SOME IDENTITIES IN TRIANGLE AND CONSEQUENCES

Ovidiu T. POP and Marius DRĂGAN

Abstract. The purpose of this article is to express in a triangle *ABC* the sums $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$ and $\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$ in terms of *R*, *r* and *s*.

MSC 2000: 51M04. Key words: Trigonometric identities in triangle.

1. INTRODUCTION

In the following we will consider a given ABC triangle with the sides AB = c, BC = a, CA = b, r, R the inradius and circumradius of triangle, $s = \frac{a+b+c}{2}$ the semiperimeter and A, B, C the angles. In [3] it's proved the following identities.

LEMMA 1.1. In ABC triangle are true the following identities

(1.1)
$$\left(\sum \cos \frac{A}{2}\right)^2 - \left(\sum \sin \frac{A}{2} + 1\right)^2 = \frac{r}{R}$$

and

(1.2)
$$2R\sum \cos\frac{A}{2}\left(\sum \sin\frac{A}{2} - 1\right) = s.$$

We denote $f = \sum \sin \frac{A}{2}$ and $g = \sum \cos \frac{A}{2}$. From (1.1) and (1.2) we obtain

(1.3)
$$\begin{cases} g^2 - (f+1)^2 &= \frac{r}{R} \\ g(f-1) &= \frac{s}{2R} \end{cases}$$

THEOREM 1.1. In ABC triangle we have

(1.4)
$$f^4 + \left(\frac{r}{R} - 2\right)f^2 - \frac{2r}{R}f + 1 + \frac{r}{R} - \frac{s^2}{4R^2} = 0.$$

LEMMA 1.2. In ABC triangle are true the inequalities

(1.5)
$$1 < f \le \frac{3}{2}$$

In [1] W.J. Blundon proved in 1965 the following theorem.

THEOREM 1.2. In ABC triangle are true the inequalities

(1.6)
$$2R^{2} + 10Rr - r^{2} - 2(R - 2r)\sqrt{R^{2} - 2Rr} \le s^{2} \le \\ \le 2R^{2} + 10Rr - r^{2} + 2(R - 2r)\sqrt{R^{2} - 2Rr} .$$

REMARK 1.1. Inequalities from (1.6) represent the necessary and sufficient conditions for existence of a triangle with equality if and only if the triangle is equilateral with elements R, r and s.

THEOREM 1.3 (G. Colombier - T. Doucet, see [2] page 49). In ABC triangle is true inequality

(1.7)
$$3s^2 \le (4R+r)^2$$

THEOREM 1.4 (L. Euler's inequality, see [2] page 48). In ABC triangle is true the inequality

$$(1.8) R \ge 2r,$$

with equality if and only if ABC is equilateral.

2. MAIN RESULT

The identity (1.4) it suggest us to consider the equation

(2.1)
$$x^{4} + \left(\frac{r}{R} - 2\right)x^{2} - \frac{2r}{R}x + 1 + \frac{r}{R} - \frac{s^{2}}{4R^{2}} = 0$$

We will study the equation from (2.1) using the Rolle's sequence. Let $h : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$h(x) = x^{2} + 4\left(\frac{r}{R} - 2\right)x^{2} - \frac{2r}{R}x + 1 + \frac{r}{R} - \frac{s^{2}}{4R^{2}}, \ x \in \mathbb{R}$$

 $\mathbb{R}.$

We have that

(2.2)
$$h'(x) = 4x^3 + 2\left(\frac{r}{R} - 2\right)x - \frac{2r}{R} = (x-1)\left(4x^2 + 4x + \frac{2r}{R}\right).$$

The roots of equation $4x^2 + 4x + \frac{2r}{R} = 0$, taking (1.8) into account are $x_1 = \frac{-1 - \sqrt{\frac{R-2r}{R}}}{2}$, $x_2 = \frac{-1 + \sqrt{\frac{R-2r}{R}}}{2}$, which verify $4x_k^2 + 4x_k + \frac{2r}{R} = 0$, $k \in \{1, 2\}$, from where

(2.3)
$$x_k^2 = -x_k - \frac{r}{2R}, \ k \in \{1, 2\}.$$

Then taking into account (2.3), we have

$$x_k^3 = -x_k^2 - \frac{r}{2R} x_k = \left(1 - \frac{r}{2R}\right) x_k + \frac{r}{2R}$$

and

 \mathbf{SO}

$$x_{k}^{4} = \left(1 - \frac{r}{2R}\right)x_{k}^{2} + \frac{r}{2R}x_{k} = \left(1 - \frac{r}{2R}\right)\left(-x_{k} - \frac{r}{2R}\right) + \frac{r}{2R}x_{k},$$

