IDENTITIES AND INEQUALITIES IN A QUADRILATERAL

Phillip Paul Mătase Ilea ${ }^{1}$

Abstract

In this paper we will demonstrate some inequalities that occur in an inscribable and circumscribable quadrilater.

MSC 2000: 51M04.
Key words: Inequalities in an inscribable and circumscribable quadrilater.

1. INTRODUCTION

Let ABCD be a convex quadrilateral and denote $\mathrm{AB}=\mathrm{a}, \mathrm{BC}=\mathrm{b}, \mathrm{CD}=\mathrm{c}$, $\mathrm{DA}=\mathrm{d}, \mathrm{BD}=\mathrm{e}, \mathrm{AC}=\mathrm{f}, s=\frac{a+b+c+d}{2}, \mathrm{AC} \cap \mathrm{BD}=\{O\}$, angle measure AOB is φ and F is the area of quadrilateral ABCD .

If ABCD is an inscribable and circumscribable quadrilateral, let R, r be the radius of the circumscribed circle, respectively of the inscribed circle to ABCD.

It is well known that the sides $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are solutions of the equation (see [3], page 164)
$x^{4}-2 s x^{3}+\left(s^{2}+2 r^{2}+2 r \sqrt{4 R^{2}+r^{2}}\right) x^{2}-2 r s\left(\sqrt{4 R^{2}+r^{2}}+r\right) X+r^{2}+s^{2}=0$.
The following inequalities are true (see [3], page 168)

$$
\begin{equation*}
2 \sqrt{\left.2 r \sqrt{4 R^{2}+r^{2}}-r\right)} \leq s \tag{1.2}
\end{equation*}
$$

with equality either if and only if ABCD is square when $R=r \sqrt{2}$ or if ABCD is an isosceles trapezoid when $R \neq \sqrt{2}$.

$$
\begin{equation*}
s \leq \sqrt{4 R^{2}+r^{2}}+r \tag{1.3}
\end{equation*}
$$

with equality if and only if ABCD is an orthodiagonal quadrilateral

$$
\begin{equation*}
\left.2 \sqrt{2 r \sqrt{4 R^{2}+r^{2}}-r}\right) \leq s \leq \sqrt{4 R^{2}+r^{2}}+r . \tag{1.4}
\end{equation*}
$$

The inequalities 1.4 hold simultaneously when $R=r \sqrt{2}$ if and only if ABCD is square. When $R \neq \sqrt{2}$ at least an inequality from 1.4 is strict.

On the other hand, we have the Inequality L. Fejes Tóth

$$
\begin{equation*}
R \geq r \sqrt{2} \tag{1.5}
\end{equation*}
$$

which suits, with equality if and only if ABCD is a square. The following identities are true

$$
\begin{gather*}
e f=2 r\left(\sqrt{4 R^{2}+r^{2}}+r\right), \tag{1.6}\\
F=s r, \tag{1.7}\\
e^{2}=\frac{(a c+b d)(a b+c d)}{a d+b c}, \tag{1.8}\\
e f=a c+b d, \tag{1.9}\\
\frac{e}{f}=\frac{a b+c d}{a d+b c}, \tag{1.10}
\end{gather*}
$$

and

$$
\begin{equation*}
16 R^{2} F^{2}=(a b+c d)(a c+b d)(a d+b c) \tag{1.11}
\end{equation*}
$$

called the relation of Girard.

2. IDENTITIES AND INEQUALITIES WITH $R_{1}, R_{2}, R_{3}, R_{4}$

Let it be ABCD a convex quadrilateral and denote by $R_{1}, R_{2}, R_{3}, R_{4}$ the radii of the circumscribed circles by the triangles AOB, BOC, COD și DOA.

