γ and set γ(g) = t, γ′(g′) = z.
Then, for any xay ∈ xAy, ya ∈ yA and ay ∈ Ay,

(1) xa
g
y ∈ t−1xAt−1y;

(2) xa
g′
y ∈ xzAyz;

(3) ya
g′ ∈ yA;

(4) agy ∈ Ay;
(5) ya

g ∈ ytA;

(6) ag
′

y ∈ Ayz ;

Proof. The first two assertions are clear. Let ya =
∑

x∈Γ yxax and ay =∑
x∈Γ xaxy. Then we have

ya
g′ =

∑
x∈Γ

yxzaxz =
∑
w∈Γ

ywaw,

agy =
∑
x∈Γ

t−1xat−1xy =
∑
w∈Γ

wawy,

ya
g =

∑
x∈Γ

t−1yxat−1x =
∑
x∈Γ

t−1ytt−1xat−1x =
∑
w∈Γ

ytwaw,

ag
′

y =
∑
x∈Γ

xzaxyz =
∑
x∈Γ

xzaxzz−1yz =
∑
w∈Γ

wawyz ,

and the proof is complete. �
Corollary 4.3. Let H be a subgroup of G and H ′ a subgroup of G′. Then,

(AΓ)
H =

⊕
y∈Γ

(Ay)
H =

⊕
y∈Γ

(AH)y

is a Γ-graded subalgebra of AΓ, and

(ΓA)
H′

=
⊕
y∈Γ

(yA)H
′
=

⊕
y∈Γ

y(A
H′
)
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is a Γ-graded subalgebra of ΓA.
Moreover, ϕ and ϕ′ induce homomorphisms OG → (ΓA)

H′ and OG′ →
(AΓ)

H of Γ-graded algebras.

5. THE ENDOMORPHISM ALGEBRA OF A Γ-GRADED O(G×G′)-MODULE

This section consists of an example of the above discussion.

5.1. We fix a Γ-graded O-module M =
⊕

x∈ΓMx, and set

A := EndO(M).

We also assume that M is an O(G×G′)-module satisfying

(g, g′) ·mx ∈ M(g,g′)·x,

for any pair (g, g′) ∈ G×G′ and any x ∈ Γ. In other words, M is a Γ-graded
OG⊗ (OG′)op-bimodule via

(g, g′) ·mx = g ·mx · (g′)−1.

Then it is well-known that A is an O(G×G′)-interior algebra via

G×G′ ∋ (g, g′) 7→ φ(g,g′) ∈ A,

where
φ(g,g′)(m) = (g, g′) ·m

for all m ∈ M . Note that AG = EndO(G×1)(M) and AG′
= EndO(1×G′)(M).

The O-algebra A carries a Γ-bigraded structure A =
⊕

x,y∈Γ xAy, defined
as follows.

Definition 5.2. a) For any x, y ∈ Γ, let yAx be the O-submodule of A
consisting of endomorphisms that send Mx to My and everything else to zero.

b) For any a ∈ A and x, y ∈ Γ, define the endomorphism yax ∈ A by

yax(mz) =

{
a(mz)y if x = z

0 if x ̸= z,

for any mz ∈ Mz and any z ∈ Γ.

5.3. It is not difficult to verify that yax ∈ yAx for all x, y ∈ Γ, a =∑
x,y∈Γ yax, and that we have the direct sum decomposition into O-submodules

A =
⊕

x,y∈Γ xAy.

We have seen in Proposition 4.2 and Corollary 4.3 that we have two possi-
bilities to define a Γ-grading on A. The next remarks should be compared with
[1, Section 3]

5.4. Consider first ΓA =
⊕

y∈Γ yA, where for each y ∈ Γ we have yA =⊕
x∈Γ yxAx. In our situation one easily verifies that

yA = {f ∈ A | f(Mx) ⊆ Myx for all x ∈ Γ}.
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Since A is an O(G×G′)-interior algebra, it is also an OG-interior algebra via

G ∋ g 7→ φg ∈ A,

where φg(m) = g ·m, for any m ∈ M. This satisfies

φg(mx) = g ·mx ∈ Myx,

for any x ∈ Γ, where γ(g) = y. Further, any element of γ(g) = y maps to an
element of yA. Finally, since g ·mx = (g, 1) ·mx, we get

(φg(mx))
g′ = (g′)−1 · ((g, (g′)) ·mx) = g ·mx,

for any x ∈ Γ and any g′ ∈ G′.

