



# Lehrstuhl Rechnernetze und Kommunikationssysteme



# Rechnernetze Eine (kurze) Einführung

Cluj, Wintersemester 2019/20

Prof. Dr.-Ing. habil. Hartmut König

## **II.4**

## Schichtenarchitekturen



König 4.1
Tanenbaum/Wetherall 1.3.1



#### Schichtenarchitekturen

In Rechnernetzen und Kommunikationssystemen werden aufeinander abgestimmte Schichtenarchitekturen verwendet, in die die Kommunikationsprotokolle eingebettet werden.

#### Schichtenarchitektur:

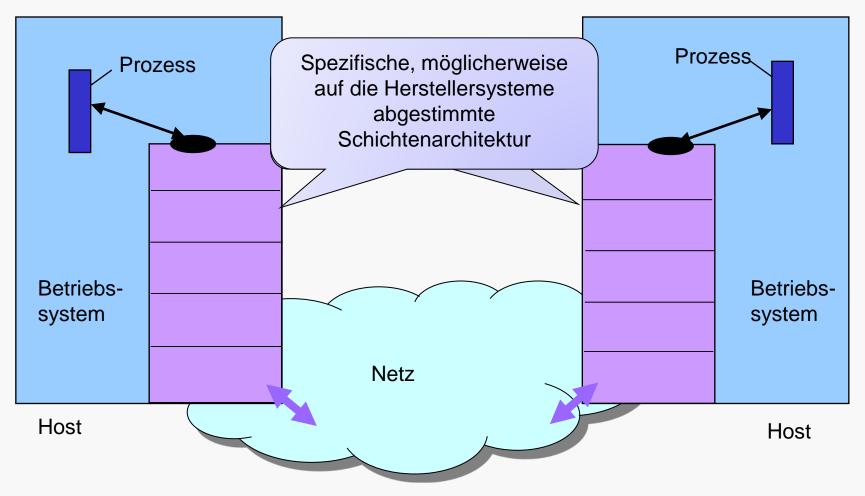
- Definiert die Funktionalität der Schichten und legt die Prinzipien der Interaktion zwischen ihnen fest
- In der Regel durch Standardisierungsgremien (z.B. IETF, ISO) oder Firmenkonsortien
  - - auch durch Firmenstrategien und politische Kompromisse geprägt
    - meist nicht von Protokollentwickler direkt beeinflusst



## Arten von Schichtenarchitekturen

Schichtenarchitekturen werden bzgl. der Art der Integration neuer Rechnersysteme in zwei Arten unterschieden:

- Geschlossene Architekturen
  - ⋄ geschlossene Systeme
- Offene Architekturen
  - ♦ offene Systeme




## **II.4.1**

## Geschlossene Schichtenarchitekturen



## Geschlossene Schichtenarchitekturen





#### Geschlossene Architekturen

Geschlossene Schichtenarchitekturen sind auf ein bestimmtes Anwendungsgebiet ausgerichtet. Sie berücksichtigen die spezifischen Anforderungen des jeweiligen Einsatzbereichs oder eines bestimmten Produzenten.

#### Proprietäre Architekturen

- such Herstellerorientierte geschlossene Architekturen
- Systeme, die die Hard- und Softwareprodukte eines Herstellers verbinden, oder für einen speziellen Einsatzfall entwickelt wurden.
- Beispiele: SNA (System Network Architecture) (IBM) (1970/80 Jahre)
  - DNA (Digital Network Architecture) (DEC) (1970/80 Jahre)