Lemma 2.1. The following identities holds:

$$
\begin{equation*}
R_{1}+R_{2}+R_{3}+R_{4}=\frac{s e f}{2 F} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
& a=\frac{2 s R_{1}}{R_{1}+R_{2}+R_{3}+R_{4}}, b=\frac{2 s R_{2}}{R_{1}+R_{2}+R_{3}+R_{4}}, \\
& c=\frac{2 s R_{1} 3}{R_{1}+R_{2}+R_{3}+R_{4}}, d=\frac{2 s R_{4}}{R_{1}+R_{2}+R_{3}+R_{4}} . \tag{2.2}
\end{align*}
$$

Demonstration. From the theorem it follows that $R_{1}=\frac{a}{2 \sin \varphi}, R_{2}=\frac{b}{2 \sin \varphi}$, $R_{3}=\frac{c}{2 \sin \varphi}, R_{4}=\frac{d}{2 \sin \varphi}$, where from $R_{1}+R_{2}+R_{3}+R_{4}=\frac{a+b+c+d}{s \sin \varphi}=\frac{s}{2 \sin \varphi}$. But $F=\frac{e f \sin \varphi}{2}$, from where results the relation (2.1). On the other hand, we have $\frac{R_{1}}{a}=\frac{R_{2}}{b}=\frac{R_{3}}{c}=\frac{R_{4}}{d}=\frac{1}{2 \sin \varphi}$, from where $b=\frac{R_{2}}{R_{1}} a, c=\frac{R_{3}}{R_{1}} a, d=\frac{R_{4}}{R_{1}} a$. From the above relations, by addition, we obtain that $2 s=a+b+c+d=$ $a+\frac{R_{2}}{R_{1}} a+\frac{R_{3}}{R_{1}} a+\frac{R_{4}}{R_{1}} a=\frac{a}{R_{1}}\left(R_{1}+R_{2}+R_{3}+R_{4}\right)$ and from there the relations (2.2).

Corollary 2.1. In a convex quadrilateral the inequality occurs

$$
\begin{equation*}
\frac{s e f}{2 F} \geq \sqrt[4]{R_{1} R_{2} R_{3} R_{4}} \tag{2.3}
\end{equation*}
$$

Lemma 2.2. If quadrilateral $A B C D$ is inscribable and circumscribable, then

$$
\begin{equation*}
a=\frac{2 s R_{1}}{\sqrt{4 R^{2}+r^{2}}+r} \tag{2.4}
\end{equation*}
$$

Demonstration. From (2.2), considering (2.1), (1.6) and (1.7), the relationship (2.4) is obtained.

Theorem 2.1. If the quadrilater $A B C D$ is inscribable and circumscribable, then $R_{1}, R_{2}, R_{3}, R_{4}$ are solutions of the equation
$\left.16 s^{2} x^{4}-16 s^{2}\left(\sqrt{4 R^{2}+r^{2}}+r\right) x^{3}+\left(s^{2}+2 r^{2}+2 r \sqrt{4 R^{2}+r^{2}}\right) \sqrt{4 R^{2}+r^{2}}+r\right)^{2} x^{2}$
$-4\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{4} x+r^{2}\left(\sqrt{4 r^{2}+r^{2}}+r\right)^{4}=0$
Demonstration. Considering $\sqrt{2.4}$, we obtain a solution for the equation (1.1) replacing a from (2.4) in (1.1) and after calculations we get that R_{1} is a solution of the equation (2.5). Analogously, it can be demonstrated that R_{2}, R_{3}, R_{4} are solutions of the equation (2.5).