(2.4)
$$x_k^4 = \left(\frac{r}{R} - 1\right) x_k - \frac{r}{2R} + \frac{r^2}{4R^2}, \ k \in \{1, 2\}.$$

From (2.3) and (2.4) for $k \in \{1, 2\}$, we have

$$h(x_k) = x_k^4 + \left(\frac{r}{R} - 2\right) x_k^2 - \frac{2r}{R} x_k + 1 + \frac{r}{R} - \frac{s^2}{4R^2} = \\ = \left(1 - \frac{2r}{R}\right) x_k + 1 + \frac{3r}{2R} - \frac{r^2}{4R^2} - \frac{s^2}{4R^2}, \ k \in \{1, 2\}.$$

If we replace x_1 in above inequality, we obtain

$$h(x_1) = \left(1 - \frac{2r}{R}\right) \frac{-1 - \sqrt{\frac{R-2r}{R}}}{2} + 1 + \frac{3r}{2R} - \frac{r^2}{4R^2} - \frac{s^2}{4R^2} = -\frac{1}{2} + \frac{r}{R} - \frac{R-2r}{2R}\sqrt{\frac{R-2r}{R}} + 1 + \frac{3r}{2R} - \frac{r^2}{4R^2} - \frac{s^2}{4R^2},$$

from which

(2.5)
$$h(x_1) = \frac{2R^2 + 10Rr - 2(R-2r)\sqrt{R^2 - 2Rr} - r^2 - s^2}{4R^2}$$

In the same way

(2.6)
$$h(x_2) = \frac{2R^2 + 10Rr + 2(R - 2r)\sqrt{R^2 - 2Rr} - r^2 - s^2}{4R^2}$$

We have that

(2.7)
$$h(1) = -\frac{s^2}{4R^2}$$

and

(2.8)
$$h\left(\frac{3}{2}\right) = \frac{25R^2 + 4Rr - 4s^2}{16R^2}.$$

We will prove that $\frac{(4R+r)^2}{3} \leq \frac{25R^2+4Rr}{4}$, or $64R^2+32Rr+4r^2 \leq 75R^2+12Rr$, which is equivalent with $(11R+2r)(R-2r) \geq 0$, which is

true since $R \ge 2r$.

From (1.7) and the above inequality it results that

(2.9)
$$25R^2 + 4Rr - 4s^2 \ge 0,$$

which equality if and only if the triangle is equilateral. We will prove that

$$(2.10) x_1 \le x_2 < 1 < \frac{3}{2}$$

The first inequality is true, with equality if and only if R = 2r, so the ABC triangle is equilateral. The inequality $x_2 < 1$ is equivalent with $\sqrt{\frac{R-2r}{R}} < 3$, or 8R > -2r which is true.

If
$$R = 2r$$
, equivalent with triangle ABC is equilateral, equation (2.1) is equivalent with

$$x^{4} - \frac{3}{2}x^{2} - x - \frac{3}{16} = 0$$
, or $\left(x - \frac{3}{2}\right)\left(x^{3} + \frac{3}{2}x^{2} + \frac{3}{4}x + \frac{1}{8}\right) = 0.$

This equation has a only positive root $x = \frac{3}{2}$. So

(2.11)
$$f = \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} = \frac{3}{2}$$

In the following we consider the case R > 2r. Then from (2.10) it follows that

(2.12)
$$-\infty < x_1 < x_2 < 1 < \frac{3}{2} < +\infty.$$

We have $\lim_{x\to\infty} h(x) = \lim_{x\to-\infty} h(x) = +\infty$. From (2.5) and (1.6) it result that $h(x_1) < 0$, from (2.6) and (1.6) that $h(x_2) > 0$ and from (2.7) that h(1) < 0.