5.5. The other case is when we take AΓ =
⊕

y∈ΓAy, where

Ay =
⊕
x∈Γ

xAxy =
⊕
t∈Γ

ty−1At..

Then we have

Ay = {f ∈ A | f(Mx) ⊆ Mxy−1 for all x ∈ Γ}.

Now AΓ is an OG′-interior algebra via

G′ ∋ g′ 7→ φ′
g′ ∈ AΓ,

where φ′
g′(m) = g′ ·m = (1, g′) ·m, for any m ∈ M. Then φ′

g′(mx) ∈ Mxy−1 ,

where γ′(g′) = y, for any x ∈ Γ and any mx ∈ Mx.

Corollary 5.6. With the notations of this section we have:
(1) The endomorphism algebra A := EndO(M) is a Γ-bigraded O(G×G′)-

interior algebra.
(2) The map g 7→ φg is a Γ-graded algebra homomorphism from OG to

ΓA
G′

= EndO(1×G′)(M).
(3) The map g′ 7→ φ′

g′ is a Γ-graded algebra homomorphism from OG′ to
AG

Γ = EndO(G×1)(M).

6. Γ-GRADED OG-INTERIOR HECKE ALGEBRAS

This section is devoted to the graded structure of the so-called Hecke OG-
interior algebras that were introduced in [4, Chapter 4]. We briefly recall the
construction made there.

6.1. Let Ḧ be a subgroup of K, let B̈ an OḦ-interior algebra, and consider,
as in [5, Section 16], the induced algebra

Ä := IndG×G′

Ḧ
(B̈) = O(G×G′)⊗OḦ B̈ ⊗OḦ O(G×G′).
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Recall that the multiplication is given by

(g, g′)⊗ b̈⊗ (h, h′) · (x, x′)⊗ b̈′ ⊗ (y, y′)

=

{
(g, g′)⊗ b̈ · (h, h′)(x, x′) · b̈′ ⊗ (y, y′), if (h, h′)(x, x′) ∈ Ḧ

0, if (h, h′)(x, x′) /∈ Ḧ
.

Since IndG×G′

Ḧ
(B̈) is an O(G × G′)-interior algebra it is also OG-interior.

Actually, it is easily checked that OG maps to IndG×G′

Ḧ
(B̈)1×G′

. We denote
B̂ := IndK

Ḧ
(B̈), and we begin with some properties of Ä.

Definition 6.2. The algebra

Â := Ä1×G′
= IndG×G′

Ḧ
(B̈)1×G′ ≃ IndG×G′

K (B̂)1×G′

is called the Hecke OG-interior algebra determined by G′, Ḧ and B̈.

Proposition 6.3. The O(G×G′)-interior algebra Ä is Γ-bigraded.

Proof. Note that Ä ≃ IndG×G′

K (B̂) as O(G × G′)-interior algebras. Then
there is the decomposition Ä =

⊕
x,y∈Γ yÄx, where for all y, x ∈ Γ the O-

module yÄx consists of sums of elements of the form (g, g′)⊗b̂⊗(h, h′) such that,
according to Lemma 2.2 and Remark 2.3, γ(gg−1

1 ) = y and γ((h1)
−1h) = x−1.

Clearly γ(g1) = γ′(g′) and γ(h1) = γ′(h′). �

Remark 6.4. There are three other ways to express the grading on Ä.
The monomial (g, g′)⊗ b̂⊗ (h, h′) belongs to the submodule yÄx if one of the
following equivalent statements hold:

(1) γ(gg−1
1 ) = y and γ′((h′1)

−1h′) = x−1, where γ(g1) = γ′(g′) and γ(h) =
γ′(h′1);

(2) γ′(g′(g′1)
−1) = y and γ((h1)

−1h) = x−1, where γ(g) = γ′(g′1) and
γ(h1) = γ′(h′);

(3) γ′(g′(g′1)
−1) = y and γ′((h′1)

−1h′) = x−1, where γ(g) = γ′(g′1) and
γ(h) = γ′(h′1).