Theorem 2.2. If the quadrilater ABCD is inscribable and circumscribable, then we have the following identities

$$
\begin{gather*}
\sum R_{1}=\sqrt{4 R^{2}+r^{2}}+r \tag{2.6}\\
\sum R_{1} R_{2}=\frac{\left(s^{2}+2 r^{2}+2 r \sqrt{4 R^{2}+r^{2}}\right)\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{2}}{4 s^{2}}, \tag{2.8}\\
\sum R_{1} R_{2} R_{3}=\frac{r\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{4}}{4 s^{2}}, \\
R_{1} R_{2} R_{3} R_{4}=\frac{r^{2}\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{4}}{4 s^{2}}, \\
\sum R_{1}^{2}=\frac{\left(s^{2}-2 r^{2}-2 r \sqrt{4 R^{2}+r^{2}}\right)\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{2}}{,} 4 \\
\sum \frac{1}{R_{1}}=\frac{4}{r},
\end{gather*}
$$

$$
\begin{gather*}
\sum \frac{1}{R_{1}}=\frac{4}{r} \tag{2.11}\\
\sum \frac{1}{R_{1} R_{2}}=\frac{4\left(s^{2}+2 r^{2}+2 r \sqrt{4 R^{2}+r^{2}}\right)}{r^{2}\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{2}}, \tag{2.12}\\
, \sum \frac{1}{R_{1} R_{2} R_{3}}=\frac{16 s^{2}}{r^{2}\left(\sqrt{\left.4 R^{2}+r^{2}+r\right)^{3}}\right.}
\end{gather*}
$$

The demonstrations results from the Theorem (2.1).

Theorem 2.3. If the quadrilater $A B C D$ is inscribable and circumscribable the following identities are true

$$
\begin{align*}
& 4 r \leq \sum R_{1} \leq 2 R \sqrt{2}, \tag{2.14}\\
& 6 r^{2} \leq R^{2}+r^{2}+r \sqrt{4 R^{2}+r^{2}} \leq \sum R_{1} R_{2} \\
& \leq \frac{\left(5 \sqrt{4 R^{2}+r^{2}}-3 r\right)\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{3}}{64 R^{2}} \\
& \leq \frac{\left(5 \sqrt{4 R^{2}+r^{2}}-3 r\right) R \sqrt{2}}{4} \leq \frac{(10 R \sqrt{2}-3 r) R \sqrt{2}}{4},
\end{align*}
$$

$$
\begin{equation*}
4 r^{3} \leq \frac{\left.r \sqrt{4 R^{2}+r^{2}}+r\right)^{2}}{16} \leq \sum R_{1} R_{2} R_{3} \leq \frac{\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{5}}{128 R^{2}} \leq R^{3} \sqrt{2} \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
r^{4} \leq \frac{\left.r \sqrt{4 R^{2}+r^{2}}+r\right)^{2}}{16} \leq R_{1} R_{2} R_{3} R_{4} \leq \frac{\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{5}}{512 R^{2}} \leq \frac{R^{4}}{4} \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{8 r^{4}}{R^{2}} \leq \frac{\left(\sqrt{4 R^{2}+r^{2}}-5 r\right)\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{3}}{32 R^{2}} \leq \sum R_{1}^{2} \leq 2 R^{2} \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\frac{4 \sqrt{2}}{R} \leq \sum \frac{1}{R_{1}} \tag{2.19}
\end{equation*}
$$

$$
\begin{gather*}
\frac{12}{R^{2}} \leq \frac{8\left(\sqrt{4 R^{2}+r^{2}}-3 r\right)}{r\left(\sqrt{4 R^{2}+r^{2}}+r\right)} \leq \sum \frac{1}{R_{1} R_{2}} \tag{2.20}\\
\leq \frac{\left(\sqrt{4 R^{2}+r^{2}}-5 r\right)\left(\sqrt{4 R^{2}+r^{2}}+r\right)}{32 R^{2}} \leq \frac{3 R^{2}}{r^{4}} \\
\frac{8}{2 R^{2}} \leq \frac{512 R^{2}}{r\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{2}} \leq \sum \frac{1}{R_{1} R_{2} R_{3}} \leq \frac{16}{r\left(\sqrt{4 R^{2}+r^{2}}+r\right)} \leq \frac{4}{r^{2}} \tag{2.21}
\end{gather*}
$$

The demonstrations results from the Theorem (2.2) and from the inequalities (1.2), (1.3) and (1.5).

