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Preface

Formal Concept Analysisis a field of applied mathematics based on the math-
ematization of concept and conceptual hierarchy. It thereby activates math-
ematical thinking for conceptual data analysis and knowledge processing.

The underlying notion of “concept™ evolved early in the philosophical
theory of concepts and still has effects today. For example, it has left its
mark in the German standards DIN 2330 and DIN 2331. In mathematics
it played a special role during the emergence of mathematical logic in the 19th
century. Subsequently, however, it had virtually no impact on mathematical
thinking. It was not until 1979 that the topic was revisited and treated more
thoroughly. Since then, through a large number of contributions, Formal
Concept Analysis has obtained such breadth that a systematic presentation
is urgently needed, but can no longer be realized in one volume.

Therefore, the present book focuses on the mathematical foundations of
Formal Concept Analysis, which can be regarded chiefly as a branch of ap-
plied lattice theory. A series of examples serves to demonstrate the utility of
the mathematical definitions and results; in particular, to show how Formal
Concept Analysis can be used for the conceptual unfolding of data contexts.
These examples do not play the role of case studies in data analysis. A
separate volume is intended for a comprehensive treatment of methods of
conceptual data and knowledge processing. The general foundations of For-
mal Concept. Analysis will also be treated separately.

It is perfectly possible to use Formal Concept Analysis when examining
human conceptual thinking. However, this would be an application of the
mathematical method and a matter for the experts in the respective sci-
ence, for example psychology. The adjective “formal” in the name of the
theory has a delimiting effect: we are dealing with a mathematical field of
work, that derives its comprehensibility and meaning from its connection with
well-established notions of “concept™, but which does not strive to explain
conceptual thinking in turn.

The mathematical foundations of Formal Cooncept Analysis are treated
in seven chapters. By way of introduction, elements of mathematical order
and lattice theory which will be used in the following chapters have been
compiled in a chapter “zero™. However, all difficult notation and results from
this chapter will be introduced anew later on. A reader who knows what is
understood by a lattice in mathematics may skip this chapter.

The first chapter describes the basic step in the formalization: An el-
ementary form of the representation of data (the “cross table”) is defined
mathematically (“formal context™). A formal concept of such a data context
is then explained. The totality of all such concepts of a context in their hier-
archy can be interpreted as a mathematical structure (*concept lattice™). It
is also possible to allow more complex data types (“many-valued contexts™).
These are then reduced to the basic type by a method of interpretation called
“conceptual scaling”.
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The second chapter examines the question of how all concepts of a data
context can be determined and represented in an easily readable diagram. In
addition, implications and dependencies between attributes are dealt with.
The third chapter supplies the basic notions of a structure theory for concept
lattices, namely part- and factor structures as well as tolerance relations. In
each case the extent to which these can be elaborated directly within the
contexts is studied.

These mathematical tools are then used in the fourth and fifth chapter, in
order to describe more complex concept lattices by means of decomposition
and construction methods. Thus, the concept lattice can be split up into
(possibly overlapping) parts, but it is also possible to use the direct product
of lattices or of contexts as a decomposition principle. A further approach
is that of substitution. In accordance with the same principles, it is possible
to construct contexts and concept lattices. As an additional construction
principle, we shall describe a method of doubling parts of a concept lattice.

The structural properties examined in mathematical lattice theory, for
example the distributive law and its generalizations or notions of dimension,
play a role in Formal Cooncept Analysis as well. This shall be treated in the
sizth chapter. The secventh chapter finally deals with structure-comparing
maps, examining various kinds of morphisms. Particular attention is given
to the scale measures, occuring in the context of conceptual scaling.

We limit ourselves to a concise presentation of ideas for reasons of space.
Therefore, we endeavour to give a complete reference to further results and
the respective literature at the end of each chapter. However, we have only
taken into account such contributions closely connected with the topic of the
book, i.e., with the mathematical foundations of Formal Concept Analysis.
The index contains all technical terms defined in this book, and in addition
some particularly important keywords. The bibliography also serves as an
author index.

The genesis of this book has been aided by the numerous lectures and ac-
tivities of the “Forschungsgruppe Begriffsanalyse” (Research Group on Con-
cept Analysis) at Darmstadt University of Technology. It is difficult to state
in detail which kind of support was due to whom. Therefore, we can here
only express our gratitude to all those who contributed to the work presented
in this book.

Two years after the German edition, this English translation has been
finished. In its content there are only a few minor changes. Although there
is ongoing active work in the field, the mathematical foundations of Formal
Concept Analysis have been stable over the last years.

The authors are extremely grateful to Cornelia Franzke for her precise
and cooperative work when translating the book. They would also like to
thank K.A. Baker, P. Eklund and R.J. Cole, M.F. Janowitz, and D. Petroff
for their careful proofreading.
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0. Order-theoretic Foundations

Formal Concept Analysis is based on mathematical order theory, in partic-
ular on the theory of complete lattices. The reader is not required to be
familiar with these areas. The mathematical foundations are surveyed in
this chapter. However, we limit ourselves to the most important facts, as
there is no room for a comprehensive introduction to order theory. For this
purpose, we refer to the bibliography listed at the end of this chapter. In
general, the reader is supposed to have experience with mathematical texts:
we use the technical language of mathematics, in particular of set theory,
without further explanation.

In the first section we will introduce ordered sets, in the second complete
lattices. These two sections constitute the basis for the following chapters.
On the other hand, the third section, dealing with closure systems, and the
fourth on Galois connections may be skipped at a first reading. Much of
what they contain will be introduced again later under a different name. The
second half of this chapter shows how the basic notions of Formal Concept
Analysis have their roots in order and lattice theory. In this connection, we
follow, in most aspects, the “classical” representation by Garrett Birkhoff.

0.1 Ordered Sets

Definition 1. A binary relation R between two sets M and N is a set of
pairs (m,n) with m € M and n € N, i.e., a subset of the set M x N of all
such pairs. Instead of (m,n) € R we often write mRn. If N = M, we speak
of a binary relation on the set M. R~! denotes the inverse relation to
R, that is the relation between N and M with nR~'m :< mRn. &

Definition 2. A binary relation R on a set M is called an order relation
(or shortly an order), if it satisfies the following conditions for all elements
r.y, 2 € M:

l. 2Rz (reflexivity)
2. xRy and r # y = not yRx (antisymmetry)
3. xRy and yRz = rR: (transitivity)

B. Ganter et al., Formal Concept Analysis
© Springer-Verlag Berlin Heidelberg 1999



2 0. Order-theoretic Foundations

For R we often use the symbol < (for R~! the symbol >), and we write x < y
for # < y and v # y. As usual, we read x < y as “z is less than or equal
to y”, etc. An ordered set is a pair (M, <), with M being a set and < an
order relation on M.! O

Examples of ordered sets are: The real numbers B with the usual <-relation,
but also the space [B” with

(s oy ey n) <{Y1s Y20 s tn) 1= x; <y fori=1,2,... n;

the natural numbers I with the divisibility relation |; the power-set P(X) of
all subsets of any set X' with set inclusion. Even the equality relation = is
a (trivial) example of an order. Many further examples will be discussed in
the following.

Definition 3. «a is called a lower neighbour of b, if @ < b and there is no
element of ¢ fulfilling ¢ < ¢ < b. In this case, b is an upper neighbour of
a, and we write a < b. O

Every finite ordered set (M, <) can be represented by a line diagram
(also called a Hasse diagram by many authors). The elements of M are
depicted by small circles in the plane. If 2,y € M with x < y, the circle
corresponding to y is depicted above the circle corresponding to x (permitting
sideways shifts), and the two circles are joined by a line segment. From such
a diagram we can read off the order relation as follows: 2 < y if and only if
the circle representing y can be reached by an ascending path from the circle
representing x. Figure 0.1 presents line diagrams for all ordered sets with up
to four elements.

Figure 0.1 Line diagrams of all ordered sets with up to four elements.

! Instead of ordered sets, some authors equivalently speak of partially ordered sets.
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Definition 4. Two elements r, y of an ordered set (M, <) are called com-
parable if r < y or y < z, otherwise they are incomparable. A subset of
(M, <) in which any two elements are comparable is called a chain; a subset
in which any two elements are incomparable is called an antichain. The
width of a finite ordered set (M, <) is defined to be the maximal size of an
antichain in (M, <), for an arbitrary ordered set (M, <) it is defined to be
the supremum of the sizes of antichains in (M, <). Similarly, the length is
defined to be the supremum of the sizes of chains in (M, <), minus one. <

Definition 5. If (M, <) is an ordered set and a, b, ¢, d are elements of M
with b < ¢, we define the interval

[boc]:={reM|b<a<ch
The set
(] = {r € M |2 < a}
is called a principal ideal and
dy:={xreM|x>d}

is called a principal filter.
Thus, a < b is equivalent to a < b and [a, b] = {a, b}. O

Definition 6. A map ¢ : M — N between two ordered sets (M, <) and
(N, <) is called order-preserving, if

r<y=pr gy
for all z,y € M. If ¢ furthermore fulfills the converse implication
r<y<=gr <oy,

¢ is called an order-embedding. In this case, ¢ is necessarily injective. A
bijective order-embedding is called (order-) isomorphism. O

Not every bijective order-preserving map is an
order-isomorphism, as the example shows. In
order to prove that a certain order-preserving
map ¢ is an isomorphism, it is usually shown
that the inverse map ¢~!
order-preserving.

exists and is also L )
Bijective, order preserving,

but not an isomorphism.
Definition 7. The (direct) product of two ordered sets (M7, <) and (M2, <)
is defined to be the ordered set (M; x Mz, <) with

(x1,22) < (y1,y2) 1 <= 21 <y and z3 < ya.
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The definition of the product can be extended to any number of factors: If
T is an index set and (M;, <), t € T are ordered sets, then

X (M, <) := (X My, <) with
teT teT

(;Ef)teT _<_ (yt)tET R S Yt for all ¢ eT.

Figure 0.2 An example of a product of two ordered sets.

Definition 8. In order to be able to define the cardinal sum or disjoint
union of two ordered sets, we first introduce the notation

M, = {t} x M,.
The sets M’I and Mg will then be disjoint copies of M; and M,. We define
(M1, <) + (M3, <) := (M U My, <),
the order relation being specified as follows:
(s,a) < (t,b): <= s=t and a < b in M,.

This definition is also easily generalized in the case of any number of sum-
mands. o

The Duality Principle for ordered sets. The inverse relation > of an
order relation < is also an order relation. It is called the dual order of <. A
line diagram of the dual ordered set (M, §)d := (M, >) can be obtained from
the line diagram of (M, <) by a horizontal reflection. If (M, <) = (N, S)d,
the two orders are called dually isomorphic.

We obtain the dual statement A% of an order-theoretic statement 4 (which
apart from purely logical components only contains the symbol <), if we
replace in A4 the symbol < by >. A holds for an ordered set, if and only if
A holds for the dual ordered set. This Duality Principle is used to simplify
definitions and proofs. If a theorem asserts two statements that are dual to
each other, we usually prove only one of them, the other one follows “dually”,
i.e., with the same proof for the dual order.
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Definition 9. Let (M, <) be an ordered set and A a subset of M. A lower
bound of 4 is an element s of M with s < « for all « € 4. An upper
bound of A is defined dually. If there is a largest element in the set of all
lower bounds of A, it is called the infimum of A and is denoted by inf A or
A\ A; dually, a least upper bound is called supremum and denoted by sup A
or VA. If A = {x,y}, we also write x Ay for infA and z V y for sup A.
Infimum and supremum are frequently also called meet and join. O

0.2 Complete Lattices

Definition 10. An ordered set V := (V,<) is a lattice, if for any two
elements r and y in V" the supremum = Vy and the infimum z Ay always exist.
V is called a complete lattice, if the supremum \/ X and the infimum A X
exist for any subset X' of V. Every complete lattice V" has a largest element,
\/ V, called the unit element of the lattice, denoted by 1y-. Dually, the
smallest element 0y is called the zero element. 0]

Figure 0.3 Line diagrams of the lattices with five elements.

The definition of a complete lattice presupposes that supremum and infi-
mum exist for every subset X, in particular for X = (). We have AQ = 1y
and \/ © = 0y, from which it follows that V # O for every complete lattice.
Every non-empty finite lattice is a complete lattice.

We can reconstruct the order relation from the lattice operations infimum
and supremum by

r<y < r=rAy &< rVy=y.

If T is an index set and X := {x; | t € T} a subset of V, instead of \/ X
we also write \/, . x; and instead of A X we write A, 2;. The operations
of the supremum and infimum, respectively, are associative. The familiar
particular case of the associative laws, i.e., zA(yAz) = (zAy)Az, respectively
rV(yVz)=(xVy)Vz, can be generalized as follows: If {X; |t € T} is a
set of subsets of V', then
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\V (\/ A}) -\ <U X,) and dually /\ (/\ X,) - A (U Xz) _

teT teT teT teT

The Duality Principle for lattices. The definitions of a lattice and a
complete lattice, respectively, are self-dual: If (V, <) is a (complete) lattice,
then so is (V, <)? = (V. >). Therefore, the Duality Principle for ordered sets
carries over to lattices: We obtain the dual statement of an order-theoretic
statement, if we replace the symbols <, vV, A, \/, A, Oy, Ly etc. by >, A, V,

AV, Ly, Oy ete.

Proposition 1. An ordered set in which the infimum exists for every subset
is a complete lattice.

Proof. Let X be any subset of the ordered set. We have to prove that the
supremum of X exists. The set S of all upper bounds of X has an infimum
s (even if S is empty). Every element of X is a lower bound of S, i.e., < s.
Hence s itself is an upper bound of X and consequently the supremum. 0O

Examples of lattices. 1) For every set M the power-set (M), i.e., the
set of all subsets of M, is ordered by set inclusion C and (P(M),C) is a
complete lattice. In this case the lattice operations supremum and infimum
are set union and intersection.

2) Every closed real interval [a,b] in its natural order forms a complete
lattice ([a, b], <) with the usual infimum and supremum, respectively, as lat-
tice operations. The ordered set (IR, <), on the other hand, is a lattice, but
it is not complete: It lacks a greatest and a least element.

We will give further examples of complete lattices from mathematics in
section 0.3.

