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Objectives:  

O1. Studiul punctului de stagnare a unei curgeri rotationale axisimetrice in nanofluide pe o 

suprafata ce   se extinde/contracta folosind modelul matematic a lui Buongiorno 

The novel concept of nanofluids, first introduced by Choi (1995),  has been proposed as a route to 

surpassing the performance of heat transfer fluids currently available. He has shown that heat 

transfer can be enhanced by employing various techniques and methodologies, such as increasing 

either the heat transfer surface or the heat transfer coefficient between the fluid and the surface, that 

allow high heat transfer rates in a small volume. Nanofluids occur naturally in a wide rangeof 

scientific fields which, recently has attracted the attention of researchers from a diverse range of 

fields such as chemical and mechanical engineering, biology, nuclear reactors, solar ponds, 

geothermal reservoirs, solar collectors, crystal growth in liquids, electronic cooling, chemical 

processing, etc. It is worth mentioning that many references on nanofluids can be found in the books 

by Nield and Bejan (2013), and Shenoy et al. (2016), and in the review papers by Buongiorno 

(2006), Mahian et al. (2013), Myers et al. (2017), etc. 

 

During the period July, 12
th

  2017 – December, 31
st
 2017  the following articles indexed in the 

Web of Science Database were published: 

1. M.A. Sheremet, I. Pop and O. Mahian, Natural convection in an inclined cavity with time-

periodic temperature boundary conditions using nanofluids: Application in solar collectors. 

International Journal of Heat and Mass Transfer 116 (2018) 751–761. Impact factor for 2016: 

3.458.   
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During the period July, 12
th

  2017 – December, 31
st
 2017  the following articles indexed in the 

Web of Science Database were acepted/sent for publication: 

2. Cornelia Revnic, Eiyad Abu –Nada, Teodor Grosan and Ioan Pop, Natural convection in a 

rectangular cavity filled with nanofluids: effect of variable viscosity. International Journal of 

Numerical Methods for  Heat  and Fluid Flow (accepted). Impact factor for 2016: 1.713.  

3. M. Sheremet, I. Pop and A.V. Roşca, The influence of thermal radiation on unsteady free 

convection in  inclined enclosures filled by a nanofluid with sinusoidal boundary conditions. . 

International Journal of Numerical Methods for Heat and Fluid Flow. Impact factor for 2016: 

1.713. 

4. Natalia C. Roşca, Alin V. Roşca, Ioan Pop, MHD stagnation-point flow and heat transfer of a 

nanofluid  over a stretching/shrinking sheet with melting, convective heat transfer and second order 

slip. Applied Mathematics and Computations (sent for  publiction). Impact factor for 2016: 1.738. 

5. Teodor Groşan, Mikhail A. Sheremet, Ioan Pop and Serban Rareş Pop, Double-diffusive natural  

convection in a differentially heated wavy cavity under thermophoresis effect,  AIAA Journal of 

Thermophysics and Heat Transfer (sent for publication) ). Impact factor for 2016:  1.315 

 

During the period July, 12
th

  2017 – December, 31
st
 2017  the following takls were given to 

conferences: 

6. Natalia C. Rosca, Cost Action CA15119 (NANOUPTAKE) for the 2
nd

 Grant Period (Lisbon, 

Portugal, 9 to 12 October 2017), where She has presented the paper: Axisymmetric rotational 

stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid 

using Tiwari and Das model by Natalia C. Roşca and Ioan Pop. 

7. Alin Rosca, Cost Action CA15119 (NANOUPTAKE) for the 2
nd

 Grant Period (Lisbon, Portugal, 9 

to 12 October 2017), where he has presented the paper: MHD oblique stagnation-point flow for a 

Boussinesquian nanofluid past a stretching/shrinking sheet using Buongiorno’s model by A. Borrelli, 

G. Giantesio, M.C. Patria, N.C. Roşca, A.V. Roşca and I. Pop. 

 

During the period July, 12
th

  2017 – December, 31
st
 2017  the following articles are in progress: 

8. Teodor Grosan, Ioan Pop, Flow and heat transfer over a permeable bi-axial stretching/shrinking 

sheet in  a nanofluid. 

