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IDENTITIES AND INEQUALITIES IN A QUADRILATERAL

Phillip Paul Mătase Ilea1

Abstract. In this paper we will demonstrate some inequalities that occur in an
inscribable and circumscribable quadrilater.
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1. INTRODUCTION

Let ABCD be a convex quadrilateral and denote AB=a, BC=b, CD=c,

DA=d, BD=e, AC=f, s =
a+ b+ c+ d

2
, AC∩ BD={O}, angle measure AOB

is φ and F is the area of quadrilateral ABCD.
If ABCD is an inscribable and circumscribable quadrilateral, let R, r be

the radius of the circumscribed circle, respectively of the inscribed circle to
ABCD.

It is well known that the sides a, b, c, d are solutions of the equation (see
[3], page 164)
(1.1)

x4−2sx3+(s2+2r2+2r
√
4R2 + r2)x2−2rs(

√
4R2 + r2+ r)X+ r2+ s2 = 0.

The following inequalities are true (see [3], page 168)

(1.2) 2

√
2r
√
4R2 + r2 − r) ≤ s

with equality either if and only if ABCD is square when R = r
√
2 or if ABCD

is an isosceles trapezoid when R ̸=
√
2.

(1.3) s ≤
√
4R2 + r2 + r,

with equality if and only if ABCD is an orthodiagonal quadrilateral

(1.4) 2

√
2r
√
4R2 + r2 − r) ≤ s ≤

√
4R2 + r2 + r.

The inequalities (1.4) hold simultaneously when R = r
√
2 if and only if

ABCD is square. When R ̸=
√
2 at least an inequality from (1.4) is strict.

On the other hand, we have the Inequality L. Fejes Tóth

(1.5) R ≥ r
√
2,
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which suits, with equality if and only if ABCD is a square. The following
identities are true

(1.6) ef = 2r(
√

4R2 + r2 + r),

(1.7) F = sr,

(1.8) e2 =
(ac+ bd)(ab+ cd)

ad+ bc
,

(1.9) ef = ac+ bd,

(1.10)
e

f
=

ab+ cd

ad+ bc
,

and

(1.11) 16R2F 2 = (ab+ cd)(ac+ bd)(ad+ bc)

called the relation of Girard.

2. IDENTITIES AND INEQUALITIES WITH R1, R2, R3, R4

Let it be ABCD a convex quadrilateral and denote by R1, R2, R3, R4 the
radii of the circumscribed circles by the triangles AOB, BOC, COD s, i DOA.

Lemma 2.1. The following identities holds:

(2.1) R1 +R2 +R3 +R4 =
sef

2F

and

a =
2sR1

R1 +R2 +R3 +R4
, b =

2sR2

R1 +R2 +R3 +R4
,

c =
2sR13

R1 +R2 +R3 +R4
, d =

2sR4

R1 +R2 +R3 +R4
.

(2.2)

Demonstration. From the theorem it follows that R1 = a
2 sinφ , R2 = b

2 sinφ ,

R3 = c
2 sinφ , R4 = d

2 sinφ , where from R1 + R2 + R3 + R4 = a+b+c+d
s sinφ = s

2 sinφ .

But F = ef sinφ
2 , from where results the relation (2.1). On the other hand, we

have R1
a = R2

b = R3
c = R4

d = 1
2 sinφ , from where b = R2

R1
a, c = R3

R1
a, d = R4

R1
a.

From the above relations, by addition, we obtain that 2s = a + b + c + d =
a+ R2

R1
a+ R3

R1
a+ R4

R1
a = a

R1
(R1 +R2 +R3 +R4) and from there the relations

(2.2).

Corollary 2.1. In a convex quadrilateral the inequality occurs

(2.3)
sef

2F
≥ 4

√
R1R2R3R4
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Lemma 2.2. If quadrilateral ABCD is inscribable and circumscribable, then

(2.4) a =
2sR1√

4R2 + r2 + r

Demonstration. From (2.2), considering (2.1), (1.6) and (1.7), the relation-
ship (2.4) is obtained.

Theorem 2.1. If the quadrilater ABCD is inscribable and circumscribable,
then R1, R2, R3, R4 are solutions of the equation

16s2x4 − 16s2(
√
4R2 + r2 + r)x3 + (s2 + 2r2 + 2r

√
4R2 + r2)

√
4R2 + r2 + r)2x2

− 4(
√
4R2 + r2 + r)4x+ r2(

√
4r2 + r2 + r)4 = 0

(2.5)

Demonstration. Considering (2.4), we obtain a solution for the equation
(1.1) replacing a from (2.4) in (1.1) and after calculations we get that R1 is
a solution of the equation (2.5). Analogously, it can be demonstrated that
R2, R3, R4 are solutions of the equation (2.5).