Definition 11. For an element v of a complete lattice V' we define

V{J eVie<v}
/\{1 eViv<al

We call v \/-irreducible?, if v # v,, i.e., if v cannot be represented as the
supremum of strictly smaller elements. In this case, v, is the unique lower
neighbour of v. Dually, we call v A-irreducible® if v # v*. J(V) denotes
the set of all \/-irreducible elements and M (V') the set of all A-irreducible
elements. A set X' C V' is called supremum-dense in V, if every element
from V' can be represented as the supremum of a subset of X and, dually,
infimum-dense, if v = A{r € X |v <z} forallveV. &

Vs

and v*

? read: supremum-irreducible
3 read: infimum-irreducible
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Proposition 2. An element v of a finite lattice is \[-irreducible, if and
only if it has eractly one lower neighbour, and \-irreducible, if and only
if it has eractly one upper neighbour. Every supremum-dense subset con-
tains all \[-irreducible elements and every infinum-dense subset contains all
N-irreducible elements. Conversely, in a finite lattice V' the set J(V') is
supremum-dense and M (V') is infimum-dense.

Proof. v is \/-irreducible, if and only if v, # v. This, on the other hand,
is equivalent to the fact that v, is the largest element less than v, that is, it
is in particular the only lower neighbour of v. For A-irreducible elements we
conclude dually. The second statement of the proposition is trivial, the third
is proved inductively: Every element v which is not \/-irreducible itself, is the
supremum of strictly smaller elements. If those are suprema of \/-irreducible
elements, so is v. O

It is easy to state examples of complete lattices which contain neither
\/-irreducible nor A-irreducible elements, as for instance the real interval
[0,1] in its natural order. The upper neighbours of the zero element are
always \/-irreducible (if they exist). They are called the atoms of the lattice.
The coatoms, i.e., the lower neighbours of the unit element, are always A-
irreducible. A complete lattice in which every element is the supremum of
atoms is called atomistic.

Definition 12. A subset U/ of a complete lattice V' which is closed under
suprema, i.e., for which holds

TcUu=\[TeU,

is a \/-subsemilattice of V. Dually, a subset which is closed under infima
is called a A-subsemilattice. A subset which is closed under both suprema
and infima is called a complete sublattice. O

Definition 13. A map ¢ : V — W between two complete lattices V' and
W is called supremum-preserving, if*

PV X =VeX)

holds for every subset X of V. Another name is \/-morphism, and du-
ally: infimum-preserving map, A-morphism. If ¢ is both supremum-
preserving and infimum-preserving, then ¢ is a complete lattice homo-
morphism or complete homomorphism. &

Every supremum-preserving map, in particular every complete homomor-
phism, is order-preserving. Conversely, every order-isomorphism between
complete lattices is automatically a lattice-isomorphism, i.e., a bijective
complete homomorphism.

* (X' here stands for {px | x € X}.
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0.3 Closure Operators

Definition 14. A closure system on a set (G is a set of subsets which
contains (¢ and is closed under intersections. Formally: 2 C PB(G) is a
closure system if G € 2 and

xcu=[lxex

A closure operator ¢ on (i is a map assigning a closure p.X C G to each
subset X C (7 under the following conditions:

I X CY = oYX CoY (monotony)
2. X CpX (extensity)
3oopX = pX (idempotency)

&

Closure system and closure operator are closely related, as shown by the
following theorem:

Theorem 1. If AU is a closure system on GG then
paX = {4 €A X C 4}
defines a closure operator on GG. Conversely, the set

A, = {pX

X CG}
of all closures of a closure operator ¢ is always a closure system, and
pa, =¢ as well as Uy =AU,

Proof.

— u is a closure operator: From X C Y it follows that

{4e

XCA}D{Aeq|Y C A}

Since set intersection is monotone, this implies

paX = m{4 e

XCAYC(HA€U|Y C A= paY.

Extensity is trivial. Idempotency: According to the definition of vq, each
element of 2 which contains .X' also contains ¢q X, and vice versa.

— 2, is a closure system: Let X C 2,. On account of the extensity of ¢ we
have X C ¢( X). Because of monotony and idempotency, from X € X
it always follows that ¢([X) C ».X' = X, which implies ¢(X) C N X.

—XEAS X ={A€A| X CAlo paX =X & X €9,,.
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— For A € ,, X C A is equivalent to ¢.X C A. Hence
pa, N =[[HA€U [N CA} =AU, | pX C A} =pX,
since pX € U,.

O

Every closure system 2l can be understood as the set of all closures of a
closure operator. Thus, the elements of 2 are called closures as well.

Proposition 3. If A is a closure system, then (AU, C) is a complete lattice
with AX = NX and VX = paUX for all X C A. Conversely, every

complete lattice is isomorphic to the lattice of all closures of a closure system.

Proof. 1t is obvious that (] X is the infimum and thus (compare Proposition
1) that pg |J X is the supremum of X. If (V,<) is a complete lattice, then
the system {(z] | + € V'} is a closure system, since [,¢p(y] = (A 7] holds
for each subset 1T'C V. m

However, a system of sets 2 C P(G) for which (2, C) is a complete lattice
is not necessarily a closure system. Rather, such families of sets are precisely
the image sets of monotonous, idempotent operators.

Examples. For many mathematical structures, the system of substructures
is a closure system. The power-set evidently is a closure system. Other
important examples are:

(1) subspaces: For any vector space V, the system (V') of all subspaces is
a closure system. The complete lattice (L{(V'), C) is called the subspace
lattice of V; in this lattice Uy V U; = Uy + U; and more generally

v%: {wi +uz+---+u, | there are Uy,...,U, € X
with u; € U; for i € {1,...,n}}.

(2) subgroups: For any group , the set {U(G) of all subgroups of G is
a closure system. The complete lattice (4(G), C) is called subgroup
lattice of (7. Provided that (¢ is commutative, U; V Uy = Uy + Us, and
more generally,

v.'{ = {uy+uz+---+u,| there are Uy,...,U, € X
with w; € U for i € {1,...,n}}.
(3) closed sets: For a topological space T' (for example, for B™), the set

A(T) of all closed sets of T is a closure system. In the complete lattice
(A(T),C) the supremum is equivalent to the topological closure of the

union, i.e., L
Vx=Jx
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(4) convex sets: For " the set €(B") of all convex subsets is a clo-
sure system, i.e., (C(F"), C) is a complete lattice and in this lattice the
supremum is the convex closure of the union.

(5) the faces of polyhedra: For a polyhedron P, the set G(P) of all faces
of P is a closure system. The complete lattice (&(P),C) is called the
face lattice of P; for those lattices there is no general “good” description
of the suprema.

(6) equivalence relations: For a set M, the set (M) of all equivalence
relations on M is a closure system on M x M. The complete lattice
(€(M), C) is called the lattice!lof equivalence relations of M; in this
lattice

\/x = {(a,b)e M x M | there are Ry,...,R, € X and
(xiy2i41) € Ry for i € {1,...,n}
with e =21 and b = 2,41},
In lattice theory these lattices are examined for the structural laws they

fulfill. In the following we will mention a few important properties, these and
others will be discussed in Chapter 6.

Definition 15. A complete lattice V' is called

— distributive if the following distributive laws hold for all z,y, 2 € V:

(D) eAV:) = (@AY V(rAz)
(D,) rV(yAnz) = (2Vy A(xVz)

— completely distributive if the following generalization of the two dis-
tributive laws for arbitrary infima and suprema holds for all index sets

S, 1 # O:

(Dyp) /\{V{IS,zITET}lSES}:
V{/\{J?S,W |s €S} |¢:S—>T}.

— modular if the following law holds for all x, y and z:

r<zr=>rV(yAz)=(xVy A-:. o
Distributivity and modularity are self-dual properties: if they hold for a
lattice V', they also hold for V. All above-mentioned properties transfer to
complete sublattices. Power-set lattices are completely distributive, subspace
lattices of vector spaces are modular.
For the special case S :={0,1}, ro¢:=x and 21, := x; for all t € T, the
property of complete distributivity yields the weaker law
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(D, y) AN =\ (A,

teT teT
The dual law (Dv/\

topological space, and (D, ,) holds in the lattice of all open sets. Those
lattices are not completely distributive in general.

) holds in the lattice of the closed sets of any given

0.4 Galois Connections

Definition 16. Let
p:P—@ and ¢:Q— P

be maps between two ordered sets (P, <) and (@), <). Such a pair of maps is
called a Galois connection between the ordered sets if:

L p1 <p2= pp1 > ¢p2
2 <= vq > vy
3. p<typand ¢ < pyg
The two maps then are called dually adjoint to each other. O
See Figure 0.4 for an example.
Proposition 4. A pair (¢, ) of maps is a Galois connection if and only if:
4. p<¥geq< op.

Proof. p < g by 1) yields ¢p > @iq and by 3) pp > ¢, i.e., one direction
of 4). The other follows symmetrically. Conversely, from ¢p < ¢p by 4)
it follows that p < vep, i.e., 3). Thus, from p; < p; we can deduce that
p1 < wpy, which by 4) yields ppy < ¢p;. a

Proposition 5. For every Galois connection (o, )

P =¢tp and & = Py

Proof.  With ¢ := ¢p we obtain by condition 3) ¢p < @ipp and from
p < dep by 1) pp > prgp. -

The question, under which conditions a given map ¢ can be extended to
a Galois connection, is answered by the following proposition.

Proposition 6. A map
o (M, <) — (N, <)

between two ordered sets has a dual adjoint, if the pre-image of each principal
filter is a principal ideal. The dual adjoint is unique.
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Figure 0.4 An example of a (Galois connection.

Proof.  For any y € N the pre-image of [y) equals {z € M |y < pz}. If ¥ is
dually adjoint to ¢, then by Proposition 4

{reMly<ort={re M|z <y} = (vyl.
This also proves the uniqueness of 1. Conversely, we can define ¥ by
(0] =97 ([v) = {z € M [y < pu}

and thereby obtain x < vy < y < ¢x, which according to the proposition is
characteristic of (Galois connections. |

In the case that the two ordered sets are complete lattices, the character-
ization can be further improved:

Proposition 7. A map
o (V<) — (W,<)
between complete lattices has a dual adjoint if and only if

teT teT

holds for z, € V.
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Proof. 1f v is dually adjoint to », then by Proposition 4

y < /\p.rt & y<pr forallteT

teT
& r<yyforallteT
& V 2 <Yy
teT
& y<gp V T.
teT

If, conversely, ¢ VteT Ty = /\tET ¢, then ¢ definitely fulfills condition 1) in
Definition 16. Defining vy := \/{x € V | y < pz} for y € W we immediately
obtain condition 2) as well as the first part of 3). For y € W it follows that
ey =p\V{z eV ]y <prt=ANprly<pr} >y, le, 3). Hence (¢, v) is

a (Galois connection. 0O

We are particularly interested in the special case of a Galois connection
between two power-set lattices. If M and N are two sets and ¢ : P(M) —
P(N) is a map (assigning a subset oA of N to each subset A of M) and ) is
a map from P(N) to P(M) such that conditions 1), 2) and 3) of Definition
16 are fulfilled (the order is set inclusion C), then this is briefly called a
Galois connection between M and N. The connection with the closure
operators is emphasized by the following proposition.

Proposition 8. The map A — oA is a closure operator on M and the
map B — @¥'B is a closure operator on N. The maps ¢ and 1, respectively,
define dual isomorphisms between the corresponding closure systems.

Proof. Monotony and extensity of the maps follow immediately from the
definition of a GGalois connection, and idempotency follows from Proposition
5. We can also see from this proposition that the closures in M are precisely
the sets of the form "B, B C N, and those in N are precisely the sets of the
form ¢ A, A C M. The maps ¥B — ¢¢¥B and A — oA, respectively, are
order-reversing and by Proposition 5 inverse to each other, i.e., bijective. O

Galois connections bhetween power-set lattices and binary relations be-
tween their ground sets are closely interrelated. This is shown by the next
theorem. In preparation, we introduce some new notation:

Definition 17. If R C M x N is a relation, we write

X# {ye N|xRyforallz € X} for X C M
and Y® = {reM|zRyforallyeY}forY CN.

v

Since we have not presupposed that M and N are disjoint, this notation
allows ambiguous formulations, which, however, can easily be avoided.
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Theorem 2. For every binary relation R C M x N, a Galois connection
(R, URr) between M and N is defined by
erXN = X (={ye N|xRy foralxc X})
and vrY = Y® (={re M |zRyforalyecY}).
If, conversely, (¢, ) is a Galots connection between M and N, then

Ry = {(x.y) €M x N|xev{y}}
= {(z,y) e M x N |yep{x}}

is a binary relation between M and N, ¢g , = ¢, ¥Yr,, = ¥ and
R(WRWR) = R

Proof.  From Proposition 4 it can easily be seen that (¢g.v¥g) is a Galois
connection and that the two sets used in order to define R, ) are equal.
According to this definition (z,y) € R(,.y) & y € p{z} and thus, by Propo-
sition 7,

pX = () efe}

reX

ﬂ ng(wv') {I}
reEX

= PR

il

Le, ¢r, ,, = ¢ and correspondingly vg, ,, = . The last statement

R(orwr) = R follows immediately from the equivalence x € ¥p{y} < xRy.
0

The use of the term “(ialois connection” is not uniform. Some authors
prefer to replace one of the ordered sets by its dual. We prefer to call such
pairs of maps residuated. In the case of complete lattices we obtain:

Proposition 9. To every A-preserving map ¢ : (V, <) — (W, <) between
complete lattices there is a \[-preserving map

v (W <) — (V<)
with
r<p(y) & v() <y.

The maps ¢ and ¥ uniquely determine each other: From ¢ we obtain ¢ by

vle) = ANyl = <eln)},

and, conversely, ¢ results from ¢ by

o) =\ [ o) <u}

In this case, v is called a residuated map, ¢ is called the residual map,
and the maps are adjoint to each other. If one of the maps is injective, the
other one is surjective. and vice versa.
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Proof. This is an immediate consequence of Proposition 7 and the preceding
propositions: If we replace (W, <) by the dual lattice (W,>), ¢ and ¢ form
a (Galois connection. The relation between injectivity and surjectivity can be
inferred from Proposition 5. O

0.5 Hints and References

The standard monograph on lattices and ordered sets remains Birkhoft’s
Lattice Theory [15]. Of the many other textbooks on these topics we particu-
larly mention Algebraic Theory of Lattices by Crawley and Dilworth [29], also
Davey and Priestley: Introduction to Lattices and Order [31], and Grétzer:
General Lattice Theory [75]. Many facts about Galois connections and resid-
uated maps can be found in the book Residuation Theory by Blyth and
Janowitz [16].