# Proprietäre Architekturen

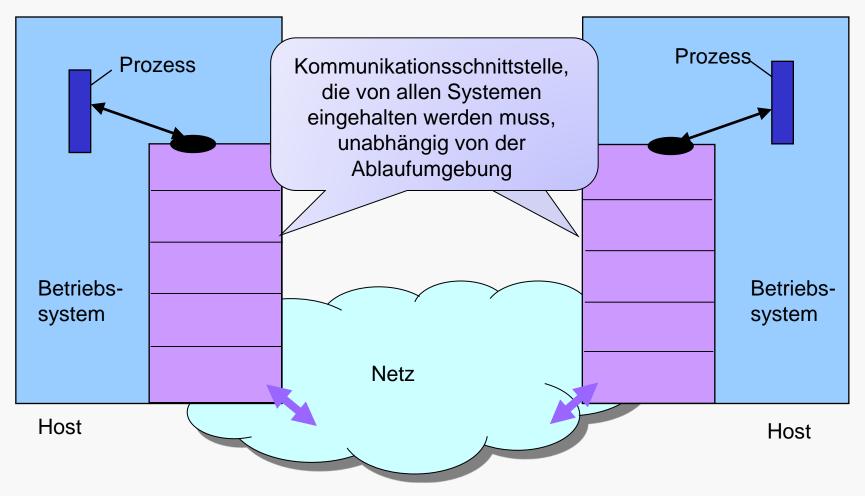
#### Vorteile:

- effizient, da auf die Herstellersysteme ausgerichtet
- gute Pflege
- kontinuierliche Weiterentwicklung
- schnelle Reaktion auf neue Markterfordernisse

#### Nachteile:

Einbindung von Systemen anderer Hersteller ist aufwendig

# Im Internetzeitalter haben geschlossene Architekturen ihre Bedeutung verloren !!!


- Bleiben auf spezielle Einsatzfälle beschränkt !!!
- Existierende proprietäre Architekturen haben sich der Internet-Architektur geöffnet !!!



# II.4.2 Offene Schichtenarchitekturen



## Offene Schichtenarchitekturen





# Offene Architekturen (1)

Offene Schichtenarchitekturen definieren eine einheitliche Kommunikationsschnittstelle (Protokolle), die von allen Systemen einzuhalten sind.

 Offen: Jedes Rechnersystem, das diese Schnittstelle einhält, kann in das Netz integriert werden

#### **Keine Implementierungsvorschrift !!!**

- Kommunikationssoftware kann in jedem System unterschiedlich implementiert sein !!!
  - Die Protokollschnittstelle muss gleich sein !!!



# Offene Architekturen (2)

- Offene Architekturen sind die Voraussetzung für den Aufbau
  - heterogener Netze
  - Internationaler/firmenübergreifender Netze
  - des Internets
- Beispiele: OSI-Kommunikationsarchitektur
  - Internet-Architektur



#### Standardisierte Protokolle

Das Ziel einer offenen Kommunikation kann nur erreicht werden, wenn die Protokolle, die in den einzelnen Schichten eingesetzt werden, standardisiert werden.

- OSI-Architektur
  - Standardisierung durch ISO und CCITT/ITU-T
- Internet-Architektur
  - Standardisierung durch IETF
    - Request for Comments (RFCs)
- Lokale Netze
  - Standardisierung durch IEEE
- Die Standardisierung ist die Grundlage für die mehrfache Implementierung von Protokollen !!!



# II.4.3 Protokollarchitekturen



#### Protokollarchitekturen

Ursprünglich wurden Schichtenarchitekturen durch Kommunikationsarchitekturen (OSI-Modell) beschrieben. Heutzutage haben sich in der Praxis so genannte Protokollarchitekturen etabliert.

#### Protokollarchitekturen:

- Hierarchische Protokollstrukturen in denen die Schnittstellen zwischen den Protokollen nicht mehr durch definierte Architekturelemente, sondern durch die Protokollschnittstellen bestimmt werden.
  - substitution entra entra
  - ♦ Protokolle können in verschiedenen Protokollarchitekturen auftreten
- Anpassung an verschiedene Protokollschnittstellen erforderlich

#### Anwendung

häufig zur Definition einer Protokollhierarchie für eine bestimmte Anwendung Internet-Architektur ist eine Protokollarchitektur



## **Protokollstack**

 Als Protokollstack oder Protokollstapel wird allgemein eine Protokollhierarchie in einer Kommunikations- oder einer Protokollarchitektur bezeichnet.

umgangssprachlicher Begriff!!!