Theorem 2.2. If the quadrilater ABCD is inscribable and circumscribable,
then we have the following identities

(2.6)
∑

R1 =
√
4R2 + r2 + r

(2.7)
∑

R1R2 =
(s2 + 2r2 + 2r

√
4R2 + r2)(

√
4R2 + r2 + r)2

4s2
,

(2.8)
∑

R1R2R3 =
r(
√
4R2 + r2 + r)4

4s2
,

(2.9) R1R2R3R4 =
r2(

√
4R2 + r2 + r)4

4s2
,

(2.10)
∑

R2
1 =

(s2 − 2r2 − 2r
√
4R2 + r2)(

√
4R2 + r2 + r)2

,
4s2

(2.11)
∑ 1

R1
=

4

r
,

(2.12)
∑ 1

R1R2
=

4(s2 + 2r2 + 2r
√
4R2 + r2)

r2(
√
4R2 + r2 + r)2

,

(2.13) ,
∑ 1

R1R2R3
=

16s2

r2(
√
4R2 + r2 + r)3

.

The demonstrations results from the Theorem (2.1).
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Theorem 2.3. If the quadrilater ABCD is inscribable and circumscribable
the following identities are true

(2.14) 4r ≤
∑

R1 ≤ 2R
√
2,

6r2 ≤ R2 + r2 + r
√
4R2 + r2 ≤

∑
R1R2

≤ (5
√
4R2 + r2 − 3r)(

√
4R2 + r2 + r)3

64R2

≤ (5
√
4R2 + r2 − 3r)R

√
2

4
≤ (10R

√
2− 3r)R

√
2

4
,

(2.15)

(2.16)

4r3 ≤ r
√
4R2 + r2 + r)2

16
≤

∑
R1R2R3 ≤

(
√
4R2 + r2 + r)5

128R2
≤ R3

√
2,

(2.17) r4 ≤ r
√
4R2 + r2 + r)2

16
≤ R1R2R3R4 ≤

(
√
4R2 + r2 + r)5

512R2
≤ R4

4
,

(2.18)
8r4

R2
≤ (

√
4R2 + r2 − 5r)(

√
4R2 + r2 + r)3

32R2
≤

∑
R2

1 ≤ 2R2,

(2.19)
4
√
2

R
≤

∑ 1

R1
,

12

R2
≤ 8(

√
4R2 + r2 − 3r)

r(
√
4R2 + r2 + r)

≤
∑ 1

R1R2

≤ (
√
4R2 + r2 − 5r)(

√
4R2 + r2 + r)

32R2
≤ 3R2

r4
,

(2.20)

(2.21)
8

2R2
≤ 512R2

r(
√
4R2 + r2 + r)2

≤
∑ 1

R1R2R3
≤ 16

r(
√
4R2 + r2 + r)

≤ 4

r2
.

The demonstrations results from the Theorem (2.2) and from the inequali-
ties (1.2), (1.3) and (1.5).

3. IDENTITIES AND INEQUALITIES WITH r1, r2, r3, r4

In this section we consider that ABCD is inscribable and circumscribable
and we denote r1, r2, r3, r4 the radii of the circles inscribed in the triangles
AOB, BOC, COD and DOA.

Lemma 3.1. The following identities are true

(3.1) AM =
eda

ab+ cd
,

(3.2) BM =
eab

ab+ cd
,
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(3.3) CM =
ebc

ab+ cd
,

(3.4) DM =
ecd

ab+ cd
.

Demonstration. From the similarity of triangles ABO s, i DCO, respectively
ADO and BCO, we have that AO

DO = BO
CO = AB

CD = a
c and AO

BO = DO
CO = AD

BC = d
b .

From the above inequalities, it follows that BO = d
bAO, CO = c

aBO = bc
adAO

and DO = c
aAO. If we choose BO and DO from equality BO+DO=e we get

b
dAO+ c

aAO = e, where the relationship is obtained from (3.1). The relations
(3.2)-(3.4) are proved analogously.

Note that s1, F1 are the semiperimeter, respectively the area of the triangle

AOB and α = sr2(
√
4R2+r2+r)

2R(2R+r+
√
4R2+r2)

.