1. Concept Lattices of Contexts

The basic notions of Formal Concept Analysis are those of a formal context
and a formal concept. The adjective “formal” is meant to emphasize that
we are dealing with mathematical notions, which only reflect some aspects of
the meaning of contert and concept in standard language. However, we will
write out the adjective “formal” only in the definition and leave it out later
for reasons of convenience, as we have in the title of the first section. Thus, it
shall be understood that where we write context or concept we actually mean
a formal context or a formal concept, respectively.

1.1 Context and Concept

Definition 18. A formal context K := (G, M,I) consists of two sets
and M and a relation [ between (G and M. The elements of GG are called the
objects and the elements of M are called the attributes of the context!. In
order to express that an object g is in a relation I with an attribute m, we
write gIm or (g,m) € I and read it as “the object ¢ has the attribute m”.

O

The relation I is also called the incidence relation of the context. Instead
of (g, m) ¢ I we sometimes write gFm.

Example 1. The context in Figure 1.1 was used to plan a Hungarian edu-
cational film entitled “Living Beings and Water”. Here the objects are the
living beings mentioned in the film and the attributes are the properties
which the film emphasizes.

A small context can be easily represented by a
cross table, i.e., by a rectangular table the rows
of which are headed by the object names and the
columns headed by the attribute names. A cross in
row g and column m means that the object ¢ has the
attribute m.

! Strictly speaking: “formal objects” and “formal attributes”.

B. Ganter et al., Formal Concept Analysis
© Springer-Verlag Berlin Heidelberg 1999
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Jalblc[dle[f]eg[h]i]
1 | Leech x | X X
2 | Bream X | X X
3 | Frog X | X X
4 | Dog X X X
5 | Spike — weed || x | x X
6 | Reed X | x| x| x X
7 | Bean X X | %
8 | Maize X X X

Figure 1.1 Context of an educational film “Living Beings and Water”. The at-
tributes are: a: needs water to live, b: lives in water, c¢: lives on land, d: needs
chlorophyll to produce food, e: two seed leaves, f: one seed leaf, g: can move
around, h: has limbs, 1: suckles its offspring.

Definition 19. For a set 4 C (i of objects we define
A'i={me M | gIm for all g € A}

(the set of attributes common to the objects in A). Correspondingly, for a
set B of attributes we define

B':={g € G| gIm for all m € B}
(the set of objects which have all attributes in B).? &

Definition 20. A formal concept of the context (G, M, I) is a pair (A, B)
with ACG,BC M, A =B and B’ = A. We call A the extent and B the
intent of the concept (A, B). B((, M, 1) denotes the set of all concepts of
the context (G, M, ). O

We will give examples of concepts of the con-

text in Figure 1.1 after Definition 21. The extent b
A and the intent B of a concept (A, B) are closely N XXX
connected by the relation I. Each of the two parts XXX

determines the other and thereby the concept, since
B’ = A and A’ = B, respectively. The next propo-
sition states further simple rules of this interaction:

Proposition 10. If (G, M, 1) is a context, A, Ay, Ay C G are sets of objects
and B, By, By are sets of attributes, then

*> The notation introduced here is convenient but sometimes insufficient. In order
to improve comprehensibility it can be helpful to choose notations like AT, B* to
distinguish the derivation operators, or A', 4” to distinguish different relations.
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1) A CAy= 45 C 4 1) By C By = B, C B
2)ACA 2) BCB"
3) A= A" 3°) B = B"

})JACB < BCA < AxBCI.

Proof. 1) If m € A, then gIm for all ¢ € Ay, i.e., in particular gIm for all
g € Ay, if Ay C A, and thus m € A]. 2) If g € A, then gIm for all m € A’,
which implies g € A”. 3) A’ C A" follows immediately from 2’), and A C A"
together with 1) yields A”" C A’. 4) follows directly from the definition. O

The proposition shows that the two derivation operators form a Galois
connection between the power-set lattices P(G) and P(M) (see Section 0.4).
Hence we obtain (by Proposition 8) two closure systems on GG and M, which
are dually isomorphic to each other:

For every set 4 C (¢, A’ is an intent of some concept, since (4", 4') is
always a concept. A" is the smallest extent containing A. Consequently, a set
A C (G is an extent if and only if A = A”. The same applies to intents. The
union of extents generally does not result in an extent. On the other hand,
the intersection of any number of extents (respectively intents) is always an
extent (intent), as is proved by the following proposition:

Proposition 11. If T is an index set and, for everyt € T, A, C G is a set

of objects, then
/
(Um)zﬂm.

teT teT
The same holds for sets of attributes.

Proof.
/
me (U At)
teT

gIm for all g € U Ay
teT
glmforallge A, forallt €T

me A forallteT

m e ﬂ AL

teT O

I A

The set of all extents of (G, M, I) is sometimes denoted by (G, M, I).
For the set of all intents we write J(G, M, I).

Definition 21. If (4, B;) and (A, B3) are concepts of a context, (Ay, By) is
called a subconcept of (A,, B;), provided that A1 C A, (which is equivalent
to By C By). In this case, (A,, By) is a superconcept of (A, B;), and we
write (A1, B1) < (Ag, Bz). The relation < is called the hierarchical order

(or simply order) of the concepts. The set of all concepts of ((+, M, I) ordered
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in this way is denoted by B((/, M, I) and is called the concept lattice of
the context (G, M, I). O

Example 2. The context in Example 1 has 19 concepts. The line diagram
in Figure 1.2 represents the concept lattice of this context.

Figure 1.2 Concept lattice for the context of Figure 1.1

Theorem 3 (The Basic Theorem on Concept Lattices). The concept
lattice B(G, M, 1) is a complete lattice in which infimum and supremum are

given by:
A (4. B) = (ﬂ Ay, (U Bt) )

teT teT teT

1"
V (4. B) = ((U At) N Bf> :
teT teT teT

A complete lattice V' is isomorphic to B(G, M, I) if and only if there are
mappings ¥ : G =V and i : M — V such that %(G) is supremum-dense in
V, i{(M) is infimum-dense in V and gIm is equivalent to yg < fim for all
g € G and allm € M. In particular, V = B(V,V, <).

Proof of the Basic Theorem. First, we will explain the formula for the infi-
mum. Since A, = B for each t € T,

(e (ys))

by Proposition 11 can be transformed into
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((us){ys))

i.e., it has the form (X', X") and is therefore certainly a concept. That
this can only be the infimum, i.e., the largest common subconcept of the
concepts (A, By). follows immediately from the fact that the extent of this
concept is exactly the intersection of the extents of (A, B;). The formula for
the supremum is substantiated correspondingly. Thus, we have proven that
B(G, M, I) is a complete lattice.

Now we prove, first for the special case V. = B(G, M, I), the existence of
mappings 4 and g with the required properties. We set

3g:= ({g)" {g)) for g € G

and gm = ({m}',{m}") for m € M.

As claimed, we have g < jun < {g}" C {m} <= {g¢} O {m} <=
m € {g} <= glin. Furthermore, on account of the formulas proved above,

V Het' gy = (A.B) = A ({m}, {m}").

geA meB

holds for every concept (A, B), i.e., ¥((+) is supremum-dense and (M) is
infimum-dense in B((G, M, I). More generally, if V = B(G, M,I) and ¢ :
B(G, M,I) — V is an isomorphism, we define 4 and i by

9 :

I

({9} {g}) forge G

and fim := p({m}’, {m}") for m € M.

The properties claimed for these mappings are proved in a similar fashion.
If, conversely, V is a complete lattice and

G2 Vip M-V
are mappings with the properties stated above, then we define
e B(G MI) >V

by
2(A.B) :=\/{3(g9) | g € A}

Evidently, ¢ is order-preserving. In order to prove that ¢ is an isomorphism,
we have to demonstrate that p~! exists and is also order-preserving. There-
fore, we define

yr:={ged|yg <z}, {me M|z <pam}),



22 l. Concept Lattices of Clontexts

for z € V' and demonstrate that v is a concept of (G, M, I):

he{lgeGlyg<z} & Fh<rz
& Fh<pnforallne{meM|z<am}
& hinforallne {me M |x < jm}
S he{meM|r<pm}.
The second condition follows correspondingly. We have defined a map v :

V = B(G, M, 1), and we can read off directly from the definition that % is
order-preserving. Now we prove that ¢ = 1=, We have

P = V{i’g lg €G,3¢ < r} =z,

since ¥(() is supremum-dense in V.. On the other hand, p(A4, B) = A{im |
m € B}, since (M) is infimum-dense in V', and consequently

bo(A,B) = ¢ \lim|me B}

({9 € G 179 < Afim |m e B}}L{...})
= ({geG |39 <pmforall me B} {.})
(
(B’

{gE(J | gIm for all m € B}, {...}')
,B") = (4, B).

If we choose for a complete lattice V' specifically G := V, M := V| I :=<
and 7 as well as i to be the identity of V', we obtain V = B(G, M,I). O

The Duality Principle for Concept Lattices. Let (G, M,I) be a
context. Then (M, G, 1_1) is also a context, in fact,

B(M, G, 171 = B(G, M, 1)*,

and
(B,A) —» (A, B)

is an isomorphism.

In other words: if we exchange the roles of objects and attributes, we ob-
tain the dual concept lattice. Thus, the Duality Principle extends to concept
lattices.

The mappings ¥ and g which appear in the Basic Theorem indicate how
the context can be identified in the concept lattice. This is elaborated by the
following definition.

Definition 22. For an object ¢ € G we write ¢’ instead of {g}’ for the
object intent {m € M | gIm} of the object g. Correspondingly, m’ := {g €
G | gIm} is the attribute extent of the attribute m. Retaining the symbols
used in the Basic Theorem, we write yg for the object concept (¢”, ¢’) and
pm for the attribute concept (m', m"). O
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The line diagram in Figure 1.2 indicates the intent and the extent of every
concept. The labelling can be simplified considerably by putting down each
object and each attribute only once, namely at the circle for the respective
object or attribute concept (see Figure 1.3). It is still possible to read off
the context as well as all extents and intents from the line diagram: If one
looks for the extent belonging to one of the little circles which represent the
concepts, it consists of the objects located at this circle or the circles which
can be reached by descending line paths from this circle. Correspondingly,
the intent can be found by following all line paths going upwards from the
circle and noting down the attributes assigned to these circles.

Figure 1.3 Line diagram with reduced labelling.

The sparing, reduced labelling enables us to enter the full names of the
objects and attributes of the context in Figure 1.1 into the diagram. This
improves the readability of the diagram, as can be seen in Figure 1.4.

1.2 Context and Concept Lattice

A context can be easily reconstructed from the system of all its concepts. G
and M appear as the extent and the intent of the trivial boundary concepts:
The set of all objects is the extent of the largest concept, (@', ") = (G, G").
Dually, M is the intent of the least concept, (@",@') = (M’, M). The inci-
dence relation [ is given by

I=|J{4x B|(A B) € B(G,M,I))}.

It is even easier to read off the context from the concept lattice, as the Basic
Theorem shows. On the other hand, concept lattices of different contexts
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Figure 1.4 Concept lattice for the educational film “Living beings and water”.

can well be isomorphic. The context manipulations which do not alter the
structure of the concept lattice include the merging of objects with the same
intents and attributes with the same extents, respectively:

Definition 23. A context ((+, M, 1) is called clarified, if for any objects
g.h € G from ¢’ = h' it always follows that ¢ = h and, correspondingly,
m’ = n' implies m = n for all m.n € M. O

Example 3. Figure 1.5 shows a context which represents the service offers
of an office supplies business. Below the clarified context.

Another feature which has no influence on the structure of the concept
lattice are attributes which can be written as a combination of other at-
tributes. More precisely: 1If m € M is an attribute and X C M is a set of
attributes with m ¢ X but m’ = X’. then the attribute concept pm is the
infimum of the attribute concepts px, x € X, i.e., the set p(M \ {m}) is also
infimum-dense in B((. M, ), and according to the Basic Theorem

B(G. M, 1) = B(G, M\ {m). I (G x (M\ {m}))).

The removal of reducible attributes, i.e., of attributes with A-reducible at-
tribute concepts and of reducible objects, i.e., of objects with \/-reducible
object concepts, is called reducing the context. Full rows and full
columns are always reducible; thereby we mean objects ¢ with ¢ = M
and attributes m with ' = G, respectively.

Definition 24. A clarified context ((v, M, ) is called row reduced, if every
object concept is \/-irreducible, and column reduced, if every attribute
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Furniture | Computers Copy- Type- | Specialized
machines | writers machines

Consulting X X X X X
Planning X X
Assembly and X X X X X
installation
Instruction X X X X
Training, X
workshops
Original spare X X x x x
parts and
accessories
Repairs X X X X X
Service contracts X X X

Furniture | Computers Copy machines Specialized

and typewriters machines

Consulting, % X X X
assembly and
installation,
original spare
parts and
accessories,
repairs
Planning X X
Instruction X X X
Training, X
workshops
Service contracts X X

Figure 1.5 Context and clarified context.
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Figure 1.6 The concept lattice for the context of Figure 1.5.

Figure 1.7 Reduced contexts with up to three objects, and their concept lattices.
The context (@, @, Q) is omitted, as is its (one-element) concept lattice.
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concept is A-irreducible. A context, which is both row reduced and column
reduced, is reduced. &

It is easy to find infinite contexts in which all attributes and all objects are
reducible (see page 7). As a rule this means that we cannot simultaneously
omit all reducible objects and attributes. This is no problem, however, in the
case of finite concept lattices, since in a finite lattice each element is the join
of \/-irreducible and the meet of A-irreducible elements (see Proposition 2,

p- 7).

Proposition 12. For every finite® lattice V' there is -up to isomorphism®-
a unique reduced context (V') with V = B(K(V')), that is

E(V) = (J(V). M(V), <).
O

This context is also called the standard context of the lattice V.. For
practical work with contexts, the proposition has the following consequences:
Every finite context can be brought into a reduced form without changing
the structure of the concept lattice, and the latter is unique. We first clarify
the context, i.e., we merge objects with the same intents and attributes with
the same extents. Then we delete all objects, the intent of which can be
represented as the intersection of other object intents, and correspondingly
all attributes, the extent of which is the intersection of other attribute extents.