## 11.4.4

# Ausgewählte Schichtenarchitekturen



# II.4.4.1 OSI-Referenzmodell



König 4.3.1 Tanenbaum/Wetherall 1.4.1

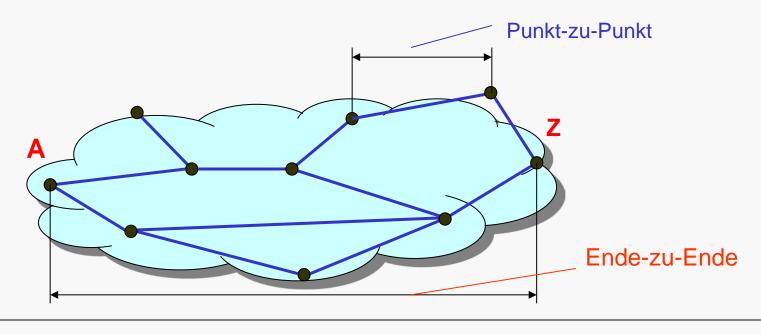


# **OSI-Referenzmodell (1)**

Das **OSI-Referenzmodell** galt lange Zeit als das wichtigste Referenzmodell für den Aufbau offener heterogener Rechnernetze.

- SI/RM Open Systems Interconnection / Reference Model
- Entwickler: ISO (International Standardisation Organisation)
  - genauer: ISO/TC97/SC16
- Entwicklungszeitraum: 1978 -1984
  - 1984 internationaler Standard (ISO IS 7498)
  - später ergänzt durch ein Netzmanagement-Modell und eine Sicherheitsarchitektur
- Ursprünglich konzipiert für flächendeckende Rechnernetze (WAN)
  - Grundlage: Vermaschte Topologie




# **Vermaschte Topologie**

#### Topologie

Art und Weise, wie die Netzknoten angeordnet und miteinander verbunden sind

#### Vermaschte Topologie

Beliebige Verteilung der Netzknoten über einen möglicherweise großen Raum über Punktzu-Punkt-Verbindungen





# **OSI-Referenzmodell (2)**

- Besteht aus 7 Schichten
  - Auswahl auf der Grundlage spezifischer Kriterien
- Schichten 1- 4: Transport-orientierte Schichten
  - Realisieren Übertragungsfunktionen
- Schichten 5-7: Anwendungs-orientierte Schichten
  - Unterstützen die Anwendung



## **OSI-Referenzmodell**

Anwendungsschicht

Darstellungsschicht

Kommunikationssicherungsschicht

Transportschicht

Vermittlungsschicht

Datensicherungsschicht

Bitübertragungsschicht



Kommunikationskanal

Anwendungs-

orientierte Schichten

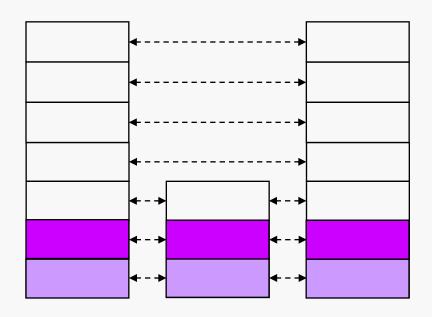
Transportorientierte

Schichten

# A) Bedeutung der OSI-Schichten



## OSI-Schichten 1+2


#### (1) Bitübertragungsschicht

\$ physical layer, PH

- Übertragung der Daten in Form von Signalen über Kommunikationskanal
- Definiert die mechanischen, elektrischen, funktionalen sowie prozeduralen Anforderungen für die Datenübertragung

#### (2) Datensicherungsschicht

 Sichert die korrekte Übertragung zusammenhängender Bitfolgen (Rahmen) zwischen 2 Netzknoten