Lemma 3.2. We have that

(3.5) r1 =
α

c

Demonstration. Considering s = a + c = b + d, (3.1), (3.2) and (1.6)-(1.11),
calculate

s1 =
1

2
(AB +OB +OA) =

1

2
(a+

eab

ab+ cd
+

eda

ab+ cd
)

=
a

2
(a+

e(b+ d)

ab+ cd
) =

a

2
(1 +

s

ab+ cd
) = (

√
(ac+ bd)(ab+ cd)

ad+ bc
)

=
a

2
(1 + s

ef√
(ad+ bc)(ac+ bd)(ab+ cd)

) =
a

2
(1 + s

ef

4Rr
)

=
a

2
(1 + s

ef

4Rr
) =

a

2
(1 +

2R
√
4R2 + r2 + r

4Rr
),

from where

(3.6) s1 = a
2R+

√
4R2 + r2 + r

4R

So we have F1 = OAOB sinφ
4Rr and considering F = ef sinφ

2 and (3.1), (3.2),
(1.6), (1.7), it results that

F1 =
1

2

e2a2bd

2(ab+ cd)

2F

ef
=

e

f

a2bdFef

f(ab+ cd)2
=

a2bdF

(ab+ cd)(ad+ bc)

=
a2bdFef

(ab+ cd)(ac+ bd)(ad+ bc)
=

a2bdFef

16R2F 2
,

from where

(3.7) F1 =
a2bd(

√
4R2 + r2 + r)

8sR2
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Because abcd = F 2 = S2r2, from (3.6) and (3.7) it results that r1 = F1
s1

=
abcd

√
4r2+r2+r
8sR2

4R
c(2R+r+

√
4R2+r2)

, from where (3.5) is true.

Remark 3.1. Similar, we obtain that r2 =
α
d , r3 =

α
a , r4 =

α
b .

Remark 3.2. Because R1 = αOBOA
4T1

, using (3.1)-(3.4), (3.5) and (3.7) we
can calculate R1, R2, R3, R4.

Theorem 3.1. If the quadrilater ABCD is inscribable and circumscribable,
then r1, r2, r3, r4 are solutions of the equation

16R4(2R+ r +
√

4R2 + r2)4x4 − 16rR3(
√

4R2 + r2 + r)2(2R+ r +
√
4R2 + r2)3x3

+ 4r2R2(s2 + 2r2 + 2r
√

4R2 + r2)(
√
4R2 + r2 + r)2(2R+ r +

√
4R2 + r2)2x2

− 4s2r4R(
√
4R2 + r2 + r)3(2R+ r +

√
4R2 + r2)x+ s2r6(

√
4R2 + r2 + r)4 = 0

(3.8)

Demonstration: Considering c from (3.5) as a solution of the equation (1.1),
substituting c from (3.5) in (1.1), after the calculations (3.8) is true.

Theorem 3.2. If the quadrilater ABCD is inscribable and circumscribable,
then

(3.9)
∑

r1 =
r(
√
4R2 + r2 + r)2

R(2R+ r +
√
4R2 + r2)

,

(3.10)
∑

r1r2 =
r2(s2 + 2r2 + 2r

√
4R2 + r2)(

√
4R2 + r2 + r)2

4R2(2R+ r +
√
4R2 + r2)2

,

(3.11)
∑

r1r2r3 =
s2r4(

√
4R2 + r2 + r)3

4R3(2R+ r +
√
4R2 + r2)3

,

(3.12) r1r2r3r4 =
s2r6(

√
4R2 + r2 + r)4

16R4(2R+ r +
√
4R2 + r2)4

,

(3.13)
∑

r21 =
r2(

√
4R2 + r2 + r)2(8R2 + 2r2 + 2r

√
4R2 + r2 − s2)

2R2(2R+ r +
√
4R2 + r2)2

,

(3.14)
∑ 1

r1
=

4R(2R+ r +
√
4R2 + r2)

r2(
√
4R2 + r2 + r)

,

(3.15)
∑ 1

r1r2
=

4R2(s2 + 2r2 + 2r
√
4R2 + r2)(2R+ r +

√
4R2 + r2)2

s2r4(
√
4R2 + r2 + r)

,

(3.16)
∑ 1

r1r2r3
=

16R3(2R+ r +
√
4R2 + r2)3

s2r5(
√
4R2 + r2 + r)2

.
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Demonstration results from Theorem (3.1).