3. IDENTITIES AND INEQUALITIES WITH $r_{1}, r_{2}, r_{3}, r_{4}$

In this section we consider that ABCD is inscribable and circumscribable and we denote $r_{1}, r_{2}, r_{3}, r_{4}$ the radii of the circles inscribed in the triangles AOB, BOC, COD and DOA.

Lemma 3.1. The following identities are true

$$
\begin{align*}
& A M=\frac{e d a}{a b+c d}, \tag{3.1}\\
& B M=\frac{e a b}{a b+c d}, \tag{3.2}
\end{align*}
$$

$$
\begin{align*}
C M & =\frac{e b c}{a b+c d} \tag{3.3}\\
D M & =\frac{e c d}{a b+c d} \tag{3.4}
\end{align*}
$$

Demonstration. From the similarity of triangles ABO si DCO, respectively ADO and BCO , we have that $\frac{A O}{D O}=\frac{B O}{C O}=\frac{A B}{C D}=\frac{a}{c}$ and $\frac{A O}{B O}=\frac{D O}{C O}=\frac{A D}{B C}=\frac{d}{b}$. From the above inequalities, it follows that $B O=\frac{d}{b} A O, C O=\frac{c}{a} B O=\frac{b c}{a d} A O$ and $D O=\frac{c}{a} A O$. If we choose BO and DO from equality $\mathrm{BO}+\mathrm{DO}=\mathrm{e}$ we get $\frac{b}{d} A O+\frac{c}{a} A O=e$, where the relationship is obtained from 3.1). The relations (3.2)-(3.4) are proved analogously.

Note that s_{1}, F_{1} are the semiperimeter, respectively the area of the triangle AOB and $\alpha=\frac{s r^{2}\left(\sqrt{4 R^{2}+r^{2}}+r\right)}{2 R\left(2 R+r+\sqrt{4 R^{2}+r^{2}}\right)}$.

Lemma 3.2. We have that

$$
\begin{equation*}
r_{1}=\frac{\alpha}{c} \tag{3.5}
\end{equation*}
$$

Demonstration. Considering $\mathrm{s}=\mathrm{a}+\mathrm{c}=\mathrm{b}+\mathrm{d}$, (3.1), (3.2) and (1.6)-(1.11), calculate

$$
\begin{aligned}
s_{1} & =\frac{1}{2}(A B+O B+O A)=\frac{1}{2}\left(a+\frac{e a b}{a b+c d}+\frac{e d a}{a b+c d}\right) \\
& =\frac{a}{2}\left(a+\frac{e(b+d)}{a b+c d}\right)=\frac{a}{2}\left(1+\frac{s}{a b+c d}\right)=\left(\sqrt{\frac{(a c+b d)(a b+c d)}{a d+b c}}\right) \\
& =\frac{a}{2}\left(1+s \frac{e f}{\sqrt{(a d+b c)(a c+b d)(a b+c d)}}\right)=\frac{a}{2}\left(1+s \frac{e f}{4 R r}\right) \\
& =\frac{a}{2}\left(1+s \frac{e f}{4 R r}\right)=\frac{a}{2}\left(1+\frac{2 R \sqrt{4 R^{2}+r^{2}}+r}{4 R r}\right),
\end{aligned}
$$

from where

$$
\begin{equation*}
s_{1}=a \frac{2 R+\sqrt{4 R^{2}+r^{2}}+r}{4 R} \tag{3.6}
\end{equation*}
$$