It is easy to reconstruct the concepts of the original context from those
of the reduced context, if one has kept a record of the reduction process. If
we denote, for a finite clarified context (G, M, I), the set of its irreducible
objects by (i and the set of irreducible attributes by M;.,, the reduced
context is (Girry, Mireo I N (Gliee X Mire) ), and each concept (A, B) of (G, M, I)
corresponds to the concept (ANGirr, BOMirr) of (Gipry, Mipe, IN(Gipe X Migr ).
For every object g € (7 and every extent A of (G, M,I)

/RS A <= g”ﬂGirr C AN Gipr,

holds dually for the attributes. If we note down the set ¢g"” N G for every
reducible object g and the set m'' N M, for every reducible attribute m, it is
easy to obtain the concepts of ((/, M, I) from those of (Giy, Mirr, I N (Gl X
Mirr))-

There is another way to carry out the reduction of the clarified context, by
means of the arrow relations, which will be defined next. These relations
can conveniently be entered into the cross table, since they only apply to
object-attribute-pairs which do not stand in the relation I.

% See also Proposition 14.c).

4 Two contexis (Gi1. M. 1)) and (G2, Ms, I5) are called isomorphic, if there are
bijective mappings « : 1 = Ga,8: My, — M, with glim & (ag)l2(8m) for all
g € Gy, m € M, see Definition 86 (p. 246).
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I3 SE

3| 5 3| &

HS = HEE =l

S| o[ 2| Ol 3RO

olz21Zlol=] | Slza|= o]«
Afghanistan X | X [ x| % Ecuador X | % X
Algeria X | % X Egypt EIES
Angola X | X X El Salvador X X
Antigua and Barbudal|x X Equatorial Guinea|x |x [x X
Argentina x Ethiopia XX x| [x
Bahamas X X Fiji X X
Bahrain X | % (Gabon X | X X | X
Bangladesh X[ X|x|x Gambia x| x|x|{x| [x
Barbados X | X X Ghana x| x|x|x]| [x
Belize X | X X Grenada X [ X X
Benin XXX [x[ |X Guatemala X X
Bhutan x| x| % Guinea XX |X|x| [x
Bolivia x| % Guinea-Bissau x| x[x|x| [|x
Botswana X | x| x X (Guyana x (x| x| [x
Brazil X Haiti x| [x|x]| [x
Brunei Honduras X X
Burkina Faso XX |Ix|x| |x Hong Kong
Burundi X|x|x[x| [x India x|x| |x
Cambodia x| x| [x Indonesia x | x X
Cameroon x| x| (x| [x Iran x | % X
Cape Verde X x{x|{x| [x Iraq X | % X
Central African Rep. |[x|x|x|x]| [x Ivory Coast X || x| [x
Chad x| X[ x|x X Jamaica X [ % X
Chile X Jordan x | X
China Kenya x[x| x| [x
Colombia X | X Kiribati X X
Comoros X | x| X Korea-North x [ x| x
Congo X | X X Korea-South X
Costa Rica X Kuwait x| x X
Cuba x| x Laos EIEIES
Djibouti x| x| x X Lebanon X | X
Dominica x| X Lesotho x| x[x|x| |x
Dominican Rep. X X Liberia X | X X

The abbreviations stand for: LLDC := Least Developed Countries, MSAC := Most
Seriously Affected Countries, OPEC' := Organization of Petrol Exporting Countries,
ACP := African, Caribbean and Pacific Countries.

Figure 1.8 Membership of developing countries in supranational groups. (Part 1).
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2T =l
5| & 5| &
Sl osle =ty

S iRz ER

go_qﬁﬂ-rv Eo,_qmﬂ-(O

Oz |3|=|o)= S|z |22 o=
Libya x | X X Senegal x (x| [x] [x
Madagascar x [ x|xIx] Ix| [Seychelles x | x X
Malawi X | X [ X x| {Sierra Leone XXX [x] [x
Malaysia X | X Singapore X | X
Maledives X | X [ X Solomon Islands X X
Mali x[x|x|x| |x| [Somalia x| {x|x| |x
Mauretania x|x|[x|x| |x| [Sri Lanka x (x| |x
Mauritius x [ X x| [St Kitts
Mexico X St Lucia x | X x
Mongolia X St Vincent& Grenad. || x X
Morocco X | X Sudan x |3 [x|x] |x
Mozambique x[x| x| [|x]| [|Surinam x | X X
Myanmar IIBEIE Swaziland X [ X X
Namibia X x| [Syria X | %
Nauru Taiwan
Nepal XXX [ X Tanzania XXX [x] [X
Nicaragua x| % Thailand X
Niger x [ x|x|x| |x| [Togo X [ x| % X
Nigeria x| % x|x| (lTonga X X
Oman X | X Trinidad and Tobago [[x|x X
Pakistan X|[x| |x Tunisia x| x
Panama x| % Tuvalu X X
Papua New (fuinea ||x x| {Uganda XX [X[x] [X
Paraguay X United Arab Emirates||x|x X
Peru x| % Uruguay X
Philippines X Vanuatu x| x| x X
Qatar x| x X Venezuela x| % X
Réunion Vietnam X [ X | %
Rwanda X|x|x|[x| [x| |Yemen XXX | %
Samoa x| |x|x| |x]| [|Zaire X | X [ X
Sao Tomé e Principe||x | x|x x| |Zambia MR X
Saudi Arabia x| X Zimbabwe x [ X X

Figure 1.8 Membership of developing countries in supranational groups. (Part 2).

Source: Lexikon Dritte Welt, Rowohlt-Verlag, Reinbek 1993.
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Figure 1.9 Concept lattice of the context of developing countries
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Definition 25. If (-, M, I) is a context, ¢ € (G an object, and m € M an
attribute, we write

S mooe= gtm and
g ’ if ¢ Ch' and ¢ # h', then him,

Sm gfm and
y ' if m" Cn' and m’ # n/, then giIn,

g,/ 'm <= g,/ mandg, m.
&

Thus, ¢,/ m if and only if ¢’ is maximal among all object intents which
do not contain m. In other words: ¢,/ m holds if and only if ¢ does not have
the attribute m. but m is contained in the intent of every proper subconcept
of vg. If we now let

(39)+ ==\ {r € B(G. M. 1) |t < 79},

as in Definition 11 (p. 6) then (yg). is a subconcept of y¢ and g is \/-
irreducible, if and only if v¢ # (v¢)«. This, on the other hand, is equivalent
to the fact that there is an attribute m in the intent of (yg). which is not
contained in the intent of vg, i.e., to g ./ m for some m € M. Therefore, we
obtain

g/ m = g Apm=(y9) £ 9
g/ m < ygVpum=(um)" # pum.

Example 4. Figure 1.10 shows the context from Figure 1.5 with the arrow
relations; beside it the reduced context.

X | x| x| %
x| x| Y X |
A EIESES AR
ANV AEN N
x| x|/

Figure 1.10 Context with arrow relations, and the reduced context.

The significance of the arrow relations for the reduction of a context is
shown by the next proposition:

Proposition 13. The following statements hold for every contert:

a) vg is \/-irreducible <= There is an m € M with g/ m.
b) pm is \-irreducible <= There is a g € G with g /*m.
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Furthermore, the following statements hold for every finite® context:

c) vg is \/-irreducible <= There is an m € M with g /' m.
d) pm is N\-irreducible <= There is a g € G with g,/ m.

Proof.  This follows immediately from the above-mentioned observations
together with Proposition 2. If we choose m’ maximal with respect to g ./ m
(in a finite context this is certainly possible), then g /m, i.e., g,/ m. 0

In order to reduce a finite clarified context, we therefore first enter the
arrow relations in the cross table and then delete all rows and columns not
containing a double arrow. The condition of finiteness in Propositions 12 and
13 can be weakened:

Definition 26. A context (G, M, I) is called doubly founded, if, for every
object g € G and every attribute m € M with g#m, there is an object h € G
and an attribute n € M with

g/ mand m' Cn' aswellas hy mandg Ch.

A complete lattice (V, <) is called doubly founded, if for any two elements
r < y of V there are elements s,t € V' with:

s is minimal with respect to s <y, s £ z, as well as
t is maximal with respect tot >z, t } v.

o

By means of Proposition 13 we realize easily that the attribute n and the
object h that appear in Definition 26 must be irreducible. The same applies
to the lattice elements s and ¢ in the second part of the definition: s must
be \/-irreducible and ¢ must be A-irreducible. This means that the property
“doubly founded” implies the existence of “many” irreducible elements.

Proposition 14. a) Fvery finite context is doubly founded.

b) A context which does neither contain infinite chains gi1,ga, ... of objects
with g4 C g5 C ... nor infinite chains my, ma, ... of attributes with my C
ml C ... is doubly founded.

¢) Each concept of a doubly founded context is the supremum of \/-irreducible
concepts and the infimum of \- irreducible concepts. Hence Proposition
12 also applies to concept lattices of doubly founded contexts.

d) If (G, M, 1) is doubly founded and g € (G, m € M, the following hold true:
if g/ m, then there is an attribute n with g /*n, and if g /*m, then
there is an object h with h,/*m. Hence parts ¢) and d} of Proposition 13
also apply to doubly founded contexts.

5 ¢f. also Proposition 14.d)
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Proof. b) If g#m; holds and g /*1m; does not hold, according to the definition
of the arrow relations there must be an attribute m; 41 # m; with g#m;4, and
m; C mi . If in addition g,/ m;. it follows that g, m;;q. Starting from
my = m we obtain by this argument a chain of attributes with increasing
attribute extents. By assumption this chain must be finite and therefore end
with an attribute m; =: n with ¢ /'n and g /' n, i.e., g, /*n.

a) follows immediately from b).

c) Let (A, B) be a concept and (C, D) := \/{yz | x € A,yz \/ —irreducible}.
We assume that (', D) < (A, B). Then there is m € D, g € A with g#m.
Hence there is an h € G with h/m and ¢’ C ', i.e., h € A. Because
of h/ m, vh is \/-irreducible, i.e., h € ' and thus m € ', which is a
contradiction.

d) From g/ m it follows that g#m, hence there is an n € M with m’ C »n’
and g /n. All together we obtain g/ n. O

Proposition 15. If B(G, M, I) is doubly founded, so is (G, M, I). If a com-
plete lattice V' is not doubly founded, neither is the context (V,V,<).

Proof. Let B((G, M, 1) be doubly founded and g € G, m € M with g#m, i.e.,
vg & pm. For p:= pm and v := umV~g there is a concept t which is maximal
with respect to t > 1, t 7 n. On account of this property of maximality t
must be A-irreducible. Hence there is an attribute n with t = un. Thus we
obtain g /'n and m’ C n’. The second condition is obtained dually.

If (V, V, <) is doubly founded, so must be V: If z < y in V', then certainly
y £ x, ie., yfa in (V,V,<). From the definition of the doubly foundedness
of (V,V,<) now follows the existence of an element s € V' with s/ z and
y' C &', hence s is minimal with respect to s £ 2, s < y. The second condition
can again be shown by means of the dual argument. O

Thus, a complete lattice V' is doubly founded if and only if every context
(G, M, I) with V = B(G, M, I) is doubly founded. One should note, however,
that the concept lattice of a doubly founded context does not necessarily have
to be doubly founded, as shown by the example (IN, N, <).

It frequently occurs that a statement can be proved for all finite lattices
but not for all complete lattices. We will (when possible) replace the con-
dition of finiteness by “doubly foundedness”. This is not in every case the
strongest possible relaxation. The restriction to “doubly founded” is adopted
for reasons of uniformity. Mathematical lattice theory uses numerous other
conditions, some of which are represented by Figure 1.11 in their hierarchical
order. We will only give a short explanation of the terminology used in this
context: A complete lattice (V, <) is supremum-founded, if for any two
elements » < y from V there is an element s € V which is minimal with
respect to s < y, s £ z. The dual property is “infimum-founded”. A
concept lattice B(G, M, I) is algebraic (dually: co-algebraic), if for every
subset 4 C G from
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E C A= E" C A for every finite subset

it follows that 4 = A”. An ordered set is chain finite, if every chain
contained by it is finite.

The lattice presented in Figure 1.11 is the result of an attribute explo-
ration in accordance with Section 2.3, i.e., the represented implications be-
tween the properties are really provable. We will omit the proofs.
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The abbreviations stand for: df := doubly founded, le := chain-finite, e := finite.
B () denotes the set of all finite subsets of the natural numbers. Furthermore,
let S be the context arising as a subposition (see Section 1.4) of the contexts
(N, Bp(N),€) and (Pg (M), Rg(N),=). Cp 1 is the convex-ordinal scale for the
real unit interval ([0, 1], <), as defined in Section 1.4.

Figure 1.11 Foundedness compared with related conditions.
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1.3 Many-valued Contexts

In standard language the word “attribute” is not only used for properties
which an object may or may not have. Attributes such as “colour”, “weight”,
“sex”, “grade” have values. We call them many-valued attributes, in contrast
to the one-valued attributes considered so far.

Definition 27. A many-valued context (G, M, W, I) consists of sets G,
M and W and a ternary relation I between G, M and W (i.e., | CGx M x W)
for which it holds that

(g,m,w) € [ and (g,m,v) €I  always imply w =v.

The elements of ¢ are called objects, those of M (many-valued) at-
tributes and those of W attribute values.

(g, m, w) € I we read as “the attribute m has the value w” for the object g.
(G, M,W,1) is called a n-valued context, if W has n elements. The many-
valued attributes can be regarded as partial maps from (v in W. Therefore,
it seems reasonable to write m(g) = w instead of (g, m,w) € I. The domain
of an attribute m is defined to be

dom(m) := {9 € G'| (g, m,w) € I for some w € W}.

The attribute m is called complete, if dom(m) = G. A many-valued context
is complete, if all its attributes are complete. O

Like the one-valued contexts treated so far, many-valued contexts can
be represented by tables, the rows of which are labelled by the objects and
the columns labelled by the attributes. The entry in row ¢ and column m
then represents the attribute value m(g). If the attribute m does not have a
value for the object g, there will be no entry.®

Example 5. The many-valued context represented in the upper part of Fig-
ure 1.13 shows a comparison of the different possibilities of arranging the
engine and the drive chain of a motorcar (cf. Figure 1.12).

Figure 1.12 Drive concepts for motorcars.”

® Further information on the role of the “empty cells” in a context will be given
in the notes at the end of the chapter.

" Source: Schlag nach! 100 000 Tatsachen aus allen Wissensgebieten. Bl-Verlag
Mannheim, 1982.
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How can we assign concepts to a many-valued context? We do this in the
following way: The many-valued context is transformed into a one-valued one,
in accordance with certain rules, which will be explained below. The concepts
of this derived one-valued context are then interpreted as the concepts of the
many-valued context. This interpretation process, however, called concep-
tual scaling, is not at all uniquely determined. The concept system of a
many-valued context depends on the scaling. This may at first be confusing,
but has proved to be an excellent instrument for a purposeful evaluation of
data.