9. J.H. Merkin, N.C. Rosca, A.V. Rosca, I. Pop, Nanofluid flow by a permeable stretching/shrinking 

cylinder. 
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10. M.A. Sheremet, I. Pop, A.C. Baytaş, Non-equilibrium natural convection in a differentially 

heated nanofluid cavity partially field with a porous medium 

11. M.A. Sheremet, I. Pop, Marangoni natural convection in a cubical cavity filled with a nanofluid:  

Buongiorno’s nanofluid model 

 

Paper 1. Natural convection in an inclined cavity with time-periodic temperature boundary    

                conditions using nanofluids: Application in solar collectors. 

 

In this paper, the natural convection of alumina-water nanofluid inside a square cavity with time-

sinusoidal temperature is studied numerically. The domain of interest is an inclined square cavity 

having isothermal wall at x L , while temperature of the wall 0x   is changed as a sinusoidal 

function of time, other walls are adiabatic. Dimensionless governing equations formulated using 

stream function, vorticity and temperature are 
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                                   (4) 

In order to determine the total heat transfer rate, we need to define the local heat transfer rate along 

the left vertical wall by the local Nusselt number as follows 0)/()/(  xffn xkkNu  . Thus, the 

average Nu  Nusselt number is defined by 
1

0

ydNuNu . 

The governing equations (1)–(3) with corresponding initial and boundary conditions (4) have been 

solved numerically by finite difference method of the second order accuracy (Sheremet and Pop, 
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2015; Sheremet et al., 2014,2015). In order to validate the present numerical code, the experimental 

(Ho et al., 2010) and  numerical (Saghir et al.,  2016) results are compared with the present one. 

Values of Nu  for  
71074547.7%,1  Ra  and 0659.7Pr   are 32.2037 (Ho et al., 2010) and 

30.657 (Shagir et al., 2016).  It can be clearly seen that the results obtained demonstrate that the 

present results are accurate. Streamlines and isotherms of the considered natural convection within a 

square cavity are presented in Figs. 1 and 2  for Ra = 10
5
, f = 0.05,  = 0  with  = 0.03. 

 

Fig. 1. Streamlines for a period of oscillations for Ra = 10
5
, f = 0.05,  = 0 and  = 0.0 (solid lines), 

 = 0.03 (dashed lines) 
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Fig. 2. Isotherms for a period of oscillations for Ra = 10
5
, f = 0.05,  = 0 and  = 0.0 (solid lines), 

 = 0.03 (dashed lines) 

 

Paper 2. Natural convection in a rectangular cavity filled with nanofluids: effect of variable  

                viscosity 

 

Consider the free convection in a two-dimensional square cavity filled with a CuO-water nanofluid. 

The height and the width of the enclosure are given by H  and W , respectively. The left wall is 

heated and maintained at a constant temperature HT , while the right wall is cooled and maintained at 

a constant temperature CT  where CH TT  , and the top and the bottom walls are considered 
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adiabatic. The nanoparticle flux 









 


C

TpBpp
T

T
DDj   is assumed zero on the walls of the 

cavity. The thermal diffusivity, density, and heat capacitance of the nanofluid is written as:  

            ppbfpbnfppbfbnf
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)()(1)(,1,
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where the symbol b denotes the average volume concentration of the nanoparticles in the enclosure. 