So we have $F_{1}=\frac{O A O B \sin \varphi}{4 R r}$ and considering $F=\frac{e f \sin \varphi}{2}$ and 3.1, 3.2, (1.6), (1.7), it results that

$$
\begin{aligned}
F_{1} & =\frac{1}{2} \frac{e^{2} a^{2} b d}{2(a b+c d)} \frac{2 F}{e f}=\frac{e}{f} \frac{a^{2} b d F e f}{f(a b+c d)^{2}}=\frac{a^{2} b d F}{(a b+c d)(a d+b c)} \\
& =\frac{a^{2} b d F e f}{(a b+c d)(a c+b d)(a d+b c)}=\frac{a^{2} b d F e f}{16 R^{2} F^{2}},
\end{aligned}
$$

from where

$$
\begin{equation*}
F_{1}=\frac{a^{2} b d\left(\sqrt{4 R^{2}+r^{2}}+r\right)}{8 s R^{2}} \tag{3.7}
\end{equation*}
$$

Because $a b c d=F^{2}=S^{2} r^{2}$, from (3.6) and 3.7) it results that $r_{1}=\frac{F_{1}}{s_{1}}=$ $\frac{a b c d \sqrt{4 r^{2}+r^{2}}+r}{8 s R^{2}} \frac{4 R}{c\left(2 R+r+\sqrt{\left.4 R^{2}+r^{2}\right)}\right.}$, from where 3.5 is true.

Remark 3.1. Similar, we obtain that $r_{2}=\frac{\alpha}{d}, r_{3}=\frac{\alpha}{a}, r_{4}=\frac{\alpha}{b}$.
Remark 3.2. Because $R_{1}=\frac{\alpha O B O A}{4 T_{1}}$, using (3.1)-(3.4), (3.5) and (3.7) we can calculate $R_{1}, R_{2}, R_{3}, R_{4}$.

Theorem 3.1. If the quadrilater $A B C D$ is inscribable and circumscribable, then $r_{1}, r_{2}, r_{3}, r_{4}$ are solutions of the equation
$16 R^{4}\left(2 R+r+\sqrt{4 R^{2}+r^{2}}\right)^{4} x^{4}-16 r R^{3}\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{2}\left(2 R+r+\sqrt{4 R^{2}+r^{2}}\right)^{3} x^{3}$
$+4 r^{2} R^{2}\left(s^{2}+2 r^{2}+2 r \sqrt{4 R^{2}+r^{2}}\right)\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{2}\left(2 R+r+\sqrt{4 R^{2}+r^{2}}\right)^{2} x^{2}$
$-4 s^{2} r^{4} R\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{3}\left(2 R+r+\sqrt{4 R^{2}+r^{2}}\right) x+s^{2} r^{6}\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{4}=0$
Demonstration: Considering c from (3.5) as a solution of the equation (1.1), substituting c from (3.5) in (1.1), after the calculations (3.8) is true.

Theorem 3.2. If the quadrilater $A B C D$ is inscribable and circumscribable, then

$$
\begin{equation*}
\sum \frac{1}{r_{1} r_{2} r_{3}}=\frac{16 R^{3}\left(2 R+r+\sqrt{4 R^{2}+r^{2}}\right)^{3}}{s^{2} r^{5}\left(\sqrt{4 R^{2}+r^{2}}+r\right)^{2}} \tag{3.16}
\end{equation*}
$$

Demonstration results from Theorem (3.1).
TheOrem 3.3. If the quadrilater $A B C D$ is inscribable and circumscribable, then we have the following inequalities

$$
\begin{gather*}
\frac{8 r^{3}(\sqrt{2}-1)}{R^{2}} \leq \sum r_{1} \leq 2 \sqrt{2}(\sqrt{2}-1) R \tag{3.17}\\
\frac{24 r^{6}(\sqrt{2}-1)^{2}}{R^{4}} \leq \sum r_{1} r_{2} \leq \frac{3 R^{4}(\sqrt{2}-1)^{2}}{2 r^{2}} \tag{3.18}\\
\frac{32 r^{9}(\sqrt{2}-1)^{3}}{R^{6}} \leq \sum r_{1} r_{2} r_{3} \leq \frac{R^{6}(\sqrt{2}-1)^{3}}{2 r^{3}} \tag{3.19}\\
\frac{64 r^{12}(\sqrt{2}-1)^{4}}{R^{8}} \leq r_{1} r_{2} r_{3} r_{4} \leq \frac{R^{4}(\sqrt{2}-1)^{4}}{4} \tag{3.20}\\
\frac{4 \sqrt{2}(\sqrt{2}+1)}{R} \leq \sum \frac{1}{r_{1}} \leq \frac{R^{2}(\sqrt{2}+1)^{4}}{r^{3}} \tag{3.21}
\end{gather*}
$$