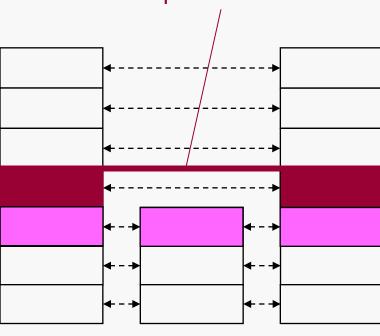




## **OSI-Schichten 3+4**

#### (3) Vermittlungsschicht

hotwork layer, N


- Übernimmt die Vermittlung und Weiterleitung der Daten im Netz
- Wegewahl (Routing)
- Realisiert auch den Verbund von Netzen (internetworking)

#### (4) Transportschicht

transport layer, T

- Realisiert direkte Kommunikation zwischen den Endsystemen
- Ende-zu-Ende Kommunikation
- Verdeckt Netzstruktur

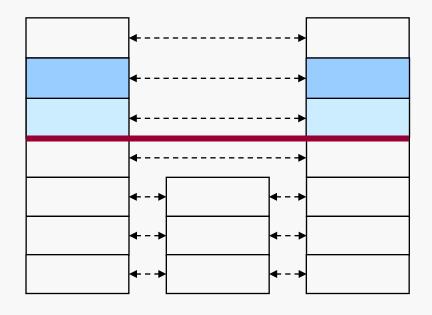
#### Transportschnittstelle





## **OSI-Schichten 5+6**

#### (5) Kommunikationssicherungsschicht


♦ session layer, S

- Dient der inhaltlichen Synchronisation der Kommunikation
  - Resynchronisation
  - ♥ Wiederaufsetzen der Kommunikation
  - ♦ Vergabe von Senderechten

#### (6) Darstellungsschicht

presentation layer, P

- Sorgt für eine einheitliche Interpretation der Daten unabhängig von der Darstellung in den einzelnen Rechnern
  - Darstellungskontext & Transfersyntax





## **OSI-Schicht 7**

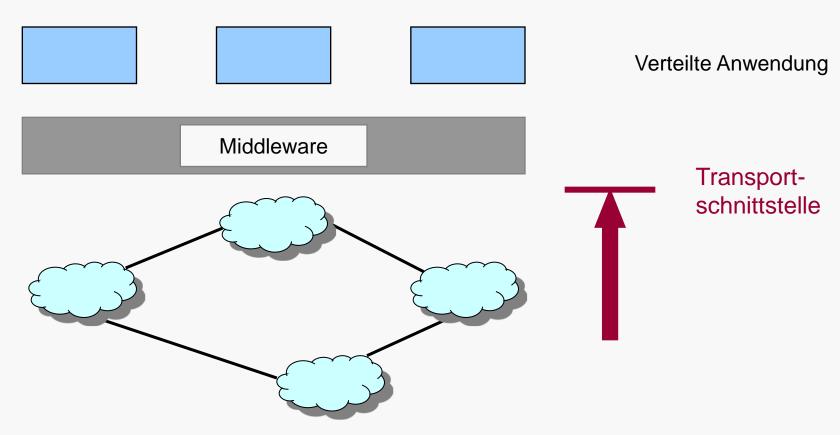
#### (7) Anwendungsschicht

spplication layer, A

- Stellt dem Nutzer die Dienste zur Verfügung, die er in seine Anwendung einbindet
- Für die Anwendungsschicht wurde ein eigenes Modell definiert, das sich von dem der anderen Schichten unterscheidet.
  - b fließender Übergang zur Anwendung
  - 🔖 z. B. keine Dienstzugangspunkte
  - Hat sich nicht durchgesetzt !!!






#### **Middleware**

Es hat sich gezeigt, dass die Funktionen der Schichten 5-7 in ihrer ganzen Komplexität nicht immer benötigt werden.

- Schichten wurden von vielen Anwendungen nicht genutzt
- Verlagerung der Funktionalität in die so genannte Middleware-Plattformen
  - weniger komplex
  - 🔖 stärker anwendungsbezogen
- Beispiele:
- DCE (Distributed Computing Environment)
- CORBA
- Web Services



## Middleware-Plattformen





# B) Wertung des OSI-Ansatzes



# Wertung des OSI/RM (1)

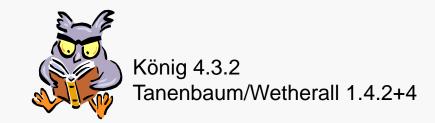
Das OSI/RM in seiner ursprünglichen Form hat sich nicht durchgesetzt !!!

