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IDENTITIES AND INEQUALITIES IN A QUADRILATERAL

Phillip Paul Mitase Ilea*

Abstract. In this paper we will demonstrate some inequalities that occur in an
inscribable and circumscribable quadrilater.
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1. INTRODUCTION

Let ABCD be a convex quadrilateral and denote AB=a, BC=b, CD=c,

+b+ctd
DA=d, BD=e, AC=f, s = %, ACN BD={0O}, angle measure AOB

is ¢ and F is the area of quadrilateral ABCD.

If ABCD is an inscribable and circumscribable quadrilateral, let R, r be
the radius of the circumscribed circle, respectively of the inscribed circle to
ABCD.

It is well known that the sides a, b, ¢, d are solutions of the equation (see
[3], page 164)

(1.1)

at — 2528 + (2 +2r% + 2r/AR2 4+ 12) 2% — 2rs(\/AR2 + 12+ 1) X + 12 + 52 = 0.

The following inequalities are true (see [3], page 168)

(1.2) 2\/27“\/ 4R?+ 12 —r)<s

with equality either if and only if ABCD is square when R = r+/2 or if ABCD
is an isosceles trapezoid when R # /2.

(1.3) s <VARZ+7r2 4,

with equality if and only if ABCD is an orthodiagonal quadrilateral

(1.4) 2@@—7«) <s< VAR 412 4.

The inequalities 1) hold simultaneously when R = r+/2 if and only if
ABCD is square. When R # /2 at least an inequality from (i is strict.
On the other hand, we have the Inequality L. Fejes Téth

(1.5) R >7rV2,
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which suits, with equality if and only if ABCD is a square. The following
identities are true

(1.6) ef =2r(VAR? + 12 + 1),
(1.7) F = sr,

(ac + bd)(ab + cd)
1. 2=
(18) c ad + be ’
(1.9) ef = ac+ bd,

e ab+cd
1.1 =
(1.10) f  ad+bc’
and
(1.11) 16R*F? = (ab + cd)(ac + bd)(ad + be)

called the relation of Girard.

2. IDENTITIES AND INEQUALITIES WITH R, Ro, R3, Ry

Let it be ABCD a convex quadrilateral and denote by Ri, R, R3, R4 the
radii of the circumscribed circles by the triangles AOB, BOC, COD si DOA.

LEMMA 2.1. The following identities holds:

(2.1) R1+R2+R3+R4=%
and
_ 2sR; _ 2sRs
2.2) ““Rit R+ Rs+ Ry’ RitRo+Rst R
B 2sR13 B 2sRy
 Ri+Ry+R3+ Ry Ri+Ry+R3+ Ry
Demonstration. From the theorem it follows that Ry = 55—, Ry = ﬁ,
R3 = 3585, Ra = 53, where from Ry + Ry + Rg + Ry = etbferd — oo,

But F = efs%, from where results the relation . On the other hand, we
have % = % = % = % = 25m<p7 from where b = gQa c= g3a d= g‘*a
From the above relations, by addition, we obtain that 2s = a+b+c+d =

a-+ %a + %a + %a = R%(Rl + Ry + R3 + Ry) and from there the relations

E2).

COROLLARY 2.1. In a convex quadrilateral the inequality occurs

se
(2.3) f > V/RiRyR3Ry
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LEMMA 2.2. If quadrilateral ABCD is inscribable and circumscribable, then
28R1
aqag = ——
VAR? + 12 + 7

Demonstration. From (2.2)), considering (2.1)), (1.6) and (1.7]), the relation-
ship ([2.4)) is obtained.

THEOREM 2.1. If the quadrilater ABCD is inscribable and circumscribable,
then R1, Ra, R3, Ry are solutions of the equation

(2.5)
16522 — 1652 (VAR? + 12 + 1)a® + (s + 27 + 2rV/AR? + 12)\/AR? + 12 + 1)%2”
—4(VARZ + 72+ ) te +r?(VAr2 + 12 + 1)t = 0

(2.4)

Demonstration. Considering (2.4), we obtain a solution for the equation

(1.1) replacing a from (2.4) in (1.1) and after calculations we get that R; is
a solution of the equation (2.5). Analogously, it can be demonstrated that
Ry, R3, R4 are solutions of the equation ([2.5)).

THEOREM 2.2. If the quadrilater ABCD is inscribable and circumscribable,
then we have the following identities

(2.6) 231 VAR 12 4y
(82 4212 + 2rVAR? + r2)(VAR? + 12 +1)?
(27) Y RiRy= - |
F(VARE 7 4 )
(2.8) S RiRaRs = = ’
2(VARZ + 12 + 1)
(29) R1R2R3R4 = r (\/7 + T) ’
2 -2 — 2 4 r2 21,2 2
(2.10) S g o2t VAR VAR )
1 4
2.11 L _4
(2.11) =5
(2.12) LA ViR )
| Rl R(ARET
1 165>
2.13 , _ '
(2.13) Z RiRoRs  12(\ARZ + 12 + 1)3