In the process of scaling, first of all each attribute of a many-valued con-
text is interpreted by means of a context. This context is called conceptual
scale.

Definition 28. A scale for the attribute m of a many-valued context is a
(one-valued) context S, 1= (G, My, Iy) with m(G) C Gy, The objects of
a scale are called scale values, the attributes are called scale attributes.

&

Every context can be used as a scale. Formally there is no difference
between a scale and a context. However, we will use the term “scale” only for
contexts which have a clear conceptual structure and which bear meaning.
Some particularly simple contexts are used as scales time and again. A
summary (in tabular form) of the most important ones can be found at the
end of the next section.

As already mentioned, the choice of the scale for the attribute m is not
mathematically compelling, it is a matter of interpretation. The same is
true for the second step in the process of scaling, the joining together of the
scales to make a one-valued context. In the simplest case, this can be achieved
by putting together the individual scales without connecting them. This is
described below as plain scaling. Particularly when dealing with numerical
scales this may well be unsatisfactory. In this case we need the scaling by
means of a composition operator. For details we refer to the pointers at the
end of the chapter.

In the case of plain scaling the derived one-valued context is obtained
from the many-valued context (¢, M, W, I) and the scale contexts S,,, m € M
as follows: The object set (¢ remains unchanged, every many-valued attribute
m is replaced by the scale attributes of the scale S,,. If we imagine a many-
valued context as represented by a table, we can visualize plain scaling as
follows: Every attribute value m(g) is replaced by the row of the scale con-
text S,, which belongs to m(g). A detailed description will be given in the
following definition, for which we first introduce an abbreviation: The at-
tribute set of the derived context is the disjoint union of the attribute sets
of the scales involved. In order to make sure that the sets are disjoint, we
replace the attribute set of the scale &,, by

Jl‘[,n = {m} x M,,.
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as in Definition & (p. 4).

Definition 29. If (7, M, W, I) is a many-valued context and §,,,, m € M are
scale contexts, then the derived context with respect to plain scaling
is the context (G, N,.J) with

N = U 17‘.4771-

meM
and
gJ(m,n): < m(g) = w and wiyn.
&
Example 6. We obtain the one-valued context in Figure 1.13 as the derived

context of the many-valued context presented above it, if we use the following
scales:

++ 1+ - [ T+ 1+ 7--1
Q —a .|+t X X oL .| ++ X X
uDe P L)JDl . — + x \;R .— + x
— X - X
L [ulolnJu/m] L T++T1+T-T--]
u X ++ X X
SS:: 0 X SE:: Sl\l = ¥ X
n X - X
u/n X —-— X X
L T[T m[h]
vl X | X
SC = 1 X
m X
h X

If we had used the scale Sg for the attributes De, DI and R as well, the
derived context would have only turned out slightly different. The concept
lattice is shown in Figure 1.14.

The formal definition of a context permits turning relations originating
from any domain into contexts and examining their concept lattices, i.e.,
even contexts where an interpretation of the sets G and M as “objects” or
“attributes” appears artificial. This is the case with many contexts from
mathematics, and in this way we obtain concept lattices which often have
structural properties occurring very rarely with empirical data sets. Never-
theless, these contexts are also of great importance for data analysis. They
can be used for example as “ideal structures” or as scales for the scaling
introduced above. The scales which are used by far most frequently, the el-
ementary scales will be introduced now. Other scales will follow in the next
section.

We will start with the definition of some operations which permit the
construction of new contexts from given ones.
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Figure 1.14 Concept lattice for the context of drive concepts.

Definition 30. Let & = (G, M.I), K5 = (G1,My,I;) and Ky :=
(G, Mo, I3) be contexts. We will use the abbreviations G'J- = {j} x Gj,
M= {j) x My and £y = {((ig). (o)) | (g.m) € I3} for j € {1,2} in the
following definition. It is:

Fe = (G,M,(Gx M)\I)
the complementary context to I,
¥ o= (M,G.I7Y

the dual context to K,
and, if G = G = G,
]Kl Vz = (G. A'.flUA'fz.jLU[.z)

as well as dually, if M = M; = M,,
¥
K,

= (GLUGy. M, L Uy)

the subposition of ; and K.
Ivil UH{Z = ((,1711U(;g.;‘ylugmyz,j1sz)

is the disjoint union of K; and K.
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The context ¥? is called the contrary context to [X. &

By using G for {i} x (; and Mj, respectively, we intend to make sure that
the sets are disjoint. However, strictly speaking, apposition and subposition
under this definition become non-associative. We will overlook this fact and
tacitly identify the contexts

(Fi| ¥ ) |Ks  and Ky | (K |Ks)

The same applies to the subposition, even to hybrid forms of the two opera-
tions. We do not distinguish between

—Ll | ¥ and LS| K
s | Ky Ks i

The two abbreviations

X
D = (G.M0)

(G M, G x M)

Il

are occasionally used without further describing the sets G and M, if they
are evident from the context. For example

denotes the context ((,.}1 U (}'2, Jljfl U 471‘42, fl U fg U (Gl X 112[2)), the concept
lattice of which is isomorphic to the vertical sum of the concept lattices
B(K,) and B(K;) (provided that K; does not contain a full column and K,
does not contain a full row, cf. 4.3).

Each extent of K; U [, apart from the extent G U (12 is entirely
contained in one of the sets G;. The corresponding apphes to the intents.
Therefore, the concept lattice V' := B(K; U K;) is a horizontal sum, i.e.,
it is the union V. = V| U V; of two sublattices which only overlap in the
smallest and the largest element: V; NV, = {0y, 1y }. Provided that there
are no full rows or columns in £y and Ky, we have V; = B(K;) or, more
generally, V; = %((H U Gy, My U M,, I)

In Definition 28 we postulated that the values of the many-valued at-
tribute had to be the objects of the scale. In the following standardized scale
we frequently use n := {1,2,...,n} as the object set. In this case, in order
to scale a many-valued attribute, we first have to rename the objects. The
appropriate definitions for the isomorphy of scales will be introduced later,
in Chapter 7.3 (p. 258 ff.).
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Definition 31 (elementary scales, see also Figure 1.15)

Nominal scales. IV, := (n,n, =).
Nominal scales are used to scale attributes, the :
values of which mutually exclude each other. If an I “ 1 | 2 | 3 | 4 |

attribute for example has the values {masculine, |1 || x

feminine, neuter}, the use of a nominal scale sug- 2 X

gests itself. We thereby obtain a partition of the 3 X
objects into extents. In this case, the classes corre- 4 X

spond to the values of the attribute. The Nominal Scale N,

(One-dimensional) ordinal scales. ), := (n,n, <).

L [ 1[2]3][4]
1| x| x| x| x
0y =12 X | X | X
3 X | x
4 X

Ordinal scales scale many-valued attributes, the values of which are ordered
and where each value implies the weaker ones. If an attribute has for in-
stance the values {loud, very loud, extremely loud} ordinal scaling suggests
itself. The attribute values then result in a chain of extents, interpreted as a
hierarchy.

(One-dimensional) interordinal scales. [, := (n,n,<) | (n,n,>) .

(IR 5]

I x| x| x|x]|X

Ig=]2 x| x| x| x]x
3 X | X | x| x|X
4 X | X | X | X ] X

Questionnaires often offer opposite pairs as possible answers, as for exam-
ple active-passive, talkative taciturn etc., allowing a choice of intermediate
values. In this case, we have a bipolar ordering of the values. This kind
of attributes lend themselves to scaling by means of an interordinal scale.
The extents of the interordinal scale are precisely the intervals of values, in
this way, the betweenness relation is reflected conceptually. However, bipolar
attributes often also lend themselves to biordinal scaling:



1.3 Many-valued Contexts 43

Biordinal scales. [/, ,, := (n,n,<) U (m,m, >).

(<[22 [<F[<A[=5]50]

1 X X X X
2 X X
My =13 X | x
4 X
5
6 X X

In common usage we often use opposite pairs not in the sense of an interordi-
nal scale, but simpler: each object is assigned one of the two poles, allowing
graduations. The values {very low, low, loud, very loud} for example suggest
this way of scaling: loud and low mutually exclude each other, very loud
implies loud, very low implies low. We also find this kind of partition with a
hierarchy in the names of the school marks: An excellent performance obvi-

ously is also very good, good. and satisfactory, but not unsatisfactory or a
fail.

The dichotomic scale. 1II:= ({0,1},{0,1},=)
The dichotomic scale constitutes a special case, since -l
it 1s isomorphic to the scales Iy and Mj ; and closely
related to 5. It is frequently used to scale attributes
with values of the kind {yes, no}.

0 x
1 X

A special case of plain scaling which frequently occurs is the case that
all many-valued attributes can be interpreted with respect to the same scale
or family of scales. Thus we speak of a nominally scaled context, if all
scales S,, are nominal scales etc. We call a many-valued context nominal,
if the nature of the data suggests nominal scaling; a many-valued context is
called an ordinal context if for each attribute the set of values is ordered in
a natural way. An example is presented in Figure 1.16, see also Figure 1.17.
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Figure 1.15 The concept lattices of the elementary scales are named after the
scales. The figure shows a nominal lattice, B(N,), a biordinal lattice, B(M, »),
an interordinal lattice, 2(ll4), and an ordinal lattice, (04). The ordinal
lattice B(0y,) is isomorphic to the n-element chain C',.

B[GB][ M [P

I Forum Romanum

1 || Arch of Septimus Severus * * *k *
2 || Arch of Titus * *ok *k

3 || Basilica Julia *

4 || Basilica of Maxentius *

5 || Phocas column * K%

6 || Curia *
7 || House of the Vestals *

8 (| Portico of Twelve Gods * * *
9 || Tempel of Antonius and Fausta | * * * % %
10 || Temple of Castor and Pollux | kx| oxkk | %
11 || Temple of Romulus *
12 || Temple of Saturn Kk %
13 || Temple of Vespasian *%

14 || Temple of Vesta *k Kk *

Figure 1.16 Example of an ordinal context: Ratings of monuments on the Forum
Romanum in different travel guides (B = Baedecker, GB = Les Guides Bleus, M
= Michelin, P = Polyglott). The context becomes ordinal through the number of
stars awarded. If no star has been awarded, this is rated zero.
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Figure 1.17 The concept lattice of the ordinal context from Figure 1.16.
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1.4 Context Constructions and Standard Scales

We have formulated the following frequently used sum and product construc-
tions for two contexts each, but the definitions can be easily generalized to
any number of contexts. The additional statements on the concept lattices
of the resulting contexts carry over.

Definition 32. The direct sum of two contexts is defined by®
¥y 4y = (G UGy, My UMy Iy UL U(Gy x My) U (Gy x My))

&

The concept lattice of a sum of contexts is isomorphic to the product of
its concept lattices. In the case of two contexts we therefore obtain

B(Ky + Fa) = B(Ky) x B(Ky),

since (A, B) is a concept of K; +[€; if and only if (Aﬂ(:v'i, Bﬂ;Wi) is a concept
of K := (G, M;, 1;), for i € {1,2}. This means that the isomorphism is given
by (4,B) = (ANG, BN M), (AN Gy, BN M,)).

Definition 33. The semiproduct is defined by
¥y Xy = (G X Gy My U M,, V)

with
(91.92)V Gom) = gilym for j € {1,2).
<&

The extents of the semiproduct are precisely the sets of the form A; x A,,
each set 4; being an extent of ;. This also yields the structure of the
concept lattice B(I; X Ky): Essentially, the concept lattice is the product
of the concept lattices of the factor contexts, though there is a modification
regarding the zero elements. Precisely, the instruction for the construction
reads as follows: Provided that the extent of the corresponding concept is
empty, we remove the zero element from each of the extents B(IK; ). Then we
form the product of these ordered sets and, if we have previously removed an
element, we add a new zero element to make a complete lattice. This lattice
is then isomorphic to the concept lattice of the semiproduct.

Definition 34. The direct product is given by
¥y x ¥y = ((1’1 X (fg,ﬂ[] x M, V)
with (g1,¢2)V(mi,ms) : <= g1lymy or g2lyms.

&

# For the notation see Definition 8 (p. 4). A more general definition is given in
Section 5.1.
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The concept lattice of the direct product is called the tensor product of
the concept lattices of the factor contexts. We will later discuss the tensor
product in more detail (Sections 4.4, 5.4). We obtain the cross table of the
direct product by replacing each empty cell in the table of I£; by a copy of K,
and each cross by a square full of crosses of the size of ;. For an example
see Figures 4.19 (page 164) and 4.20.

Another context construction, the so-called substitution sum, where a
context is inserted into an other context, will be described in section 4.3.
The sum and the product of reduced contexts are reduced (cf. Corollary 74,
p. 166). Reducible objects or attributes with empty intents or extents may
occur in the case of the disjoint union. Semi products of reduced contexts
are reduced if the factors (allowing for one exception at most) are atomistic,
i.e., if they satisfy ¢’ Ch' = g = h.

It is easy to state numerous simple arithmetical rules for context construc-
tions, which are useful for some proofs. In particular, the direct product is
(up to isomorphism) commutative and associative; it is distributive over the
direct sum, the apposition and the subposition. We note down one of these
results for later:

Proposition 16.
(K +¥y) x K3 = (K x H’id) + (K3 x K3).

Proof.  We may assume that the three contexts K; =: (G;, M;, ), i €
{1, 2,3}, have disjoint object sets and disjoint attribute sets. By

(GHUGL) x Gs = (G x G3) U (G2 x G)

and
(M, U M) x Ms = (My x Ms) U (M, x Ms),

the two contexts of the proposition have the same objects and attributes. For
the incidence we find the same on both sides as well, namely

g € Gy and m € M, or
g € G2 and m € M, or
(g, h)I(m,n) <= ( hlzn or O

g €Gy,me My and gIym  or
g € Ga,m € My and glym.

We now state a list of interesting context families. Many of them have
proved to be useful as scales. We provide a summary of these scales, including
their basic meanings, in Figure 1.26 at the end of this section. Besides, these
contexts serve as a reservoir of examples for mathematical reasoning.
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(1) For every set S the contranominal scale
1S = (9,5, #)

is reduced. The concepts of this context are precisely the pairs (4, 5\ A)
for A C S. The concept lattice is isomorphic to the power-set lattice of
S, and thus has 21! elements. If § = {1,2,...,n} we write N¢,

Figure 1.18 Example of an ordered set (P. <) and its completion B(P, P, <).