Proposition 6.5. The following isomorphisms of Γ-bigraded algebras hold:

Ä ≃ OG⊗ON B̂ ⊗ON OG(1)

≃ OG′ ⊗ON ′ B̂ ⊗ON ′ OG′(2)

≃ OG′ ⊗ON ′ B̂ ⊗ON OG(3)

≃ OG⊗ON B̂ ⊗ON ′ OG′(4)

Proof. Let the monomial g ⊗ b̂ ⊗ h ∈ OG ⊗ON B̂ ⊗ON OG correspond to
(g, 1) ⊗ b̂ ⊗ (h, 1) ∈ Ä. One easily checks that this is an isomorphism of O-
algebras, and moreover, by Proposition 6.3 and Remark 6.4 it is a Γ-bigraded
algebra homomorphism. The other isomorphisms can be similarly verified. �
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Remark 6.6. The above Remark 6.4 guarantees the fact that the elements
of Ä can be written by using the representatives of the classes of Γ. This
means that it suffices to choose elements of the form (g, 1) ⊗ b̂ ⊗ (h, 1) or
(1, g′)−1 ⊗ b̂′ ⊗ (1, h′)−1, and if these two coincide, we get by Proposition 2.2
and Remark 2.3 that γ(g) = γ′(g′) = y and γ(h) = γ′(h′) = x, so that this
element lies in yÄx.

One may check that, fixing y ∈ Γ, the element (g, 1) ⊗ b̂ ⊗ (h, 1) lies in yÄ
if and only if γ(g)γ(h) = y. Similarly, the same element belongs to Ay if and
only if γ(g)−1γ(h)−1 = y. At the same time, due to the above discussion, we
also have other characterizations of these gradings which can be considered.

We may connect these results with the previous section, as it is well-known
that induced algebras as above occur as endomorphism algebras over O of
modules induced from subgroups.

6.7. Let M̈ be an OḦ-module and denote M̂ := IndK
Ḧ
(M̈) and M :=

IndG×G′

H (M̂). Also let B̂ := EndO(M̂), and let Ä := IndG×G′

K (B̂) as in 6.1.

Corollary 6.8. With the above setting, there is an isomorphism of Γ-
bigraded O(G×G′)-interior algebras

Ä ≃ EndO(M).

Furthermore, this isomorphism restricts to an isomorphism of Γ-graded OG-
interior algebras

Â ≃ EndOG′(M),

and to an isomorphism of Γ-graded OG′-interior algebras

ÄG ≃ EndOG(M).

Proof. We only need to prove the first statement since the second and the
third one follow from this and Corollary 4.3. First note that by [3, Lemma
1.6.3], we have the isomorphisms

M ≃ IndGN (M̂) ≃ IndG
′

N ′(M̂).

Here we choose to work with representatives of G/N. The well-known isomor-
phism given by [5, Example 16.4], sends an element g ⊗ f ⊗ h ∈ Ä to the
endomorphism of M defined by

(g ⊗ f ⊗ h)(t⊗m) =

{
g ⊗ f(ht ·m), if ht ∈ K, or equivalently ht ∈ N,

0, if ht /∈ N.

for any t ∈ G and z⊗m ∈ Mγ(t) := (t, 1)⊗M̂ . We denote γ(g) = y, γ(h−1) = x
and γ(t) = z, and setting yax := g ⊗ f ⊗ h, Definition 5.2 and Definition 3.2
imply the statement. �
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7. THE Γ-GRADED ISOMORPHISM OF HECKE OG-INTERIOR ALGEBRAS

7.1. We return to the notations introduced at the beginning of Section 6.
Further denote by ρ : Ḧ → G and ρ′ : Ḧ → G′ respectively, the restriction to
Ḧ of the projections G × G′ → G and G × G′ → G′. We also restrict these
two projections to K, respectively denoted by πK and π′

K . If i : Ḧ → K is the
inclusion, then ρ = πK ◦ i and ρ′ = π′

K ◦ i. Recall, see [4, Section 3], that

Indρ(B̈ ⊗O Resρ′(OG′)) = IndG
ρ(Ḧ)

((O ⊗O(1×T ′) (B̈ ⊗O Resρ′(OG′)))1×T ′
),

where 1× T ′ := Ker(ρ) = Ḧ ∩ 1×G′ ≤ 1×N ′.