The demonstration follows from Theorem (3.2) and from inequalities (1.2), (1.3) and 1.5 .

4. APPLICATIONS

(1) Let it be ABCD a bicentric quadrilateral. We denote $\mathrm{AB}=\mathrm{a}, \mathrm{BC}=\mathrm{b}$, $\mathrm{CD}=\mathrm{c}, \mathrm{DA}=\mathrm{d}, \mathrm{BD}=\mathrm{e}, \mathrm{AC}=\mathrm{f}$, the radius of the inscribed circle r . Show that $e f \geq 6 r^{2}$.

Solution. From (1.6) we have $e f=2 r\left(\sqrt{4 R^{2}+r^{2}}+r\right)$. Using the inequality L. Fejes Tóth $R \geq r \sqrt{2}$ we replace R depending on r so that $e f \geq 2 r\left(\sqrt{8 r^{2}+r^{2}}+r\right)$ equivalent to $e f \geq 2 r(3 r+r)$ from where $e f \geq 6 r^{2}$, what had to be demonstrated.
(2) Let it be ABCD a bicentric quadrilateral. We denote $R_{1}, R_{2}, R_{3}, R_{4}$ the radii of the circles circumscribed by the triangles AOB, BOC, COD and DOA. Let r be the radius of the inscribed circle. Show that $\sum a R_{1} \geq 2 s r$.

Solution. How systems $R_{1}, R_{2}, R_{3}, R_{4}$ and a, b, c, d are equally ordered, from Cebisev theorem $4\left(a R_{1}+b R_{2}+c R_{3}+d R_{4}\right) \geq(a+b+$ $c+d)\left(R_{1}+R_{2}+R_{3}+R_{4}\right)$ equivalent to $\sum a R_{1} \geq \frac{s^{2} e f}{4 s r}$, and from 1.6) and 1.7 we have $\sum a R_{1} \geq \frac{s \sqrt{4 R^{2}+r^{2}}+r}{2}$. From inequality L. Fejes Tóth $R \geq r \sqrt{2}$ from where $\sum a R_{1} \geq 2 s r$.
(3) Let it be ABCD a bicentric quadrilateral. We denote $\mathrm{AB}=\mathrm{a}, \mathrm{BC}=\mathrm{b}$, $\mathrm{CD}=\mathrm{c}, \mathrm{DA}=\mathrm{d}, \mathrm{BD}=\mathrm{e}, \mathrm{AC}=\mathrm{f}, s=\frac{a+b+c+d}{2}, R_{1}, R_{2}, R_{3}, R_{4}$ the radii of the circles circumscribed by the triangles AOB, BOC, COD and DOA, r the radius of the circle inscribed in the quadrilateral ABCD. Show that $\sum a R_{1} \geq \frac{s^{2} e f}{4 s r}$