(2)  From an arbitrary ordered set P := (P, <) we obtain the general or-
dinal scale
Op = (P, P,<).

Its concepts are precisely the pairs (X, ") with X, Y C P where X is the
set of all lower bounds of ¥ and Y is the set of all upper bounds of X.
This concept lattice is called the Dedekind-MacNeille completion
of the ordered set P. It is the smallest complete lattice in which P can
be order-embedded, in the sense of the following theorem:

Theorem 4. (Dedekind’s Completion Theorem) For an ordered set
(£, <)
= ((x],[x)) forzeP

defines an embedding ¢ of (P.<) in B(P, P,<); moreover, t\| X = \/1X
or tANX = A X if the supremum or infimum of X, respectively, erists in
(P, <). If k is an arbitrary embedding of (P, <) in a complete lattice V', then
there is always also an embedding A of the ordered set B(P, P,<) in V with
K=Aout.

Proof.  Evidently, the concepts of (P, P, <) are precisely the pairs (A, B)
with 4, B C P and

A=BY = {reP|r<yforall ye B},
B=A" = [yeP|r<yforall z e A}
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in particular, all pairs ((x],[r)) with + € P are concepts of (P, P, <), which
confirms ¢ as an embedding. If the supremum of X exists in (P, <), then

{VX) = ﬂ [x),

fe,t VX =
= ((Vx].[Vy)) = (Q m) DX [2) ] =V (2], [z) =/ oX.

The equation for existing infima is shown dually.
With respect to the missing part of the proof we refer to Proposition 33
(p. 99). O

(3) From an arbitrary ordered set P := (P, <) we furthermore obtain the
reduced context

OF' == (P, P, ),

which is called the contraordinal scale. In this case, the concepts are

precisely the pairs (X,Y") with the following properties:

- XUY=Pand XNY =0,

— X is an order ideal in P, i.e., » € X and z < z always imply z € X.
Because of YUY = P and X NY = O this is equivalent to:

— Y is an order filter in P, i.e., y € Y and y < z always imply z € Y.

The context (P, P, #) is doubly founded, since

vy = xSy <= =y

holds for x,y € P. Hence if x is an object and y is an attribute with
xty (i.e., 2 > y), then # Sz and 2/’ = P\ [z) D P\ [y) = ¥, hold for
the attribute x, as required by Definition 26.

The concept lattice B(P, P, #) is isomorphic to the lattice of the order
ideals of P. A look at (1) shows that all concepts of the contraordi-
nal scale are concepts of the contranominal scale 1 as well. We will
prove later (Theorem 13, p. 112) that for this reason B(P, P, }#) is
a complete sublattice of B(P, P,#), which means that these lattices
are completely distributive. Birkhoff’s theorem (Theorem 39, p. 220)
shows that the lattices constructed in this way, are precisely the doubly
founded completely distributive lattices. In particular, every finite dis-
tributive lattice is isomorphic to the concept lattice of a contraordinal
scale. The dual lattice, i.e., B(P, P, £), is often denoted by 2P, because
it is also isomorphic to the lattice of the order-preserving maps of P to
the two-element lattice.
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Figure 1.19 An ordered set (P, <), the corresponding contraordinal scale and its
concept lattice, 1.e., the ideal lattice of (P, <).

(4)

We obtain an interesting special case of (3) by choosing the power-set
of a set S as our ordered set P, i.e., by considering the context

(B(S), B(5), 2)-
Because of A P B <= BN (5\ 4) # O, this context is isomorphic to
(P(S9), P(S). A) with XAY :«<—= (X NY)#0O.

The concept lattice is called the free completely distributive lattice
FCD(S). If for S :={1,2,...,n} we denote the context (PB(S5), B(S), 2)

by A, , we can state an easy recursion rule for the generation of these

contexts:
Ao = and A1 =

The construction can be generalized by taking an ordered set (5, <) as
the base set, the set OZ(S, <) of the order ideals of (S, <) as the object
set and the set OF(S, <) of the order filters of (5, <) as the attribute
set. The concept lattice

FCD(S, <) := (OZ(S, <), OF(S, <), A)

is called the free completely distributive lattice over the ordered
set (5, <).

For an arbitrary ordered set (P, <), we define a filter to be a subset of
P which is an order filter and in which furthermore any two elements
have a common lower bound. Hence F C P is a filter if and only if the
following two conditions are satisfied:
1. From z € F and y > it follows that y € F,
2. for any two elements x,y € F' there is an v € F with u < z and
u < y.
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Figure 1.20 A nested line diagram of the free distributive lattice FCD(4). Such
diagrams are introduced in 2.2. The one shown here is due to S. Thiele [175]. The
method that led to it is explained in Example 14 (p. 215).
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Dually, an ideal is defined to be a subset of P which is an order ideal
and contains a common upper bound for any two elements contained
in it. Filters in this sense are among other things the principal filters.
Dually, each principal ideal is an ideal. The set of all filters is denoted by
F (P, <), the set of all ideals by Z(P, <). We obtain the doubly founded
context

Fip<) = (F(P, <), Z(P. <), 4),

where again
FAI'«<—= FNI#0O.
(6) Again from an ordered set P := (P, <) we obtain the general interor-

dinal scale
Ipi= (P.P,<) | (P.P.>),

the concept system of which we explain by means of the extents: the
attribute extents are precisely the principal ideals and the principal
filters of P, the object extents are all intersections of those sets. These
include all intervals®. In general, these are all sets which constitute
intersections of intervals.

(7) By analogy with (6) we obtain the convex-ordinal scale
Cp:=(P,P,#)| (P, P, £).

In this case, the extents are precisely the convex subsets of P, i.e., those
subsets which contain with any two elements a and b all elements ¢ with

a<ec<hb.
[ JLa]Lb]Lc][1d]Lle[1f[2,a]2b]2,c[2,d][2,e][2f]
a X | X | x| x|X X
bl x X | X | x| x| x
c X | x| x| x| x X
d X X | X | X | X | X
e X [ x| x| x| x X
f X X | x| x| x| x

Figure 1.21 The convex-ordinal scale of the ordered set from Figure 1.19.

(8) Let S be aset and s € S an arbitrary element. If we now choose & to
be the set of all two-element subsets of S and M to be the set of all
subsets of S\ {s}. by the definition

{r,yto X o {e,ybnN X[ #£1

® in the sense of Definition 5 (p. 3), i.e.. only the “closed” intervals.
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Figure 1.22 The concept lattice of the convex-ordinal scale from Figure 1.21.

\

we obtain a context ((/, M,o) with 1511

objects and 2 at-

9
tributes, which is reduced except for one full columm. Every extent
of this context is a set of two-element subsets of S, i.e.. it can be un-
derstood as a symmetric reflexive relation on S; actually, the relations
occurring are precisely the equivalence relations on S. Hence the con-
cept lattice B((7, M, o) is isomorphic to the lattice €(S) of equivalence
relations. We can give a mnemonic rule for this context series as well.
We get 'y := (O, {*}, ) and obtain the n + 1-st context of this series,
P41, from the n-th as follows: We form the apposition of I/, with the
cross table I'TY, which is identical to P,,, apart from the fact that the
columns are written down in the reversed order.

I8 Jprev

-n n

an on—119on-1 _ 1 0

We add n further rows, which we fill with crosses such that the columns
of this subcontext look like the binary representations of the numbers
2" —1,...,0. An example is given in Figure 1.23.

If Ris a syminetric relation on S (easily visualized by the edges of an
undirected graph) then with
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X X X X
10011001 ixx xxi
32100123  — -
76543210 XX

X X X X

X X X X

Figure 1.23 Context P4 for the lattice of equivalence relations on a 4-element set.

(10)

(S.S. R)

we obtain a context, the concepts of which are precisely the pairs (A4, B),
A C S, B CS, which are maximal with respect to the property that
each element of A is in the relation R with each element of B (in the
visualization these are maximal complete bipartite edge sets). Thus,
together with (A4, B), (B, 4) is also a concept, and the map

(A.B) — (B, A)

is a polarity, i.e., an order-reversing bijection which is inverse to itself
(another term for this is involutory antiautomorphism). Conversely,
every complete polarity lattice (i.e., every complete lattice with a
polarity) is isomorphic to the concept lattice of a context (5, S, R) with
a symmetric relation R.

If the relation R is irreflexive, the extent and the intent of each concept
must be disjoint and we have

(A, B)A (B, A) = (0,0

and (A, B)V (B, A) = (0, 0),

i.e., (4,B) and (B, A) are complementary to each other: Their infi-
mum is the smallest, their supremum the largest element of the concept
lattice. A lattice with this kind of polarity is called an ortholattice;
the complete ortholattices are (up to isomorphism) precisely the concept
lattices of contexts with an irreflexive, symmetric relation.

There are many examples of such contexts in this book. They can be
easily recognized if the cross table is represented symmetric to the main
diagonal. The context I3 3) in Figure 1.24 is the context of a polarity
lattice but not of an ortholattice. The same applies to the context in
Figure 5.9 (p. 205), although this only becomes clear after an adroit
reassembly of the cross table.

If V' is a finite dimensional vector space and V* is the dual space of V,
then
(V,V™ 1) with aloyp:<= pa=0
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is a doubly founded context, the extents of which are precisely the sub-
spaces of V.

For the special case of the vector spaces over GF(2) there is again a
simple recursion for the generation of these contexts: For

Fiaz = (GF2)(GF(2)Y), L)
it is easy to prove that

K42
C *
(d,2)

Fiayi2) =

An example is given in Figure 1.24.

X
X
X X X X
X

X X X

X X X X X X X X

X X X

Figure 1.24 I3 », a context derived from the 3-dimensional vector space over the
two-element field.

(11)

If H is a Hilbert space and L is the orthogonality relation, then the
concept lattice of the context

(H,H, 1)
is isomorphic to the (orthomodular) lattice of the closed subspaces of
H; since (I, U+) is a concept for each such subspace U.

The set of all permutations of the set {1,...,n} can be given a lattice
order in a natural way. For this purpose we call a pair (pi,¢j) an
inversion of the permutation ¢ if i < j but @i > ¢j. If we order the
permutations by

o < 1:4= every inversion of o is also an inversion of ,

we obtain, as proved by Yanagimoto and Okamoto [217], a lattice X,.
There is a simple recursion rule for the description of the context:

Putting
Ko := Lo ;: and
i = 9 Ly K o= —on | B
Lip41 = ln ]Lﬂ ) 4l — Kn [Ln 3
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then we obtain

Mo = B(I,).
The contexts I, are reduced except for the full rows and full columns.
Y4 is presented in Figure 1.25.

Figure 1.25 The lattice Yy of the permutations of {1,2,3,4}.

If the ordered sets occurring in the definitions for the standard scales are
compounded, for example as a cardinal sum or as a direct product, it is to
be expected that the respective scales can be split up. This is true, even if
in different ways, as exemplified by the following rules:

Proposition 17.

Upyyp, = Up, UUp,
Ip4p, = Ip, Ulp,
Op\4p, = Up, +08,
CP1+P: = ‘CP, + “:Pg
OFxp. = OF, x UF,

med med

“ _ . ¢ e
pixp, = Up xUp |Up, x0Up,
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Symbol Definition Name Basic meaning
Op (P, P, <) general ordinal hierarchy
scale
O, (n,n, <) one-dimensional rank order
ordinal scale
M, (n,n, =) nominal scale partition
M, ....n, Onyt 4, multiordinal partition with
scale rank orders
M Dmtn biordinal scale two-class
rank orders
B, n),'B(n), n-dimensiona ependency o
B p P C) d 1 dependency of
Boolean scale attributes
Gy omy | Oy X -+ Xy, | k-dimensional multiple
grid scale ordering
e (PP, #) contraordinal scale | hierarchy and
independence
Ny (n,n, #) contranominal partition and
scale independence
D ({0,1}.{0,1}, =) | dichotomic scale dichotomy
D DX XD k-dimensional multiple
) dichotomic scale dichotomy
k—times
Ip Op 1 “;ﬁ general betweenness
interordinal scale relation
In O, | 0¢ one-dimensional linear between-
interordinal scale | ness relation
Cp Qg | Op convex-ordinal convex ordering
scale

Figure 1.26 Standardized scales of ordinal type.

<
-1
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1.5 Hints and References

1.1 Formal Concept Analysis has been developed from the end of the seven-
ties at the Faculty of Mathematics at Darmstadt University of Technology.
The first programmatic publication on Formal Concept Analysis was

Wille: Restructuring lattice theory: An approach based on hierarchies
of concepts [191].

This publication contains already many of the ideas described in this book,
including the proof of the Basic Theorem on Concept Lattices. There had
been earlier proposals to make use of the mathematical possibilities offered by
the results of Birkhoff (Theorem 2 on p. 14) for data analysis. The interpre-
tation of the incidence relation as an object-attribute-relation was expressly
mentioned in the first edition of Birkhoff’s book on lattice theory. Remark-
able approaches can be found in Barbut [8], see Barbut & Monjardet [9].
Some French authors therefore employ the term treillis de Galois, which
was used in their works for “concept lattice” (German Begriffsverband).

The Darmstadt group was presumably the first, who systematically elabo-
rated these possibilities into a method of data analysis and tested and further
developed it in many applications. The decisive factor in the success of this
work was among other things the formalization of “context™ and the inter-
pretation of “concept™ as a unity of extension and intension.

The understanding of “concept™ which is formalized here, has ramified
and deep-reaching roots in philosophy, which are described in more detail
elsewhere [210]. This tradition of thought finds expression even in the stan-
dards DIN 2330 and DIN 2331'°, which in turn were discussed by the Darm-
stadt group at the beginning of the development. Further information on
the origin of Formal Concept Analysis and its intellectual background can be
found in [209] and [42].

Quite certainly the mathematical substance of the Basic Theorem can
be mainly attributed to Birkhoff [14], even if the second part has not been
formulated there. This can be found - in an order-theoretic version - in J.
Schmidt [151] and Banaschewski [5]. The general version presented in this
book first appeared in [191]. Tt is not quite easy to attribute the intermediate
steps to particular authors. The fact that a finite lattice is determined by
its irreducibles was well known to lattice theorists. One source is Markowsky
[122].

Generalizations of the model presented in this book have been discussed in
several variants. The most important one in our view is the inclusion of many-
valued contexts by means of conceptual scaling as introduced in 1.3 and 1.4.
Lehmann and Wille [106] have outlined a triadic concept analysis, where
the incidence relation is ternary and the concepts consist of three sets. The

10 DIN stands for “Deutsche Industrienorm” and is characteristic for standards
issued by the German National Bureau of Standards.