The demonstrations results from the Theorem ([2.1).
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THEOREM 2.3. If the quadrilater ABCD is inscribable and circumscribable
the following identities are true

(2.14) 4r <Y Ry <2RV2,

6r <R*+1r2 + rVAR? 412 <Y RiRy
(5v/4R2 412 — 3r)(VAR2 4+ 12 4 1)3

(2.15) < 64R2
_ (3VAR? 1% —3r)RvV2 _ (10RV2 - 3r)Rv2
< 1 = 4 ’
(2.16)
VIRET 2 4 1) (VAR +12 4 r)°
4 3 < r < < <R3 2
< G <2 PRy < e < BV
VARE T2 4 1) (VARE+r24r) R
i <! < = =7
(217) "< 16 < RuFaHal < 512R? ~ 4
8rt (VAR2 + 12 —5r)(VARZ + 12 +1)3 2 2
(218)  Zm s 3212 <2 Ri<2R
42 1
2.1 = SR
(2.19) R — Z Ry’
1L SV )y~ 1
(2.20) R r(VARZ 02 7)) T Bl
_ (VAR 477 — 5) (VARZ =72 + 1) _ 3R
= 3212 ot
8 512R? 1 16 4
2.21 < < = =0
22 S S AR S A Tkl S (AR )

The demonstrations results from the Theorem (2.2)) and from the inequali-
ties (1.2)), (1.3) and (1.5).
3. IDENTITIES AND INEQUALITIES WITH 71,72,73,74

In this section we consider that ABCD is inscribable and circumscribable
and we denote r1,79,73,74 the radii of the circles inscribed in the triangles
AOB, BOC, COD and DOA.

LEMMA 3.1. The following identities are true

eda
3.1 AM = —
(3.1) ab+ cd’
(3.2) BM =

ab + cd’
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ebc
3.3 CM=—""-"—,
(3:3) ab+ cd
ecd
3.4 DM = .
(34) ab+ cd
Demonstration. From the similarity of triangles ABO si DCO, respectively
ADO and BCO, we have that % = % ég =2 and AO 28 = % = %.

From the above inequalities, it follows that BO = gAO C’O 2BO = %AO
and DO = £ AO. If we choose BO and DO from equality BO+DO:e we get
AO —|— CAO = e, where the relationship is obtained from . The relations

are proved analogously.
Note that s1, I are the semiperimeter, respectively the area of the triangle
AOB and a = sr2(VARZ 72 47)

T 2R(2R+r+VARZ4r2)"
LEMMA 3.2. We have that
Q
3.5 =
(3.5) =
Demonstration. Considerings =a + c¢=b +d, (3.1)), (3.2) and —,
calculate
1 1 eab eda
—(AB B A
= UBHOB+04) =5(at Gt ed
a e(b+d), a 5 \/ (ac + bd)(ab + cd)
= — = — 1 =
2(a+ab+cd) 2( +ab+cd) ( ad + bc )
a ef ef
=-(1+s 1+s——
2( \/(ad+bc)(ac—|—bd)(ab+cd)) 2( 4RT)

(1+si) g(1+2R\/4R2+r2+r
2 4Rr 2 4Rr

from where

);

2R+ VAR? + 12 + 7
4R

So we have F| = m and considering F = efsm“’ and (| , .,

. ., it results that
1 e%a’bd 2F _ ¢ a a’bdFef B a’bdF

22(ab+cd) ef — fflab+cd)?  (ab+ cd)(ad + be)
B a’bdFef B a’bdFef
~ (ab+ cd)(ac +bd)(ad +bc)  16R2F?’

(3.6) s1=a

F =

from where

a?bd(VAR? + 12 + 1)
8sR?

(3.7) =
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Because abed = F? = §%72, from (3.6) and (3.7) it results that ry = £ =

abcd/4r2+r24r 4R £ .
rom wher .D)) is true.
Q2 ORI ViRE ey rom where (3.5) is true

REMARK 3.1. Similar, we obtain that ro = G, 13 =0, r4 = .

REMARK 3.2. Because Ry = aOBOA, using (.) (.) I and (./ we

can calculate R1, Ro, R3, Ry4.

THEOREM 3.1. If the quadrilater ABCD is inscribable and circumscribable,
then r1,79,73,74 are solutions of the equation

(3.8)

16RY (2R + 7 + V4AR2 + r2)*z* — 16rR*(V/4AR2 + 12 +r)2(2R 4+ r + VAR? + r2)323

+4r2R%(s2 + 2% + 2rV/AR? 1 r2) (VAR + 12 + )2 (2R + 7 + V/AR? +12)%
—45*r* R(VAR2 + 12 + 13 2R + r + VAR + r2)z + s*rO (VAR + r2 +1)* =
Demonstration: Considering ¢ from (3.5|) as a solution of the equation (1.1)),

substituting ¢ from (3.5)) in (L.1), after the calculations (3.8) is true.