The effective thermal conductivity of the nanofluid 
nfk  is expressed by the model: 
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The governing equations in dimensionless form are given as: 
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The boundary conditions for these equations are 

1- On the hot wall :0x    0,1,,0
2
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3- On the top and bottom walls 0and1  yy : 0,0,,0
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respectively, for the second case, 
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where 3.10781585720587
2

  bbA  and 8715.2548.5312.107
2
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The average Nusselt and Sherwood numbers are given by  

                            dyyShShdyyNuNu avgavg  
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1

0

)(,)(                                                          (10) 

In order to solve the governing partial differential equations along with the boundary conditions we 

have used a central finite-difference discretization. The algebraic system obtained after discretization 

has been solved using the Gauss-Seidel iteration for uniform grid of different size. A mash having 

150x150 points is suitable for this problem and the following criteria were used to check the 

convergence of the method  




new

oldnew

 where   is either the variable ,  ,   or  , and   

is a prescribed error, which, depends on the values of the governing parameters and was taken as 

810 . The values of governing parameters are the Rayleigh number 43 10,10Ra   and 510 , the 

volume fraction 02.0b  and 05.0  and the difference between the hot and the cold wall is fixed to 

C010 . The temperature of cold and hot wall is taken as CCCTc

000 70,40,22  and 

.80,50,32 000 CCCTh   
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b) 

 

Fig. 1.  Isotherms, streamlines and concentration lines for different volume fractions at Ra = 10
3  

                 
CT =22

o
, hT =32

o
, a) b = 0.02, b) b = 0.05.

 

 

The influence of the volume fraction number 
b  on the isotherms, streamlines and volume 

concentration for the dynamic viscosity of nanofluid) and for temperature of hot and cold walls equal 

to CT o
h 32  and  CT o

c 22  are displayed in Figs. 1 and 2. It is observed that when convection falls 

in the range 53 1010  Ra  the heat transfer from the hot to cold wall increases. Also, the fluid 

motion is augmented and the volume concentration patterns    are strongly modified by the 

temperature distribution. Moreover, the single central vortex of streamlines at 310Ra  (Fig. 1) 

present two vortices at 510Ra  (Fig. 2). As it is seen in Fig.2, a higher-energy of nanoparticles 

transports through the flow become more clearly. In addition, for all the values of Ra , the central 

vortex of streamlines rotates clockwise as the volume fraction 
b  increases. The growth of the 

boundary layers increase with increasing of Ra . 
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b) 

Fig. 2. Fig. 3 Isotherms, streamlines and concentration lines for different volume fractions at Ra =  

           10
4
, CT =22

o
, hT =32

o
, a) b  = 0.02, b) b  = 0.05. 

 

 

Paper 3.  The influence of thermal radiation on unsteady free convection in  inclined enclosures  

                 filled by a nanofluid with sinusoidal boundary conditions 

 

1. Mathematical formulation of the problem 

The physical model of free convection in an inclined square cavity filled with Al2O3-water nanofluid 

and the coordinate system are schematically shown in Fig. 1. The domain of interest includes the 

nanofluid-filled cavity (shown in Fig. 1) with a sinusoidal temperature distribution along left wall. 

Horizontal walls are supposed to be adiabatic, while right vertical wall is kept at constant low 

temperature Tc. Temperature of left wall varies sinusoidally along y-coordinate. It is assumed in the 

analysis that the thermophysical properties of the fluid are independent of the temperature, and the 

flow is laminar. 



10 

 

 

Fig. 1. A scheme of the system 

 

       The nanofluid is Newtonian and the Boussinesq approximation is valid. The base fluid and the 

nanoparticles are in thermal equilibrium. It is considered that viscous dissipation is neglected. Taking 

into account the abovementioned assumptions the governing equations can be written in 

dimensionless Cartesian variables as follows 
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        (4) 

       The physical quantities of interest are the local Nusselt number Nu along the sinusoidal 

temperature wall and the average Nusselt number Nu , that are defined as 
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                  (5) 

 

2. Numerical procedure and results 

The governing equations (1) to (3) with corresponding initial and boundary conditions (4) have been 

solved numerically by finite difference method of the second order accuracy. In order to validate the 

present numerical code, the experimental and numerical studies of natural convection of nanofluid in 

a differentially heated square cavity are considered.  