According Rolle's sequence, the function h has four real roots $\alpha_1 \in (-\infty, x_1)$, $\alpha_2 \in (x_1, x_2)$, $\alpha_3 \in (x_2, 1)$ and $\alpha_4 \in (1, +\infty)$. From (2.8) and (2.9) it follows that $\alpha_4 \in \left(1, \frac{3}{2}\right)$. Since is true (1.4) and (1.5) it follows that in the case R > 2r we have

(2.13)
$$\alpha_4 = f \in \left(1, \frac{3}{2}\right)$$

and

$$(2.14) \qquad \qquad \alpha_1 < \alpha_2 < \alpha_3 < \alpha_4.$$

In the following we remember the formulas of solving the 4^{th} degree equation $ax^4 + bx^3 + cx^2 + dx + e$, $a, b, c, d, e \in \mathbb{R}$, $a \neq 0$, with Ferrari's method

$$\alpha_{1,2} = -\frac{b}{4a} - S \pm \frac{1}{2}\sqrt{-4S^2 - 2p + \frac{q}{S}}, \ \alpha_{3,4} = -\frac{b}{4a} - S \pm \frac{1}{2}\sqrt{-4S^2 - 2p - \frac{q}{S}},$$

where $p = \frac{8ac - 3b^2}{8a^2}$, $q = \frac{b^3 - 4abc + 8a^2d}{8a^3}$, $S = \frac{1}{2}\sqrt{-\frac{2}{3}p + \frac{1}{3a}\left(Q + \frac{\Delta_0}{Q}\right)}$, $Q = \sqrt[3]{\frac{\Delta_1 + \sqrt{\Delta_1^2 - 4\Delta_0^3}}{2}}$, $\Delta_0 = c^2 - 3bd + 12ae$, $\Delta_1 = 2c^3 - 9bcd + 27b^2e + 27ad^2 - 72ace$.

In our case taking into account (2.1), we have that $a = 1, b = 0, c = \frac{r}{R} - 2$, $d = -\frac{2r}{R}$ and $e = 1 + \frac{r}{R} - \frac{s^2}{4R^2}$. Then $q = d = -\frac{2r}{R} < 0$ and since $S \ge 0$ and from (2.13), (2.14) it results that

(2.15)
$$f = \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} = -S + \frac{1}{2}\sqrt{4S^2 - 2p - \frac{q}{S}}.$$

Since $p = c = \frac{r}{R} - 2$, according Wolphram Alpha, we have that

(2.16)
$$\Delta_0 = c^2 - 12e = \frac{r^2 - 16rR - 8R^2 + 3s^2}{R^2}$$

and (2.17)

$$\Delta_1 = 2c^3 + 27d^2 - 72ce = \frac{2(r^3 + 12r^2R + 48rR^2 + 9rs^2 + 64R^3 - 18Rs^2)}{R^3}$$

Also after perform some calculation we obtain

$$\begin{aligned} \Delta_1^2 - 4\Delta_0^3 &= \frac{36}{R^6} \Big[512R^6 + 1024R^5r + 1088R^4r^2 + 512R^3r^3 - 56R^2r^4 + \\ &+ 8Rr^5 - \big(320R^4 + 320R^3r + 192R^2r^2 - 52Rr^3 - r^4 \big)s^2 + \\ &+ \big(60R^2 + 12Rr + 6r^2 \big)s^4 - 3s^6 \Big]. \end{aligned}$$

Taking into account (1.3) and (2.15) we have

(2.18)
$$g = \cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} = \frac{s}{2R}\frac{1}{f-1} = \frac{s}{2R}\frac{1}{-S+\frac{1}{2}\sqrt{-4S^2-2p-\frac{q}{S}}}.$$

REFERENCES

- Blundon, W.J., Inequalities associated with the triangle, Canad. Math. Bull. 8(1965), 615–626
- [2] Bottema, O.; Djordjević, R.Z.; Janić, R.R.; Mitrinović, D.S.; Vasić, P.M., Geometric inequalities, Wolters-Noordhoff Publishing Gröningen, 1969, The Netherlands
- [3] Drăgan, Marius and Pop, Ovidiu T., The best majoration for the sums $\sum \sin \frac{A}{2}$, $\sum \frac{1}{\sin \frac{A}{2}}$, $\sum \frac{1}{\sin \frac{A}{2}}$ and $\sum \frac{1}{\cos \frac{A}{2}}$ in triangle, to appear

National College "Mihai Eminescu" 5 Mihai Eminescu Street Satu Mare 440014, Romania e-mail: ovidiutiberiu@yahoo.com

High School "Mircea cel Bătrân", București, Romania e-mail: marius.dragan2005@yahoo.com