Solution. How systems $R_{1}, R_{2}, R_{3}, R_{4}$ and a,b,c,d are equally ordered, from Cebisev theorem $4\left(a R_{1}+b R_{2}+c R_{3}+d R_{4}\right) \geq(a+b+c+$ d) $\left(R_{1}+R_{2}+R_{3}+R_{4}\right)$ so we have $\sum a R_{1} \geq \frac{s^{2} e f}{4 s r}$.
(4) Let it be ABCD a bicentric quadrilateral. We denote $\mathrm{AB}=\mathrm{a}, \mathrm{BC}=\mathrm{b}$, $\mathrm{CD}=\mathrm{c}, \mathrm{DA}=\mathrm{d}, \mathrm{BD}=\mathrm{e}, \mathrm{AC}=\mathrm{f}$, the radius of the circle inscribed r , the radius of the circumscribed circle $\mathrm{R}, R_{1}, R_{2}, R_{3}, R_{4}$ the radii of the circles circumscribed by the triangles AOB, BOC, COD and DOA. Show that $\sum a R_{1} \geq \frac{s\left(\sqrt{4 R^{2}+r^{2}}+r\right)}{2}$.

Solution. How systems $R_{1}, R_{2}, R_{3}, R_{4}$ and a,b,c,d are equally ordered, from Cebisev theorem $4\left(a R_{1}+b R_{2}+c R_{3}+d R_{4}\right) \geq(a+b+c+$ d) $\left(R_{1}+R_{2}+R_{3}+R_{4}\right)$ equivalent to $\sum a R_{1} \geq \frac{s^{2} e f}{4 s r}$, form 1.6) and 1.7 we have $\sum a R_{1} \geq \frac{s\left(\sqrt{4 R^{2}+r^{2}}+r\right)}{2}$.
(5) Let it be ABCD a bicentric quadrilateral. We denote $\mathrm{AB}=\mathrm{a}, \mathrm{BC}=\mathrm{b}$, $\mathrm{CD}=\mathrm{c}, \mathrm{DA}=\mathrm{d}, \mathrm{BD}=\mathrm{e}, \mathrm{AC}=\mathrm{f}, s=\frac{a+b+c+d}{2}, R_{1}, R_{2}, R_{3}, R_{4}$ the radii of the circles circumscribed by the triangles AOB, BOC, COD and DOA, r the radius of the circle inscribed in the quadrilateral ABCD . Show that $r \leq \frac{\sqrt{2}}{4} e f$.

Solution. From 2.11 $\sum \frac{1}{r_{1}}=\frac{4}{r}$. From the inequality of averages, $m_{a} \geq m_{b} \Rightarrow \frac{R_{1}+R_{2}+R_{3}+R_{4}}{4} \geq \frac{4}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}}=\frac{4}{\sum \frac{1}{R_{1}}}$. From 2.11, $\Rightarrow \frac{R_{1}+R_{2}+R_{3}+R_{4}}{4} \geq \frac{4}{\frac{4}{r}}$ equivalent to $r \leq \frac{R_{1}+R_{2}+R_{3}+R_{4}}{4}$ (a.1). From (2.1) $R_{1}+R_{2}+R_{3}+R_{4}=\frac{s e f}{2 F}$ it follows that $R_{1}+R_{2}+R_{3}+R_{4}=\frac{s}{2} \frac{e f}{2}$. From (1.7) $R_{1}+R_{2}+R_{3}+R_{4}=\frac{e f}{2 r}$. Using here (a.1) we have $r \leq \frac{1}{4} \frac{e f}{2 r}$ equivalent to $r^{2} \leq \frac{1}{8} e f$ which leads to $r \leq \frac{\sqrt{2}}{4} e f$, what was to be demonstrated.

REFERENCES

[1] Mihalca, R.; Boskoff, V., Probleme practice de geometrie, Editura Tehnică, București, 1990.
[2] Nicolaescu, L.; Chițescu, I.; Chiriță, M., Geometria patrulaterului, Editura Teora, București, 1998.
[3] Pop, Ovidiu T.; Minculete, Nicușor; Bencze, Mihaly, An introduction to quadrilateral geometry, Editura Didactică și Pedagogică, București, 2013.

National College "Mihai Eminescu"
5 Mihai Eminescu Street Satu Mare 440014,
Romania
e-mail: phillippaulmi@gmail.com