1.5 Hints and References

mathematical theory is at present still in its beginnings [211]. Umbreit [176]
has examined in a comprehensive study how Formal Concept Analysis can
be combined with the approaches of fuzzy logic. There are related elements
in the work of Pawlak [134], Kent [94] and Burusco Juandeaburre & Fuentes-
Gonzales [25]. Further approaches have been considered by Diday [39] and
Marty [125]. A similar attempt at restructuring with respect to mathematical
logic is made by [212].

Contexts with an additional structure, for example an additional opera-
tion, have also been examined. The respective concept lattices in this case
carry additional structural properties as well. Examples are the polarity
lattices and ortholattices introduced in 1.4. Generalizations can be found
in Hoch [86]. Contexts with an algebraic structure have been examined by
[178], [177], [179], [182] and by U. Wille [214], [215], contexts with a topo-
logical structure by Hartung [81], [82], [83] and contexts with a relational
structure by Priff [137].

A pair (4, B) with A C G and B C M is called a preconcept of the
context (G, M, I)if ' C B and B' C 4 (cf. [159]). If A" = B or B’ = A,
this is called a semiconcept [116].

The example in Figure 1.1 has been taken from a pedagogical investiga-
tion, cf. Takacs [172].

1.2 There is a simple way to assign a reduced context to every context K :=
(G, M, I):
K° := (G ker vy, M/ ker p, I°),

the symbols having the following meanings: ker~ is the equivalence relation
on (G with
(9. h) € kery : <= ~vg = vh.

ker p¢ is defined correspondingly. The equivalence classes of ker~ are the
objects of IK°, those of ker  the attributes. The incidence is defined by

([g] ker~, [m] ker ) € I° : <= gIm.

The number of reduced contexts with four objects is 126, the number of
reduced contexts with five objects is 13596. We do not know the further
values. Even without the additional condition “reduced”, it is not easy to
determine the numbers. The following numbers have been calculated by the
Bayreuth group around A. Kerber and R. Laue:

M| 1 2 3 4 %
|G|
1 2 3 4 5 6
2 37 13 22 34
3 4 13 36 87T 190
4 5 22 87 317 1053
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Neither is it easy to determine the maximal possible number f(n) of at-
tributes in a reduced context with n objects. For small n we obtain

n‘|1234 5
f(n)|1 2 4 7 13°

Asymptotic results can be found in Kleitman [97].

The arrow relations have been introduced in [192] following the example
of the weak perspectivities in congruence theory (cf. [75]). There were nu-
merous forerunners. For example Day [33] already used the double arrow
relation (“relation p”) in order to characterize semidistributivity as well as
a “relation (", which is closely related to the arrow relations, in order to
describe the congruences of finite lattices. Doubly founded lattices have first
been mentioned in [197]. Geyer [71] has examined possible configurations of
the arrow relations.

1.3 Many valued contexts have been introduced already in [191]; of the nu-
merous related models we would like to mention the relational data bases of
Codd [26] but also the information systems of Pawlak [133] as well as the
Chu spaces (cf. [136]). Their use in conceptual file and knowledge systems
has been discussed in Vogt, Wachter & Wille [181], in Scheich, Skorsky, Vogt,
Wachter & Wille [150] and in [207]. With respect to conceptual scaling of
many-valued contexts see [65]. The term “scale” has been chosen in order
to emphasize the connection with mathematical Theory of Measurement (cf.
[103]), although the approaches differ considerably. Whereas in Measurement
Theory a scale is usually understood to be a map to the real numbers, i.e.,
to a fixed structure, it has proved to be extraordinarily useful for concep-
tual scaling to be able to choose different scales for different many-valued
attributes in accordance with their conceptual structure, even if the value
set remains the same. Therefore, there are many ordinal scales in Concept
Analysis, in contrast to Measurement Theory.

“Empty cells” of a one-valued context (i.e., pairs (g, m) with (g, m) & I)
are considered to be not concept forming. If we want to use the negation for
the formation of concepts, we have to dichotomize the respective attribute
m, i.e., we have to introduce an additional attribute —m with (g, —m) € I :
<= (g,m) ¢ I. “Empty cells” of a many-valued context (i.e., pairs (g, m)
with (g, m,w) ¢ I for all w € W) in the case of plain scaling usually result
in empty cells in the derived context. If it is useful in terms of content, they
can also be interpreted as values and be included into the scaling, see e.g.
Figure [.16 (p. 44).

Context constructions are treated in many papers, among other things in
[58]. The complementation has been comprehensively examined in Deiters
[37], [38]. Weinheimer [184] introduces the product apposition as a further
construction.

The concept lattices of the powers (with respect to the semiproduct) of
the dichotomic scale are precisely the “full concept lattices” in Lex [110].
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Interpretations of scales have also been treated by Spangenberg and Wolff
[L58].

1.4 There is another definition of a product of contexts that suggests itself,
Py & Wy o= (G x Gay My x My, &)

with
(91, 92)&(m1,my) : <= gilymy and gz lym,.

This has been considered by various authors (Schaffert [149], Reuter [141],
Erné [48]), but does not have the importance of the direct product in math-
ematical literature. The extents of ¥; &Iy are besides (71 x (' precisely the
sets /) x U, with

U e U(IK) if (i is an attribute intent of [,
' UK\ G; o if not.

The concept lattice is therefore closely related to those of the context sum
and the semiproduct.

The Dedekind Clompletion Theorem (which generalizes Dedekind’s con-
struction of the real numbers from the rational numbers) can be found in
an order-theoretic version already in MacNeille [120] and J. Schmidt [151].
Compare also Banaschewski and Bruns [6].

The contraordinal scales are of central importance when treating distribu-
tive concept lattices [197]. Scaling by means of those scales has been carefully
examined by Strahringer [165]. On this basis, Strahringer and Wille [166],
[167] develop an ordinal data analysis.

Strahringer has also worked on convex-ordinal scaling [164]. Strahringer
and Wille show in [168] that this kind of scaling lends itself to formulating a
generalized cluster analysts. This has been further elaborated by Leonhard
and Winterberg [109]. Formal Concept Analysis has also proved useful for
the classification of ordinal cluster methods; compare Janowitz & Wille [89].

Further interesting contexts can be obtained from an ordered set (P, <).
For example, the concept lattice of the context (P, P, #) can be interpreted
as the lattice of the marimal antichains of (P, <), see [196] and Reuter [143].

Free distributive lattices have been examined using the methods of Formal
Concept Analysis in [205] and Bartenschlager [11], [10] and using closely
related methods even earlier by Markowsky [123]. Compare also Luksch
[112]. The extensive literature on this subject can be looked up in [11], [10].
The A-relation has been defined in [196].

Symmetric contexts have been treated by B. Schmidt [152] and Schaffert
[149].

Flath ([54]. [55]) has generalized the description of the irreducible ele-
ments of the lattice X}, of permutations by Bennett and Birkhoff [12] to
multipermutations and used it among other things in order to determine the
order dimension of those lattices with the methods of concept analysis.
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Depending on the circumstances, the task of determining the concept lattice
of a context can have different solutions. In the case of a small context,
it is useful to start by drawing up a complete list of all concepts. This
approach is treated in the first section of this chapter. In the second section,
we discuss possibilities to generate line diagrams both automatically or by
hand. A list of some dozens of concepts may already be quite difficult to
survey, and it requires practice to draw good line diagrams of concept lattices
with more than 20 elements. Nested line diagrams permit a satisfactory
graphical representation of somewhat larger concept lattices. From some
hundred elements at most, a complete graphical representation is no longer
possible; in this case it is necessary to apply techniques for splitting up and
representing lattices. These will be presented in later chapters.

Another determination problem arises if the context is not immediately
available but must be inferred. We will discuss this case in the third section,
which deals with the implications between attributes. This attribute logic can
be extended to many-valued contexts, which shall be explained in section four
of this chapter.

2.1 All Concepts of a Context

In principle, it is not difficult to find all the concepts of a formal context.
The following proposition summarizes the naive possibilities of generating all
concepts:

Proposition 18. Fach concept of a context (G, M, I) has the form (X", X')
for some subset X C G and the form (Y'.Y") for some subset Y C M.
Conversely, all such pairs are concepts.

Every extent is the intersection of attribute extents and every intent is the
intersection of object intents. a

However, the proposition does not immediately result in a method which is
practicable. Only in the case of a very small context (G, M, I) it is reasonable
to form the term (X", .X’) for each subset .\ of (+ in order to generate all
concepts. The second part of the proposition at least yields the possibility

B. Ganter et al., Formal Concept Analysis
© Springer-Verlag Berlin Heidelberg 1999
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to calculate the concepts of a small context by hand. In order to do so, we
draw up a list of concept extents. At the beginning, the list is empty. Then
we proceed as follows:

First step. The extent (v is entered into the list.

Then we carry out the following for each attribute m € M (the attributes
are processed in an arbitrary order):

Step m. For each set A, entered into the list in an earlier step, we form the
set
Anm’

and include it into the list, provided that it is not yet contained within
it.

We can easily see that in the end the list contains precisely those sets which
are the intersections of attribute extents. Those are, according to the propo-
sition, precisely the concept extents. Then, by means of the context, we can
find the concept intent for each such concept extent A. Thus we obtain a list
of all concepts (A, A’') of the context.

Step | Extent Step | Extent Step | Extent
71,8 16,7.8] 1.2.3]
a {6} {3,4}
b IIL2.3.560 | <11 {3}
c[{3,4,6,7,8} (] R 1{2,3,4}

{3,6} f1{5.6,8} {2, 3}
T115.6.7.5] (6.8} T
{5,6} g | {1,2,3,4}

Figure 2.1 List of concept extents for the context in Figure 1.1.

It is, in general, easier to determine concepts in this way, if we simulta-
neously draw a line diagram of the concept lattice. We will use the context
in Figure 1.1 as an example of how this can be done. The intermediate steps
are presented in Figure 2.2. First of all, we draw a small circle for the largest
concept of the context. If there are attributes, the attribute extent of which
contains all objects, we put their names down above the circle drawn. In our
example, this would be “a”. Then we determine the attributes the extents of
which are maximal among the remaining attribute extents. In our example,
we obtain b, ¢, d and g. The attribute concept of each of these attributes is
represented by a small circle below the circle already drawn. These circles
are then linked to the circle of the largest concept and the names of the new
attributes are put down above the respective circles. Now we systematically
form the infima of the concepts already represented and represent the newly
generated concepts by small circles with their respective connecting lines. In
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Figure 2.2 Intermediate steps in the drawing of Figure 1.3. As a last step we enter
the object names. This also helps verifying whether the diagram is correct.
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our example, this procedure is first applied to the concepts for b and ¢, then
to those for b, ¢ and d, and finally to those for b, ¢, d and g, making use of
our knowledge about concepts already determined (if necessary one can note
down the extent intersections temporarily at the respective circles in order to
remember them for later). If we have drawn the line diagram for all concepts
determined by this stage, we look for the attributes the extents of which are
maximal among the attribute extents not already used. In our example, we
obtain e, f and h. As above, we represent the attribute concepts and all
new intersections of the concepts now available. In our example, we would
have to go through this procedure one more time, that is for the attribute
t. If we finally have worked our way through all the attributes, the resulting
line diagram should be a correct representation of the concept lattice. In
order to check this, we first delete the extents entered provisionally and then
attach the object names (from below) to the concept circles, such that the
equivalence yg < pm <= glm of the Basic Theorem is satisfied. If this
is not possible for every concept, we have committed errors, and these may
easily happen. According to our experience, it is easy to correct these errors.
As a rule, it is useful to go over the line diagram again, in order to obtain a
more readable diagram.

The algorithm for the determination of concepts described above becomes
awkward for larger contexts, since it requires consulting the list again and
again. For this reason, we next describe a faster algorithm for generating all
extents, which has the additional advantage that it can easily be programmed.
This algorithm only uses the closure operator 4 — A of the context, i.e., it
is an algorithm for the generation of all closures of a given closure operator.

First of all we consider the set of all subsets of (& to be “in lexicographical
order”. For the sake of simplicity we assume that G = {1,2,...,n}. A subset
A C (@ is called lectically smaller than a subset B # 4 if the smallest
element which distinguishes 4 and B belongs to B. Formally:

A<B & Jiepa AN{L2 . i—1}=Bn{1,2,..i—1}.

This defines a linear strict order on the power-set P(G), i.e., for subsets
A # B always holds A < B or B < A. The aim of the following is to find for
an arbitrary given set A C (¢ the extent that is smallest after A with respect
to this lectic order. If we have solved this, we can obviously generate all
extents as follows: The lectically smallest concept extent is @”. The other
extents are found incrementally by determining the one which is lectically
closest to the last extent found. In the end, we obtain the lectically largest
extent, namely .

To make this precise, we define for A, B C G,i € (7,

A< B:sieB\Aand AN{L2 .., i-1}=BnN{l,2..,i—1}
Adi=((An{L2 =1} u{i}).

It is easy to verify the following statements:
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(1) A< B& A<; Bforoneied.

(2) A<; Band A <; C'withi < j= ' < B.
3)igA=>A< AL

(4) A<; Band Bextent == A$®:CB,dh. A¢i<B.
(5) A<; B and B extent = A <; 4 & 4.

Theorem 5. The smallest concept extent larger than a given set A C G
(with respect to the lectic order) is

A b,
i being the largest element of G with A <; A 1.

Proof Let AT be the smallest extent after A with respect to the lectic order.
On account of A < A%, we get A <; AT for some i € GG by (1) and thus
A <; Adiby (5). By (4) it follows that Adi < A%, i.e., Adi = AT because
of A < A4 1. The fact that ¢ is the largest element with A <; A & i results
from (2), since 4 <; A& j with j # ¢ on account of A @ i= AT < A& j by
(2) yields j < i. O

Theorem 5 shows how we can find the concept extent we are looking for.
We summarize:

Algorithm for generating all extents of a given context (G, M, I): The lecti-
cally smallest extent is @”. For a given set A C G we find the lectically next
extent by checking all elements i of G\ A, starting from the largest one and
continuing in a descending order until for the first time 4 <; A ¢ 1. AP i

then is the “next™ extent we have been looking for. O

No.[12345 6 7 81||No./l123 4567 8|1[[No.]1 234567 8]i

1 [6) 7 8 X X X x| 4| 14 x x 4

2 X 6 9 X 3f 15 x x x 1

3 X 310 X 6] 16[x x x b)

4 x x| 7| 11 X X 4 17x x X x X 4

5 X X x| 5| 12 X X 6| 18[x x x x 5

6 X X 8 13 X X X X X| 2] 19)x X X X X X X X

7 X X x| 7T

Figure 2.3 List of the extents for the context in Figure 1.11in a lectic order. Behind
each extent A, the element ¢ with AT = A4 3 { is stated.