       A grid independency study was performed using five different grid sizes (50×50, 100×100, 

200×200, 300×300 and 400×400) with Ra = 10
5
, Pr = 7.0,  = 0.03, Rd = 1,  = 0. The deviation of 

the average Nusselt numbers for 200×200, 300×300 and 400×400 is less than 0.5%. Hence, a grid 

size of 200×200 has been selected for obtaining the numerical results. 

       In the present study, we investigate transient natural convection of an alumina-water nanofluid 

in an inclined square cavity with a sinusoidal temperature profile along left vertical wall. The effects 

of the Rayleigh number (Ra = 10
4
–10

6
), inclination angle ( = 0–/3), nanoparticles volume fraction 

( = 0.0–0.04) and radiation parameter (Rd = 0–3) on the fluid flow and heat transfer are examined 

for Pr = 7.0. The results are presented in the form of isotherms and streamlines, as well as average 

Nusselt number, and nanofluid flow rate. The streamlines and isotherms are plotted by solid and 

dashed lines for the clear fluid ( = 0.0) and nanofluid ( = 0.04), respectively. 

       Figure 2 presents an evolution of streamlines and isotherms for Ra = 10
5
,  = 0, Rd = 1 in the 

case of clear fluid (solid lines) and nanofluid with  = 0.04 (dashed lines). The considered domain of 

interest is a differentially-heated cavity, where temperature along the left vertical wall is changed 

from 0 at y = 0 till 0 at y = 1 using sinusoidal law  sin y   with maximum value “1” at y = 0.5. 

At the same time, temperature along the right vertical wall is constant and has a minimum value “0” 

along this wall. Taking into account this horizontal temperature gradient and an influence of gravity 

force, convective flow evaluates inside the cavity. At  = 1 (Fig. 2a) we have heating from the left 

wall and cooling from the right one, as initial temperature is 0.5. Therefore, three convective cells are 

formed near the left wall, namely, one major circulation is located near the central part of this wall, 

where high temperature is kept and two minor circulations are formed at the left bottom and top 

corners of the cavity due to low temperature in these parts. One convective cell is formed close to the 

right wall. Temperature field illustrates a formation of isotherms near the isothermal vertical walls. A 

growth of time leads to a combination of two major convective cells with a displacement of the 
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obtained convective cell core, firstly, to the right part at  = 3 (Fig. 2b) and further to the central part 

at  = 10 (Fig. 2e). Isotherms reflect a formation of hot wave with ascending flows near the left wall 

and a cold wave with descending flows near the right vertical wall. 

 

 

Fig. 2. Streamlines  and isotherms  for Ra = 10
5
,  = 0, Rd = 1 and  = 0.0 (solid lines),  = 0.04 

(dashed lines):  = 1 – a,  = 3 – b,  = 5 – c,  = 7 – d,  = 10 – e,  = 20 – f,  = 50 – g,  = 200 – h. 

       An increase in time  > 10 leads to a dissipating of a left bottom corner circulation due to a 

reduction of temperature gradient in this zone, when cold wave from the right wall interacts with a 

cold wave from this corner. For a steady state one can find one major central vortex with ascending 

flows near the left wall and descending flows close to the right wall, and one minor circulation 

located in the upper left corner. Distributions of isotherms illustrate a formation of two thermal 

boundary layers along vertical isothermal walls. Central part of the cavity characterizes a formation 

of temperature stratification core with heating from the upper part and cooling from the bottom one. 

