SOME IDENTITIES IN TRIANGLE AND CONSEQUENCES

Ovidiu T. POP and Marius DRĂGAN

Abstract

The purpose of this article is to express in a triangle $A B C$ the sums $\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}$ and $\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}$ in terms of R, r and s.

MSC 2000: 51M04. Key words: Trigonometric identities in triangle.

1. INTRODUCTION

In the following we will consider a given $A B C$ triangle with the sides $A B=c, B C=a, C A=b, r, R$ the inradius and circumradius of triangle, $s=\frac{a+b+c}{2}$ the semiperimeter and A, B, C the angles.

In [3] it's proved the following identities.
Lemma 1.1. In $A B C$ triangle are true the following identities

$$
\begin{equation*}
\left(\sum \cos \frac{A}{2}\right)^{2}-\left(\sum \sin \frac{A}{2}+1\right)^{2}=\frac{r}{R} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 R \sum \cos \frac{A}{2}\left(\sum \sin \frac{A}{2}-1\right)=s . \tag{1.2}
\end{equation*}
$$

We denote $f=\sum \sin \frac{A}{2}$ and $g=\sum \cos \frac{A}{2}$. From 1.1 and 1.2 we obtain

$$
\begin{cases}g^{2}-(f+1)^{2} & =\frac{r}{R} \tag{1.3}\\ g(f-1) & =\frac{s}{2 R}\end{cases}
$$

Theorem 1.1. In $A B C$ triangle we have

$$
\begin{equation*}
f^{4}+\left(\frac{r}{R}-2\right) f^{2}-\frac{2 r}{R} f+1+\frac{r}{R}-\frac{s^{2}}{4 R^{2}}=0 . \tag{1.4}
\end{equation*}
$$

Lemma 1.2. In $A B C$ triangle are true the inequalities

$$
\begin{equation*}
1<f \leq \frac{3}{2} \tag{1.5}
\end{equation*}
$$

In [1] W.J. Blundon proved in 1965 the following theorem.
Theorem 1.2. In ABC triangle are true the inequalities

$$
\begin{align*}
& 2 R^{2}+10 R r-r^{2}-2(R-2 r) \sqrt{R^{2}-2 R r} \leq s^{2} \leq \tag{1.6}\\
& \quad \leq 2 R^{2}+10 R r-r^{2}+2(R-2 r) \sqrt{R^{2}-2 R r}
\end{align*}
$$

Remark 1.1. Inequalities from (1.6) represent the necessary and sufficient conditions for existence of a triangle with equality if and only if the triangle is equilateral with elements R, r and s.

Theorem 1.3 (G. Colombier - T. Doucet, see [2] page 49). In ABC triangle is true inequality

$$
\begin{equation*}
3 s^{2} \leq(4 R+r)^{2} \tag{1.7}
\end{equation*}
$$

Theorem 1.4 (L. Euler's inequality, see [2] page 48). In $A B C$ triangle is true the inequality

$$
\begin{equation*}
R \geq 2 r \tag{1.8}
\end{equation*}
$$

with equality if and only if $A B C$ is equilateral.

2. MAIN RESULT

The identity (1.4) it suggest us to consider the equation

$$
\begin{equation*}
x^{4}+\left(\frac{r}{R}-2\right) x^{2}-\frac{2 r}{R} x+1+\frac{r}{R}-\frac{s^{2}}{4 R^{2}}=0 \tag{2.1}
\end{equation*}
$$

We will study the equation from (2.1) using the Rolle's sequence.
Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
h(x)=x^{2}+4\left(\frac{r}{R}-2\right) x^{2}-\frac{2 r}{R} x+1+\frac{r}{R}-\frac{s^{2}}{4 R^{2}}, x \in \mathbb{R}
$$

We have that

$$
\begin{equation*}
h^{\prime}(x)=4 x^{3}+2\left(\frac{r}{R}-2\right) x-\frac{2 r}{R}=(x-1)\left(4 x^{2}+4 x+\frac{2 r}{R}\right) \tag{2.2}
\end{equation*}
$$

The roots of equation $4 x^{2}+4 x+\frac{2 r}{R}=0$, taking 1.8 into account are $x_{1}=\frac{-1-\sqrt{\frac{R-2 r}{R}}}{2}, x_{2}=\frac{-1+\sqrt{\frac{R-2 r}{R}}}{2}$, which verify $4 x_{k}^{2}+4 x_{k}+\frac{2 r}{R}=0$, $k \in\{1,2\}$, from where

$$
\begin{equation*}
x_{k}^{2}=-x_{k}-\frac{r}{2 R}, k \in\{1,2\} . \tag{2.3}
\end{equation*}
$$