#### Gründe:

- Modell in sich zu komplex
  - 🔖 z.B. haben sich die höheren Schichten als nicht zweckmäßig erwiesen
- späte Protokollentwicklung
  - nach der Modelldefinition
- lange Standardisierung
  - 🔖 späte Verfügbarkeit kommerzieller Produkte
- neue Anforderungen durch neue Entwicklungen
  - Hochleistungskommunikation
  - Middleware-Plattformen



# Wertung des OSI/RM (2)


#### Was bleibt ???

- Systematik des Ansatzes
- Vielzahl konzeptioneller Beiträge
  - 🔖 z.B. Dienstzugangspunkte, Verbindungen, Zeitablaufdiagramme u.v.a.
- Architekturkonzepte
  - Dienste
  - Protokolle
  - Schichten u. a.

# OSI/RM wird als methodisches Bezugsmodell genutzt !!!



# II.4.4.2 TCP/IP-Architektur





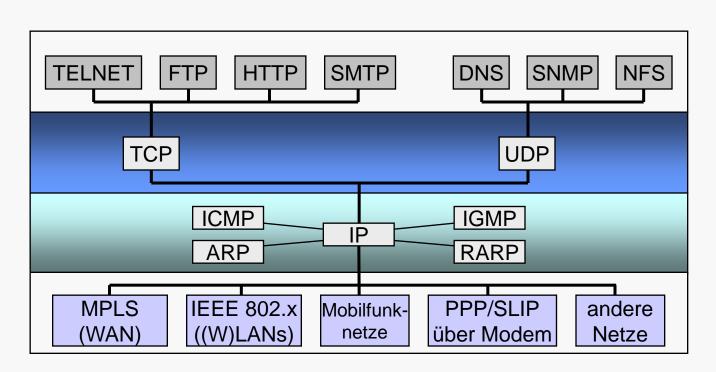
#### TCP/IP-Architektur

Die TCP/IP-Architektur ist die Schichtenarchitektur des Internet.



#### Kein Referenzmodell !!!

- Beschreibt weniger ein allgemeingültiges Rahmenwerk für die Gestaltung von Schichtenarchitekturen, sondern vielmehr das konkrete Zusammenwirken der Kernprotokolle mit den anderen Protokollen im Internet
- Keine Architekturfestlegungen
- Anwendungs- bzw. Netzzugangsschicht sind keine richtigen Schichten !!!


#### Primär eine Protokollarchitektur !!!

Protokolle TCP und IP waren Ausgangspunkt der Entwicklung



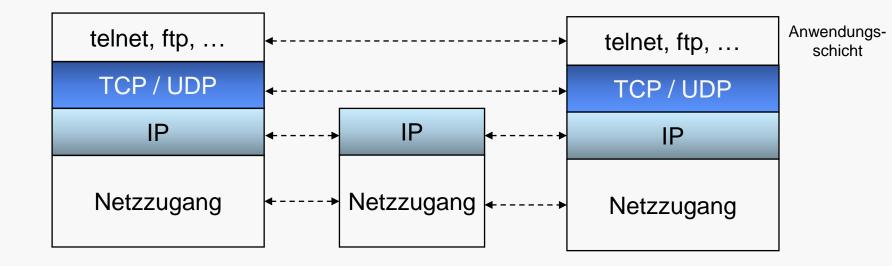
## TCP/IP-Architektur

(im Vergleich mit dem OSI-Referenzmodell)