THEOREM 3.2. If the quadrilater ABCD is inscribable and circumscribable,
then

r(VARZ + 12 +1)?
(59) =
2R+'r—|—\/4R2+r2)

Zr o — 7’2(32 + 272 4+ 2rv/4R? +7“2)(\/4R2 T2 4 r)2
o PR+ VAR T ) ’
S iy = VAR P )
17273 4R3(2R+T+\/41R27—i-7“2)37
6(\/m+r)4
I6RAQR 1 r + VARE 1 21
(3.13) Z’I“Q A VARZ + 0% 4 1) (8R% + 2% + 2rVAR? + 12 — §%)
. 1 2R2(2R + r + VAR? + r2)2 )

Z* AR(2R +r + VAR? 4+ 1?)
T1 r2(VAR? + 12+ 1)

(3.10)

(3.11)

(3.12) r1iror3ry =

(3.14)

615 L= ARY(s? + 2r? + 2rVARZ 4 12)(2R + 7 + VAR? + 12)?
) rro 827‘4(\/W+7‘) ’
1 16R3(2R VAR? + r2)3
(3.16) Z . ( +7r—+ +r ) ‘

17273 N 827“5(\/4R27—1—7‘2 + T’)Z
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Demonstration results from Theorem ({3.1)).

THEOREM 3.3. If the quadrilater ABCD is inscribable and circumscribable,
then we have the following inequalities

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

W(ﬁ_l) <) r<2V2(V2-1R

247r5(1/2 — 1)2 3RY (V2 —1)?
R* = Zrl s 2r2 ’

32 2 — 1 2—-1
" < ZT1T2T3 < (\[ )

2 )
64r12(v/2 — 1)* R*(vV2 - 1)*
(R8 ) < riror3Ts < 7( 1 ) ,
4\@(\/§+1)§Zi_ (2 +1nt
R rn -

The demonstration follows from Theorem (3.2)) and from inequalities (|1.2)),

and (T35

(1)

4. APPLICATIONS

Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=b,
CD=c, DA=d, BD=e, AC=f, the radius of the inscribed circle r. Show
that ef > 612,

Solution. From we have ef = 2r(v4R? + 12 4+ r). Using the

inequality L. Fejes Téth R > rv/2 we replace R depending on r so
that ef > 2r(v/8r2 + r2 +r) equivalent to ef > 2r(3r + ) from where
ef > 6r?, what had to be demonstrated.
Let it be ABCD a bicentric quadrilateral. We denote Ry, R, R3, R4
the radii of the circles circumscribed by the triangles AOB, BOC,
COD and DOA. Let r be the radius of the inscribed circle. Show
that >~ aRy > 2sr.

Solution. How systems Ri, Rs, R3, R4 and a, b, ¢, d are equally
ordered, from Cebisev theorem 4(aR; + bR2 + cR3 + dRy) > (a + b+

c+d)(R1+ R+ R + Ry) equivalent to > aR; > 2 *e/ and from 1D

4sr ?

and we have > aR; > 57‘4}32;”'2“". From inequality L. Fejes T6th
R > rv/2 from where > aRy > 2sr.

Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=b,
CD=c, DA=d, BD=e, AC=f, s = ¢4<td R\ Ry R, Ry the radii of
the circles circumscribed by the triangles AOB, BOC, COD and DOA,
r the radius of the circle inscribed in the quadrilateral ABCD. Show
that 3" aRy > ¢

4sr
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Solution. How systems Ri, R, Rs, R4 and a,b,c,d are equally or-

dered, from Cebisev theorem 4(aR; +bR2+cR3+dRy4) > (a+b+c+
d)(Ry + R2 + R3 + Ry) so we have > aR; > ‘iff.
Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=Db,
CD=c, DA=d, BD=e, AC=f, the radius of the circle inscribed r, the
radius of the circumscribed circle R, Ry, Ro, R3, R4 the radii of the
circles circumscribed by the triangles AOB, BOC, COD and DOA.
Show that Y aR, > WA LTEn),

Solution. How systems Rp, Ro, R3, R4 and a,b,c,d are equally or-
dered, from Cebisev theorem 4(aR; + bRy + cR3+dRy) > (a+b+c+
d)(R1 + R2 + R3 + Ry) equivalent to > aRy; > s:TeTf, form and
we have Y aR; > 5(7'41{2;T2+T).

Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=b,
CD=c, DA=d, BD=e, AC=f, s = ¢¥tctd R, R, R, Ry the radii of
the circles circumscribed by the triangles AOB, BOC, COD and DOA,
r the radius of the circle inscribed in the quadrilateral ABCD. Show

that r < %ef.

Solution. From l} > 711 = %. From the inequality of averages,
Ri+Ro+R3+Ry 4 _ _4
Mg > My = > = . From (2.11
© =T * T omtmtmtr IR

Ri1+Ro+R3+R 4 R1+Ro+R3+R
- Bt 21— 3+4Z§ Lot Rot s+ Ry 21‘ 3+4(a.1).

equivalent to r < From

" Ri+Ry+Rs+ Ry = % it follows that R1+ Ro+ Rs+ R4 = %g

From 1) Ri+Ry+R3+ Ry = % Using here (a.1) we have r < i
t

equivalent to 72 < %e f which leads to r < %e f, what was to
demonstrated.

5
ef
2r
be
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