Then taking into account (2.3), we have

$$
x_{k}^{3}=-x_{k}^{2}-\frac{r}{2 R} x_{k}=\left(1-\frac{r}{2 R}\right) x_{k}+\frac{r}{2 R}
$$

and

$$
x_{k}^{4}=\left(1-\frac{r}{2 R}\right) x_{k}^{2}+\frac{r}{2 R} x_{k}=\left(1-\frac{r}{2 R}\right)\left(-x_{k}-\frac{r}{2 R}\right)+\frac{r}{2 R} x_{k},
$$

so

$$
\begin{equation*}
x_{k}^{4}=\left(\frac{r}{R}-1\right) x_{k}-\frac{r}{2 R}+\frac{r^{2}}{4 R^{2}}, k \in\{1,2\} . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) for $k \in\{1,2\}$, we have

$$
\begin{aligned}
h\left(x_{k}\right) & =x_{k}^{4}+\left(\frac{r}{R}-2\right) x_{k}^{2}-\frac{2 r}{R} x_{k}+1+\frac{r}{R}-\frac{s^{2}}{4 R^{2}}= \\
& =\left(1-\frac{2 r}{R}\right) x_{k}+1+\frac{3 r}{2 R}-\frac{r^{2}}{4 R^{2}}-\frac{s^{2}}{4 R^{2}}, k \in\{1,2\} .
\end{aligned}
$$

If we replace x_{1} in above inequality, we obtain

$$
\begin{aligned}
h\left(x_{1}\right) & =\left(1-\frac{2 r}{R}\right) \frac{-1-\sqrt{\frac{R-2 r}{R}}}{2}+1+\frac{3 r}{2 R}-\frac{r^{2}}{4 R^{2}}-\frac{s^{2}}{4 R^{2}}= \\
& =-\frac{1}{2}+\frac{r}{R}-\frac{R-2 r}{2 R} \sqrt{\frac{R-2 r}{R}}+1+\frac{3 r}{2 R}-\frac{r^{2}}{4 R^{2}}-\frac{s^{2}}{4 R^{2}}
\end{aligned}
$$

from which

$$
\begin{equation*}
h\left(x_{1}\right)=\frac{2 R^{2}+10 R r-2(R-2 r) \sqrt{R^{2}-2 R r}-r^{2}-s^{2}}{4 R^{2}} . \tag{2.5}
\end{equation*}
$$

In the same way

$$
\begin{equation*}
h\left(x_{2}\right)=\frac{2 R^{2}+10 R r+2(R-2 r) \sqrt{R^{2}-2 R r}-r^{2}-s^{2}}{4 R^{2}} . \tag{2.6}
\end{equation*}
$$

We have that

$$
\begin{equation*}
h(1)=-\frac{s^{2}}{4 R^{2}} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(\frac{3}{2}\right)=\frac{25 R^{2}+4 R r-4 s^{2}}{16 R^{2}} . \tag{2.8}
\end{equation*}
$$

We will prove that $\frac{(4 R+r)^{2}}{3} \leq \frac{25 R^{2}+4 R r}{4}$, or $64 R^{2}+32 R r+4 r^{2} \leq$ $75 R^{2}+12 R r$, which is equivalent with $(11 R+2 r)(R-2 r) \geq 0$, which is
true since $R \geq 2 r$.
From (1.7) and the above inequality it results that

$$
\begin{equation*}
25 R^{2}+4 R r-4 s^{2} \geq 0 \tag{2.9}
\end{equation*}
$$

whith equality if and only if the triangle is equilateral.
We will prove that

$$
\begin{equation*}
x_{1} \leq x_{2}<1<\frac{3}{2} \tag{2.10}
\end{equation*}
$$

The first inequality is true, with equality if and only if $R=2 r$, so the $A B C$ triangle is equilateral. The inequality $x_{2}<1$ is equivalent with $\sqrt{\frac{R-2 r}{R}}<3$, or $8 R>-2 r$ which is true.
If $R=2 r$, equivalent with triangle $A B C$ is equilateral, equation (2.1) is equivalent with

$$
x^{4}-\frac{3}{2} x^{2}-x-\frac{3}{16}=0, \quad \text { or } \quad\left(x-\frac{3}{2}\right)\left(x^{3}+\frac{3}{2} x^{2}+\frac{3}{4} x+\frac{1}{8}\right)=0
$$

This equation has a only positive root $x=\frac{3}{2}$. So

$$
\begin{equation*}
f=\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}=\frac{3}{2} . \tag{2.11}
\end{equation*}
$$

In the following we consider the case $R>2 r$. Then from (2.10) it follows that

$$
\begin{equation*}
-\infty<x_{1}<x_{2}<1<\frac{3}{2}<+\infty \tag{2.12}
\end{equation*}
$$