Theorem 3.3. If the quadrilater ABCD is inscribable and circumscribable,
then we have the following inequalities

(3.17)
8r3(

√
2− 1)

R2
≤

∑
r1 ≤ 2

√
2(
√
2− 1)R,

(3.18)
24r6(

√
2− 1)2

R4
≤

∑
r1r2 ≤

3R4(
√
2− 1)2

2r2
,

(3.19)
32r9(

√
2− 1)3

R6
≤

∑
r1r2r3 ≤

R6(
√
2− 1)3

2r3
,

(3.20)
64r12(

√
2− 1)4

R8
≤ r1r2r3r4 ≤

R4(
√
2− 1)4

4
,

(3.21)
4
√
2(
√
2 + 1)

R
≤

∑ 1

r1
≤ R2(

√
2 + 1)4

r3
.

The demonstration follows from Theorem (3.2) and from inequalities (1.2),
(1.3) and (1.5).

4. APPLICATIONS

(1) Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=b,
CD=c, DA=d, BD=e, AC=f, the radius of the inscribed circle r. Show
that ef ≥ 6r2.

Solution. From (1.6) we have ef = 2r(
√
4R2 + r2 + r). Using the

inequality L. Fejes Tóth R ≥ r
√
2 we replace R depending on r so

that ef ≥ 2r(
√
8r2 + r2 + r) equivalent to ef ≥ 2r(3r+ r) from where

ef ≥ 6r2, what had to be demonstrated.
(2) Let it be ABCD a bicentric quadrilateral. We denote R1, R2, R3, R4

the radii of the circles circumscribed by the triangles AOB, BOC,
COD and DOA. Let r be the radius of the inscribed circle. Show
that

∑
aR1 ≥ 2sr.

Solution. How systems R1, R2, R3, R4 and a, b, c, d are equally
ordered, from Cebisev theorem 4(aR1 + bR2 + cR3 + dR4) ≥ (a+ b+

c+ d)(R1+R2+R3+R4) equivalent to
∑

aR1 ≥ s2ef
4sr , and from (1.6)

and (1.7) we have
∑

aR1 ≥ s
√
4R2+r2+r

2 . From inequality L. Fejes Tóth

R ≥ r
√
2 from where

∑
aR1 ≥ 2sr.

(3) Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=b,
CD=c, DA=d, BD=e, AC=f, s = a+b+c+d

2 , R1, R2, R3, R4 the radii of
the circles circumscribed by the triangles AOB, BOC, COD and DOA,
r the radius of the circle inscribed in the quadrilateral ABCD. Show

that
∑

aR1 ≥ s2ef
4sr
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Solution. How systems R1, R2, R3, R4 and a,b,c,d are equally or-
dered, from Cebisev theorem 4(aR1+ bR2+ cR3+ dR4) ≥ (a+ b+ c+

d)(R1 +R2 +R3 +R4) so we have
∑

aR1 ≥ s2ef
4sr .

(4) Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=b,
CD=c, DA=d, BD=e, AC=f, the radius of the circle inscribed r, the
radius of the circumscribed circle R, R1, R2, R3, R4 the radii of the
circles circumscribed by the triangles AOB, BOC, COD and DOA.

Show that
∑

aR1 ≥ s(
√
4R2+r2+r)

2 .
Solution. How systems R1, R2, R3, R4 and a,b,c,d are equally or-

dered, from Cebisev theorem 4(aR1+ bR2+ cR3+ dR4) ≥ (a+ b+ c+

d)(R1 + R2 + R3 + R4) equivalent to
∑

aR1 ≥ s2ef
4sr , form (1.6) and

(1.7) we have
∑

aR1 ≥ s(
√
4R2+r2+r)

2 .
(5) Let it be ABCD a bicentric quadrilateral. We denote AB=a, BC=b,

CD=c, DA=d, BD=e, AC=f, s = a+b+c+d
2 , R1, R2, R3, R4 the radii of

the circles circumscribed by the triangles AOB, BOC, COD and DOA,
r the radius of the circle inscribed in the quadrilateral ABCD. Show

that r ≤
√
2
4 ef .

Solution. From (2.11)
∑ 1

r1
= 4

r . From the inequality of averages,

ma ≥ mb ⇒ R1+R2+R3+R4
4 ≥ 4

1
R1

+ 1
R2

+ 1
R3

+ 1
R4

= 4∑ 1
R1

. From (2.11)

⇒ R1+R2+R3+R4
4 ≥ 4

4
r

equivalent to r ≤ R1+R2+R3+R4
4 (a.1). From

(2.1) R1+R2+R3+R4 =
sef
2F it follows that R1+R2+R3+R4 =

s
2
ef
2 .

From (1.7) R1+R2+R3+R4 =
ef
2r . Using here (a.1) we have r ≤ 1

4
ef
2r

equivalent to r2 ≤ 1
8ef which leads to r ≤

√
2
4 ef , what was to be

demonstrated.
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