#### OSI/RM

Anwendungsschicht


Transportschicht

Vermittlungsschicht

Datensicherungs-/ physikalische Schicht



## TCP/IP-Architektur





# **Beispiel: Interaktionspunkte**

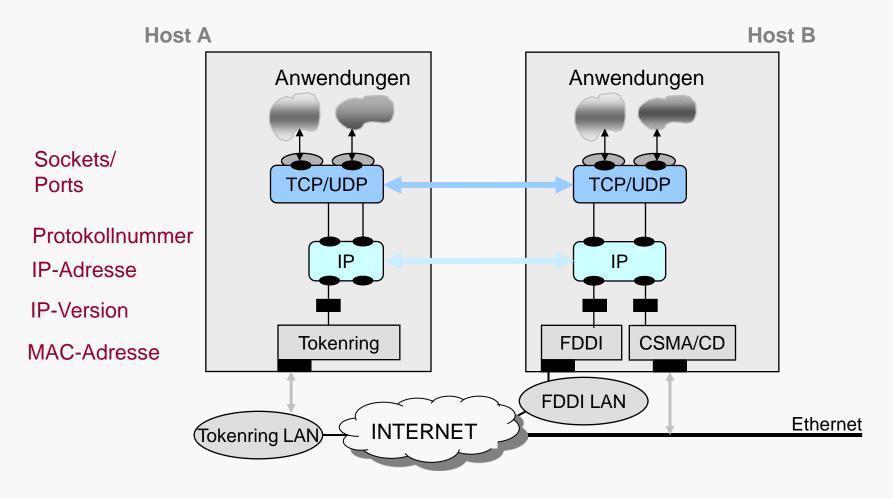
Als Beispiel, um den Unterschied zwischen einer Kommunikationsarchitektur und einer Protokollarchitektur zu erläutern, sei hier die Gestaltung der Interaktionspunkte betrachtet. Die TCP/IP-Architektur kennt das Konzept des Dienstzugangspunkts wie im OSI nicht.

Vielzahl unterschiedlicher Formen von Interaktionspunkten

Sockets + Ports: Zugangspunkte der Transportschnittstelle für Anwendung

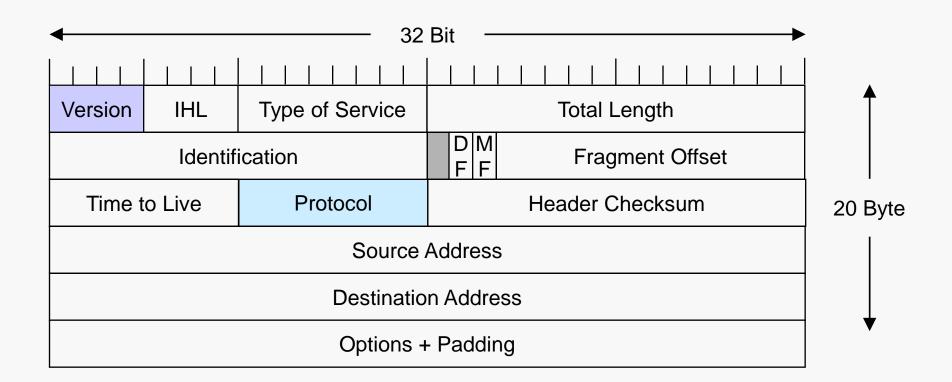
Protokollnummer: Zuweisung des "IP-Dienstnutzers"

Versionsnummer: Auswahl des Protokollstacks


IP-Adresse: Identifikation des Hosts (Zugang IP-Schicht)

(mehrere Adressen möglich)

MAC-Adresse: LAN-Zugang




## Interaktionspunkte in der TCP/IP-Architektur<sup>1</sup>





## Struktur des IPv4-Headers





## Unterschiede zur OSI-Architektur

- Kein Dienstbegriff
- Kein starrer Schichtenbegriff
  - vorrangig nur ordnend
- Zugriff auf tiefere Schichten möglich
- Mehrere Protokolle in einer Schicht möglich
- Verbindungslose und verbindungsorientierte Kommunikation
- Separate Protokolle für Datenübertragung und Verbindungsverwaltung möglich
  - bout of band-Signalisierung
- Unterstützung Internetworking