7.2. We rearrange the algebra Indρ(B̈⊗OResρ′(OG′)) as follows. First note
that, according to [4, Proposition 3.16], we have

IndK
Ḧ
(B̈ ⊗O Resρ′(OG′)) ≃ IndK

Ḧ
(B̈)⊗O Resπ′

K
(OG′).

Then [4, Corollary 3.13] shows that

Indρ(B̈ ⊗O Resρ′(OG′)) ≃ IndπK◦i(B̈ ⊗O Resρ′(OG′))

≃ IndπK (Ind
K
Ḧ
((B̈ ⊗O Resρ′(OG′))))

≃ IndπK (Ind
K
Ḧ
(B̈)⊗O Resπ′

K
(OG′))

≃ IndπK (B̂ ⊗O Resπ′
K
(OG′)).

Now πK is an epimorphism with kernel 1 × N ′, and by using [4, Section 3]
again, we identify the algebra Indρ(B̈ ⊗O Resρ′(OG′)) with

Ĉ := (O ⊗O(1×N ′) (B̂ ⊗O Resπ′
K
(OG′)))1×N ′

,

as OG-interior algebras.

Proposition 7.3. Ĉ is a Γ-graded OG-interior algebra.

Proof. Note that Ĉ is indeed an OG-interior algebra via the map

g 7→ g · 1Ĉ = 1Ĉ · g = 1⊗ (g, g′) · 1B̂ ⊗ g′,

where g′ ∈ G′ satisfies γ(g) = γ(g′). It is clear that the definition of this
homomorphism does not depend on the choice of g′ ∈ G′ since, by [4, 3.2], the
action of 1 × N ′ on O ⊗O(1×N ′) (B̂ ⊗O Resπ′

K
(OG′)) coincides with the right

multiplication. We have

O ⊗O(1×N ′) (B̂ ⊗O Resπ′
K
(OG′)) =

⊕
g′∈[G′/N ′]

O ⊗O(1×N ′) (B̂ ⊗O Og′N ′),

as O-modules. Moreover, for any g′ ∈ G′/N ′ the O-module O⊗O(1×N ′) (B̂⊗O

Og′N ′) is (1×N ′)-invariant. Hence we can view Ĉ =
⊕

y∈Γ yĈ, where for any
y ∈ Γ we have

yĈ := (O ⊗O(1×N ′) (B̂ ⊗O Og′N ′))1×N ′
,
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and γ′(g′) = y. Now let g ∈ G such that γ(g) = y and let g′ ∈ G′ such that
γ′(g′) = γ(g), then by the above remark g, which lies in the y-component of
OG, maps to yĈ. �

7.4. We are now ready to point out the graded structure of the isomorphism
given in [4, Theorem 4.4]. In the above setting, we recall that this theorem
says that there is an isomorphism of OG-interior algebras

IndG×G′

Ḧ
(B̈)1×G′ ≃ Indρ(B̈ ⊗O Resρ′(OG′)),

mapping Tr1×G′

1×T ′ ((1, g′)−1 ⊗ b̈⊗ (1, 1)) to 1⊗ (1⊗ (b̈⊗ g′))⊗ 1.

Theorem 7.5. With the above notations, 7.4 defines an isomorphism of
Γ-graded OG-interior algebras from Â to Ĉ.

Proof. Recall that we have identified Â with IndG×G′

K (B̂)1×G′ and Ĉ with

(O ⊗O(1×N ′) (B̂ ⊗O Resπ′
K
(OG′)))1×N ′

,

where B̂ = IndK
Ḧ
(B̈). Recall also that Corollary 4.3, Proposition 6.3 and Propo-

sition 7.3 show that Â and Ĉ are Γ-graded algebras. Moreover, the isomor-
phism 7.4 from Â to Ĉ maps

â := Tr1×G′

1×N ′((1, g
′)−1 ⊗ b̂⊗ (1, 1))

to ĉ := 1⊗ (b̂⊗ g′), for any g′ ∈ G′ and b̂ ∈ B̂. All we need to prove is that this
isomorphism preserves the gradings. If y := γ′(g′), Remark 6.6 shows that â
belongs to the y-component, and so does ĉ. �
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