Described flow and heat transfer behavior is similar for clear fluid and nanofluid. There are some 

differences in streamlines and isotherms due to more inertial flow of nanofluid with low effective 

viscosity. It should be noted that temperature stratification of clear fluid occurs earlier in comparison 

with a nanofluid.  
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       Evolution of heat transfer and fluid flow rates are presented in Fig. 3 for different values of 

nanoparticles volume fraction. Evolution of average Nusselt number can be described as a change of 

three levels such as initial or heat conduction level with a reduction of Nu  due to heating of the 

surrounding fluid and as a result the temperature gradient decreases. The next level is a heat 

convection one, where average Nusselt number increases due to an intensive fluid flow and an 

interaction between hot and cold temperature waves with high temperature gradient. The final level 

is a steady state with constant value of average Nusselt number. The fluid flow rate reflects these 

levels for the flow structures. An increase in nanoparticles volume fraction leads to a reduction of 

average Nusselt number and fluid flow rate. 

 

 

Fig. 3. Variations of average Nusselt number at left wall (a) and maximum absolute value of stream 

function (b) with time for Ra = 10
5
,  = 0, Rd = 1 and different values of nanoparticles volume 

fraction. 

 

3. Conclusions 

The transient natural convection and radiation heat transfer in an inclined square cavity filled with an 

alumina-water nanofluid has been investigated. The left thermal boundary condition is assumed to be 

a sinusoidal function of y-coordinate and the right one is kept at constant low temperature, while 

other walls are adiabatic. It has been found that an evolution of average Nusselt number and fluid 

flow rate can be described as a change of three levels such as initial or heat conduction level, heat 

convection level and steady state level. The average Nusselt number and fluid flow rate are 

increasing functions of the Rayleigh number and radiation parameter, and decreasing functions of 

nanoparticles volume fraction. A growth of the cavity inclination angle in the considered range leads 

to a rise of convective flow intensity, while the heat transfer rate is a nonlinear function of the cavity 
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inclination angle. It is possible to conclude that cavity inclination angle can be very good control 

parameters for heat and fluid flow inside the cavity. 

 

Paper 4. MHD stagnation-point flow and heat transfer of a nanofluid over a  

                stretching/shrinking sheet with melting, convective heat transfer and second order  

                slip. 

 

Consider the two-dimensional MHD stagnation-point flow of a water-based nanofluid past a 

stretching/shrinking sheet. The sheet is stretched/shrunk with the velocity )(xU w , with fixed origin 

location, where x  is the coordinate measured along the stretching/shrinking sheet, as shown in Fig. 

1, while the velocity of the ambient (inviscid) fluid is )(xue . The nanofluid flows at 0y , where y  

is the coordinate normal to the surface. It is assumed that the fluid is electrically conducted and a 

constant magnetic field 0B
 

is applied normal to the stretching/shrinking sheet. The magnetic 

Reynolds number is assumed small and so, the induced magnetic field can be considered to be 

negligible. It is also assumed that the constant temperature of the melting surface is mT  and that of 

the nanoparticle fraction is wC , while that of the ambient fluid are T  and  C , respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Physical models and coordinate systems. 

The governing boundary layer equations of continuity, momentum, thermal energy and nanoparticles 

are given in Cartesian coordinates as 
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subject to the boundary conditions 
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Assuming that xcxUw )(
 
and  xcxue )(

 
with c  a positive constant, we look for a similarity 

solution of Eqs. (1) to (4) subject to the boundary conditions (5) of the following form 
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





                  (6) 

where prime denotes differentiation with respect to  . Thus, we have 

                                                                 
Scv 0                                                                  (7)                 

where cvS /0  is the constant mass flux parameter with 0S  for suction and 0S  for 

injection, respectively. 

        Substituting (6) into Eqs. (2) to (4), we obtain the following ordinary (similarity) differential 

equations 

                                           0)'1('1''''' 2  fMffff                                              (8) 

                                          0''''''
Pr

1 2   NtNbf                                                  (9) 

                                          0'''''  
Nb

Nt
fSc                                                                   (10) 

and the boundary conditions (5) become
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       The physical quantities of interest are the skin friction coefficient fC  and the local Sherwood 

number xSh  which are given by 

                                   )0('Re),0(''Re 2/12/1  

xxfx ShfC                                                 (12) 

where /)(Re xxU wx   is the local Reynolds number. 