We have $\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow-\infty} h(x)=+\infty$. From 2.5) and (1.6) it result that $h\left(x_{1}\right)<0$, from (2.6) and (1.6) that $h\left(x_{2}\right)>0$ and from (2.7) that $h(1)<0$.
According Rolle's sequence, the function h has four real roots $\alpha_{1} \in$ $\left(-\infty, x_{1}\right), \alpha_{2} \in\left(x_{1}, x_{2}\right), \alpha_{3} \in\left(x_{2}, 1\right)$ and $\alpha_{4} \in(1,+\infty)$. From (2.8) and 2.9 it follows that $\alpha_{4} \in\left(1, \frac{3}{2}\right)$. Since is true 1.4 and 1.5 it follows that in the case $R>2 r$ we have

$$
\begin{equation*}
\alpha_{4}=f \in\left(1, \frac{3}{2}\right) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4} \tag{2.14}
\end{equation*}
$$

In the following we remember the formulas of solving the $4^{\text {th }}$ degree equation $a x^{4}+b x^{3}+c x^{2}+d x+e, a, b, c, d, e \in \mathbb{R}, a \neq 0$, with Ferrari's method
$\alpha_{1,2}=-\frac{b}{4 a}-S \pm \frac{1}{2} \sqrt{-4 S^{2}-2 p+\frac{q}{S}}, \alpha_{3,4}=-\frac{b}{4 a}-S \pm \frac{1}{2} \sqrt{-4 S^{2}-2 p-\frac{q}{S}}$,
where $p=\frac{8 a c-3 b^{2}}{8 a^{2}}, q=\frac{b^{3}-4 a b c+8 a^{2} d}{8 a^{3}}, S=\frac{1}{2} \sqrt{-\frac{2}{3} p+\frac{1}{3 a}\left(Q+\frac{\Delta_{0}}{Q}\right)}$,
$Q=\sqrt[3]{\frac{\Delta_{1}+\sqrt{\Delta_{1}^{2}-4 \Delta_{0}^{3}}}{2}}, \Delta_{0}=c^{2}-3 b d+12 a e, \Delta_{1}=2 c^{3}-9 b c d+27 b^{2} e+$ $27 a d^{2}-72 a c e$.
In our case taking into account 2.1, we have that $a=1, b=0, c=\frac{r}{R}-2$, $d=-\frac{2 r}{R}$ and $e=1+\frac{r}{R}-\frac{s^{2}}{4 R^{2}}$. Then $q=d=-\frac{2 r}{R}<0$ and since $S \geq 0$ and from (2.13), (2.14) it results that

$$
\begin{equation*}
f=\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}=-S+\frac{1}{2} \sqrt{4 S^{2}-2 p-\frac{q}{S}} \tag{2.15}
\end{equation*}
$$

Since $p=c=\frac{r}{R}-2$, according Wolphram Alpha, we have that

$$
\begin{equation*}
\Delta_{0}=c^{2}-12 e=\frac{r^{2}-16 r R-8 R^{2}+3 s^{2}}{R^{2}} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{1}=2 c^{3}+27 d^{2}-72 c e=\frac{2\left(r^{3}+12 r^{2} R+48 r R^{2}+9 r s^{2}+64 R^{3}-18 R s^{2}\right)}{R^{3}} \tag{2.17}
\end{equation*}
$$

Also after perform some calculation we obtain

$$
\begin{aligned}
\Delta_{1}^{2}-4 \Delta_{0}^{3}= & \frac{36}{R^{6}}\left[512 R^{6}+1024 R^{5} r+1088 R^{4} r^{2}+512 R^{3} r^{3}-56 R^{2} r^{4}+\right. \\
& +8 R r^{5}-\left(320 R^{4}+320 R^{3} r+192 R^{2} r^{2}-52 R r^{3}-r^{4}\right) s^{2}+ \\
& \left.+\left(60 R^{2}+12 R r+6 r^{2}\right) s^{4}-3 s^{6}\right] .
\end{aligned}
$$

Taking into account (1.3) and (2.15) we have

$$
\begin{align*}
g & =\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}=\frac{s}{2 R} \frac{1}{f-1}= \tag{2.18}\\
& =\frac{s}{2 R} \frac{1}{-S+\frac{1}{2} \sqrt{-4 S^{2}-2 p-\frac{q}{S}}}
\end{align*}
$$

REFERENCES

[1] Blundon, W.J., Inequalities associated with the triangle, Canad. Math. Bull. 8(1965), 615-626
[2] Bottema, O.; Djordjević, R.Z.; Janić, R.R.; Mitrinović, D.S.; Vasić, P.M., Geometric inequalities, Wolters-Noordhoff Publishing Gröningen, 1969, The Netherlands
[3] Drăgan, Marius and Pop, Ovidiu T., The best majoration for the sums $\sum \sin \frac{A}{2}$, $\sum \cos \frac{A}{2}, \sum \frac{1}{\sin \frac{A}{2}}$ and $\sum \frac{1}{\cos \frac{A}{2}}$ in triangle, to appear

National College "Mihai Eminescu" 5 Mihai Eminescu Street Satu Mare 440014, Romania
e-mail: ovidiutiberiu@yahoo.com
High School "Mircea cel Bătrân",
Bucureşti, Romania
e-mail: marius.dragan2005@yahoo.com