          The system of coupled three ordinary differential equations (8) to (10) subject to the boundary 

conditions (11) was solved numerically using the function bvp4c from Matlab. Both the cases of 

stretching )0(   and shrinking )0(  sheets have been studied. The relative tolerance was set to 

710  . The results are given for several values of the governing parameters and they are presented in 

Figs. 2 and 3 for several values of   baM ,,, and  S , when 1Pr  , 1.0 NtNb  and 

1 MeSc . These figures illustrate the variation of the reduced skin friction coefficient )0(''f  and 

reduced Sherwood number )0(' . We observe from these figures that the system of equations (8) to 

(10) subject to the boundary conditions (11) admits multiple (dual) solutions, i.e. one upper branch 

solution and one lower branch solution, respectively. From the performed stability analysis it follows 

that the upper branch solutions are stable and physically realizable, while the lower branch solutions 

are not stable and hence physically not realizable. 

          Figures 2 and 3 show that for both )0(''f  and )0('  the dual solutions exist only for the 

shrinking sheets case. Here 0ic  are the critical values of 0  starting from which the system of 

equations (8) to (10) subject to the boundary conditions (11) has at least one solution. From Fig. 2 we 

notice that the reduced skin friction coefficient increases with M  for the upper branch solution. 

From Fig. 3 we observe an asymptotic behavior of the reduced Sherwood number near the critical 

values for the lower branch solutions. Also, sample velocity, temperature and concentration profiles 

along both solution branches are graphically presented. 
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Fig. 2. Variation of  )0(''f  with  for several values 

of M  when 1S , 1.0a  and 1.0b . 

 

 

Fig. 3. Variation of  )0('  with  for several values of M  when 1Pr  , 

1.0 NtNb , 1 MeSc , 1S , 1.0a  and 1.0b . 
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Paper 5. Double-diffusive natural convection in a differentially heated wavy cavity under  

                thermophoresis effect  

 

We analyze the free convective flow and heat transfer of a warm gas, containing suspended aerosol 

particles, inside a differentially heated square cavity with a wavy isothermal wall. The domain of 

interest is presented in Fig. 1. The considered enclosure is kept at constant temperatures T1 and T2 

and constant concentrations C1 and C2 at the left wavy and right flat walls, while horizontal walls are 

adiabatic and impermeable.  

Except for the density, the properties of the fluid are taken to be constant. It is further assumed that 

the effect of buoyancy is included through the Boussinesq approximation in the following form: 

   0 1 T c C cT T C C          . 

Therefore the dimensionless equations can be written as follows 
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with the following boundary conditions 
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Here  3

TRa g TL    is the Rayleigh number, Pr    is the Prandtl number, C
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thermophoresis parameters, h cC C C    and h cT T T   . 

 

 

Fig. 1. Physical model and coordinate system 

 

The physical quantities of interest are the local Nusselt number Nu and local Sherwood number 

along the hot wavy wall and average Nusselt number Nu  and average Sherwood number Sh . 

 

 

Fig. 2. Variation of the average Nusselt number of the left vertical wall (a) and fluid flow  

rate inside the cavity (b) versus the dimensionless time and the mesh parameters 
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The cavity in the x and y plane, i.e., physical domain, is transformed into a rectangular geometry in the 

computational domain using an algebraic coordinate transformation by introducing new independent 

variables  and . The left and right walls of the cavity become coordinate lines having constant values 

of . The independent variables in the physical domain are transformed to independent variables in the 

computational domain by the following equations: 

 

 

 
1

1 cos 2
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x a b yx x

a b y
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

    
 

  




 (6) 

The governing equations with corresponding boundary conditions were solved using the finite 

difference method of the second order accuracy.  For the purpose of obtaining grid independent 

solution, a grid sensitivity analysis is performed (see Fig. 2).  

 

Fig. 3. Streamlines , isotherms  and isoconcentrations for case I and  = 1.0, kT = 0.5,  = 1: 

Sc = 0.1 – a, Sc = 1.0 – b, Sc = 10.0 – c 
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Figure 3 present distributions of streamlines, isotherms and isoconcentrations inside the wavy cavity 

in the case of different boundary conditions and for various values of Schmidt number. It should be 

noted that used boundary conditions reflect the effect of wavy wall on deposition and ablation of 

small particles at curved wall. 

For Sc = 0.1 and Sc = 1.0 one can find a domination of heat and mass diffusion mechanism when 

isothermal and isoconcentrations are parallel to vertical walls of constant temperature and 

concentration. Moreover, taking into account the thermophoresis effect the small particles are 

distributed uniformly inside the cavity.  

 

 

Conferences 

 

Alin Roşca, Participant NANOUPTAKE COST 

ACTION (CA15119), Event 2, Working Groups 

Meeting, WG.1 Heating, Faculty of Sciences, 

University of Lisbon, Portugal, 9-10  October 2017. 

 

Title of the presentation:  

MHD oblique stagnation-point flow for a 

Boussinesquian nanofluid past a stretching/shrinking 

sheet using Buongiorno’s model 

 

 

 

 

       In this work, the MHD oblique stagnation-point flow of a Boussinesquian nanofluid past an 

impermeable stretching/shrinking sheet is investigated using the mathematical nanofluid model 

proposed by Buongiorno. The governing partial differential equations are assimilated first into 

ordinary differential equations then solved numerically with a bvp4c function in MATLAB. The 

numerical integration shows that if the parameter   is negative, i.e. if   is a shrinking parameter, 

then the problem admits dual solutions in a certain range of   and the solution does not exist if   is 

less than some critical value. These results are in agreement with the theoretical results of Brighi. It 
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seems that Merkin is the first who find the presence of multiply solutions for the problem of mixed 

convection flow past a vertical flat plate embedded in a porous medium. 

       The influence of the governing parameters on the velocity, temperature, concentration, skin 

friction coefficient and the local Nusselt and Sherwood numbers are analyzed graphically. Our 

contribution is organized as follows. In Section 2 we formulate the problem. Section 3 is devoted to 

some physical and analytical considerations on the solutions of the problem. Section 4 discusses the 

results obtained by numerical integration. In particular, we underline the influence of   and M  on 

the flow with careful attention to the dual solutions and the thickness of the boundary layer. 

 

 

Natalia Roşca, Participant at NANOUPTAKE COST 

ACTION (CA15119), Event 2, Working Groups 

Meeting, WG. 1 Heating, Faculty of Sciences, 

University of Lisbon, Portugal, 9-10 October, 2017. 

 

Title of the Presentation 

Axisymmetric rotational stagnation point flow 

impinging radially a permeable stretching/shrinking 

surface in a nanofluid using Tiwari and Das model 

 

 

 

The present work is concerned with the extension of the paper by Weidman upon the axisymmetric 

rotational stagnation point flow impinging on a radially stretching sheet from the case of a viscous 

fluid to the case of a water based nanofluid by using the mathematical nanofluid model proposed by 

Tiwari and Das. In addition, we have studied also the case of a shrinking sheet. A similarity 

transformation is used to reduce the system of governing nonlinear partial differential equations to a 

system of ordinary differential equations, which is then solved numerically using the function bvp4c 

from Matlab. It is found that dual (upper and lower branch) solutions exist for some values of the 

governing parameters. From the performed stability analysis for the dual solutions, it is found that 
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the upper branch solution is stable, and physically realizable, while the lower branch solution is 

unstable, and hence physically not realizable. Also, sample velocity and temperature profiles along 

both solution branches are graphically presented.  
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