Because of the duality between objects and attributes, the algorithm can
be transferred without changes to the intents; we only have to replace the
set G by M. We can take advantage of the fact that the extents are being
issued in a lectic order. If, for example,

C:={1L2....c}, D:i={ce+1lec+2,....d}CG,
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then as the lectic successors of (' we first obtain those sets which contain C'
and are disjoint to D. A modification of the procedure (e.g. changes in the
order of the elements of (+) makes it possible to find for arbitrary subsets
C, D C (G all concept extents A of (G, M,I) with C' C 4, AND = 0.

There are several implementations of this algorithm. The best-known is
probably the program CoNIMP by Peter Burmeister, which is particularly
common on DOS-computers. For the world of UNIX there is a version named
CONCEPTS by Christian Lindig. Both programs are at present available for
non-commercial purposes.’

The preconditions of the algorithm can be weakened in some respects.
Therefore it permits several generalizations. Without substantial modifica-
tions of the proof we obtain the following theorem.

Theorem 6. If F is a family of extents of the context (G, M,I) with the
property

AeFandieG = (An{l,...,i—1})'eF,

we obtain for an arbitrary subset A C (i the set At which is the lectically
next in F —if it exists— by
AT = A3,

1 being the largest element of G for which A <; A & 1 and simultaneously
Adie F. |

We will give a simple example of possible applications of this theorem: If
we want to find all partitions of a 7-element set not containing classes with
more than three elements, we can use the context for the lattice of equivalence
relations from 1.4.(8) (p. 52). The family F of partitions with the property
specified is an order ideal and thus satisfies the condition in Theorem 6, i.e.,
it can be scanned with the modified algorithm.

2.2 Diagrams

The best and most versatile form of representation for a concept lattice is a
well drawn line diagram. It is however tedious to draw such a diagram by
hand and one would wish an automatic generation by means of a computer.
We know quite a few algorithms to do this, but none which provides a general
satisfactory solution. It is by no means clear which qualities make up a good
diagram. It should be transparent, easily readable and should facilitate the
interpretation of the data represented. How this can be achieved in each
individual case depends however on the aim of the interpretation and on the

! e.g. free of charge via the Internet:
ftp.mathematik.th-darmstadt.de: /pub/department /software /conceptanalysis
or ftp.ips.cs.tu-bs.de: /pub/local/softech /misc.
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structure of the lattice. Simple optimization criteria (minimization of the
number of edge crossings, drawing in layers, etc.) often bring about results
that are unsatisfactory. Nevertheless, automatically generated diagrams are
a great help: they can serve as the starting point for drawing by hand.
Therefore, we will describe simple methods of generating and manipulating
line diagrams by means of a computer, later we suggest even better procedures

with the aid of the structure theory for concept lattices.

| lalb[c]d]c[s]s]

11 1(0,0),(6,0),(3,1) X | x| % X

15 1(0,0),(1,0),(0,1) X | % X
15 ((0,0),(4,0),(1,2) X x

Ty [(0,0),(2,0), (1,v/3) || x X | X | %

15 1(0,0),(2,0),(5,1) X X X
15 1(0,0),(2,0),(1,3) x| x| x| x

17 1(0,0),(2,0),(0,1) X X

a: equilateral, b: not equilateral, c: isosceles, d: oblique,
e: acute, f: obtuse, g: right.

Figure 2.4 A context for triangles.

As an illustration, we will use the context in Figure 2.4, in which triangles
are classified according to properties such as right-angled, equilateral, etc.
The choice of the triangles is not coinciden-
tal: the context is the result of an attribute

exploration, a technique to be discussed in 5 _1 _
the next section. But for the moment we are 3. 9 _
only concerned with the question of how to 4. 1 =
obtain a line diagram for this context. 5: 2 4 -
We can use a computer program to ob- (3 o3 b -
tain the concepts of the context and the é % B
edges of the line diagram. The successor 9. 9 T _
list, displayed on the right, has been gen- 10: 9 -
erated by means of the program CoNImp .3 9 -
mentioned previously. We can read from it 2.4 7 -

o om 13: 8 12 -
that the context has 18 concepts. These are 4. 5 9 12 —
denoted by the serial numbers 1,...,18. Be- 15: 10 14 —
hind the colon follow the upper neighbours 16: 6 11 14 -
of each concept. In the line diagram, an 17: 6 -
edge must be drawn to each of the upper 18: 13 15 16 17

Obvi-

| is the unit element of

neighbours, and those are all edges.
ously concept no.
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the concept lattice (since it has no upper neighbour) and no. 18 is the zero
element (since 18 does not occur as an upper neighbour).

As a graph, the line diagram is already completely determined by this list.
It can be used to sketch a diagram “from bottom to top™: first of all we draw
the smallest element (concept no. 18), above it the upper neighbours (13, 15,
16, 17), then their upper neighbours (6, 8, 10, 11, 12, 14), and so on. It is
still open how points are arranged on paper. This can be done “intuitively”
but will then require various iterations to develop a satisfactory diagram.

There is however an efficacious method to support the generation of a
line diagram. This geometrical method is based on first understanding
the lattice-theoretic structure through a geometrical representation of the
concept lattice and then to find the best possible arrangement for the line
diagram. This means that we draw as an intermediate step —by hand or with
the aid of a computer— an auxiliary picture, which is then used to draw the
actual line diagram. This auxiliary picture is called the geometrical dia-
gram. Intuitively, we think of this diagram in the following way: we imagine
that the lattice is realized by means of a three-dimensional line diagram and
look down on the lattice from its highest point, i.e., from the unit element.

From the top, we first see the lower neighbours of the unit element. In the
geometrical diagram they are represented by unconcealed circles into which
we write the names of the respective elements. We continue to draw the
geometrical diagram in accordance with the following rules:

1. An element with exactly one upper neighbour is represented by a circle
which is partly covered by the upper neighbour.

2. An element with exactly two upper neighbours is represented by a con-
necting line segment between the two upper neighbours. The name of the
element is written into a circle which is partly covered by this connecting
line.

3. An element with exactly three upper neighbours is represented by a con-
necting triangle between the upper neighbours. The name of the element
is written into the triangle.

Elements with n > 3 upper neighbours are represented analogously by an
n-simplex connecting the upper neighbours. The largest and the smallest
element of the lattice are omitted.

[n this way we obtain the geometrical diagram in Figure 2.5. The individ-
ual steps are noted down in the following table. The necessary information
has been taken from the above successor list.

2 hes immediately below 1: therefore a circle for 2.

3 immediately below 2: therefore a circle for 3, partly covered by the 2-circle.

4 immediately below 1: therefore a circle for 4.

5 immediately below 2 and 4: therefore a line segment for 5 between the 2-circle

and the 4-circle.

6 immediately below 3 and 5: therefore a line segment for 6 between the 3-circle
and the H-line-segment.

immediately below 1: therefore a circle for 7.

~1



Figure 2.5 A geometrical diagram.

2.2 Diagrams
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8 immediately below 7: therefore a circle for 8, partly covered by the 7-circle.

9 immediately below 2 and 7: therefore a line segment for 9 between the 2-circle
and the 7-circle.

10 immediately below 9: therefore a circle for 10, partly covered by the 9-circle.

11 immediately below 3 and 9: therefore a line segment for 11 between the 3-circle
and the 9-line-segment.

12 immediately below 4 and 7: therefore a line segment for 12 between the 4-circle
and the T-circle.

13 immediately below 8 and 12: therefore a line segment for 13 between the
8-circle and the 12-line-segment.

14 immediately below 5, 9 and 12: therefore a triangle for 14 between the 5-circle,
the 9-circle and the 12-line-segment.

15 immediately below 10 and 14: therefore a line segment for 15 between the
10-circle and the 14-triangle.

16 immediately below 6, 11 and 14: therefore a triangle for 16 between the
6-line-segment, the 11-line-segment and the 14-triangle.

17 immediately below 6: therefore a circle for 17, partly covered by the 6-line-
segment.

Figure 2.6 A line diagram for the lattice of triangle concepts.

It still remains to be said how a good line diagram can be obtained from
the geometrical diagram. The derived line diagram for the concept lattice of
the triangles is presented in Figure 2.6. If one already has some experience
with the geometrical method, one can see from Figure 2.5, that the most
striking substructure of the lattice consists of two Boolean cubes. But even
without this experience, one can soon reach this conclusion by proceeding
systematically. As a rule, one should start with the lower neighbours of
the unit element being represented by unconcealed circles. In Figure 2.5
these are the 2-, 4- and 7-circle. These circles are connected pairwise by the
line segments 5, 9 and 12, which in turn are connected by the 14-triangle.
This shows that the concepts 1, 2, 4, 5, 7, 9, 12 and 14 form a Boolean
sublattice. The question is, how these eight elements can best be arranged
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within the line diagram. After having drawn the unit element, it seems
advisable to put the co-atoms 2 and 7 on the outside and 4 between them,
since below both 2 and 7 there is another “point”, which needs some space.
The concepts 5, 7, 9 and 12 will be best placed in accordance with the rule of
parallelograms, which says that one should (if possible) place an element in
a way that it makes up a parallelogram together with three elements already
represented and their connecting line segments. The resulting picture of the
Boolean sublattice represents a cube standing on one of its corners. After
the explanation given so far, it should not be difficult to recognize the second
Boolean sublattice, consisting of the concepts 2, 3, 5, 6, 9, 11, 14 and 16.
Since the cube representing it shares the elements 2, 5, 9 and 14 with the
first cube, it is obvious how to continue the drawing. However, one further
rule should be observed, the so-called rule of lines, according to which a line
to a new “point” should be arranged in such a way that it continues some
line segments already drawn. If we observe the rule of lines and the rule of
parallelograms for the remaining elements 8, 10, 13, 15 and 17, we obtain
from the geometrical diagram a satisfactory line diagram, to which we only
have to add the zero element (no. 18) (cf. Figure 2.6). For the labelling with
object and attribute names, additional information is required, which the
program CONIMP supplies by means of an assignment list (see Fig. 2.7).

Concept : Object | Concept :  Attribute
8 15 2 : oblique
10 13 3 acute
11 T 4 isosceles
13 : 15 7 not equilateral
5 h 8 right
16 : T 10 obtuse
17 1 17 equilateral

Figure 2.7 The assignment to the concepts.

In general, it is advisable to draw the geometrical diagram as quickly as
possible using the successor list. When doing so, one should not be afraid
to draw segments of lines and surfaces rather boldly. Experience shows that
this kind of diagrams can still be used as instructions for drawing good line
diagrams. It is helpful to observe geometrical patterns and their respective
realizations in the line diagrams. In some (relatively rare) cases, it is advisable
to construct the line diagram from bottom to top; in this case one should use
the so-called predecessor list.

Both of the procedures described above make use of the computer in order
to obtain information necessary for a diagram. We will now explain a method
where a computer generates a diagram and offers the possibility of improving
it interactively. Programming details are irrelevant in this context. We will
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Figure 2.8 The labelled line diagram.

therefore only give a positioning rule which assigns points in the plane to
the elements of a given ordered set (P,<). If a and b are elements of P
with a < b, the point assigned to a must be lower than the point assigned
to b (i.e., it must have a smaller y-coordinate). This is guaranteed by our
method. We will leave the computation of the edges and the checking for
undesired coincidences to the programming. We do not even guarantee that
our positioning is injective (which of course is necessary for a correct line
diagram). This must also be checked if necessary.

Definition 35. A set representation of an ordered set (P, <) is an order
embedding of (P, <) in the power-set of a set X, i.e., a map

rep: P — P(X)

with the property
r<y<reprCrepy.

<

An example of a set representation for an arbitrary ordered set (P, <) is
the assignment
X:=P, aw(a].

In the case of a concept lattice
X==G, (4B~ A
resp. X\ :=M, (A,B)—~ M\B
are representations which can be combined to

XN:=GUM, (4.B)— AU(M\ B).
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It is sufficient to limit oneself to the irreducible objects and attributes?.
For an additive line diagram of an ordered set (P, <) we need a set
representation rep : P — P(.X) as well as a grid projection

vec: X — P2

assigning a real vector with a positive y-coordinate to each element of X. By

posp:=n+ Z vec
rerepp

we obtain positioning of the elements of P in the plane. Here, n is a vector
which can be chosen arbitrarily in order to shift the entire diagram. By only
allowing positive y-coordinates for the grid projection we make sure that no
element p is positioned below an element ¢ with ¢ < p.

Every finite line diagram can be interpreted as an additive diagram with
respect to an appropriate set representation. For concept lattices we usually
use the representation by means of the irreducible objects and/or attributes.
The resulting diagrams are characterized by a great number of parallel edges,
which improves their readability. Besides, it is particularly easy to manipu-
late these diagrams.

If we change -the set representation being fixed- the grid projection
for an element » € X, this means that all images of the order filter
{p € P | x € repp} are shifted by the same distance and that all other
images remain in the same position. In the case of the set representation by
means of the irreducibles these order filters are precisely principal filters or
complements of principal ideals, respectively. This means that we can manip-
ulate the diagram by shifting principal filters or principal ideals, respectively,
and leaving all other elements in position.

Experience shows that the set representation by means of the irreducible
attributes is most likely to result in an easily interpretable diagram.

Occasionally, it can be convenient to represent a lattice as a part of a
larger order. For this purpose, we draw a line diagram of the order but
represent only those elements of the lattice by small circles which we actually
mean. An example is shown in Figure 5.3 (p. 189).

Even carefully constructed line diagrams loose their readability from a
certain size up, as a rule from around 50 elements up. One gets considerably
further with the nested line diagrams which will be introduced next. However,
these diagrams do not only serve to represent larger concept lattices. They
offer the possibility to visualize how the concept lattice changes if we add
further attributes.

The basic idea of the nested line diagram consists of delimiting parts of an
ordinary diagram and replacing bundles of parallel lines between these parts
by one line each. Thus, a nested line diagram consists of framed bozes, which

2 For set representation see also (‘hapter 6.5
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Figure 2.9 An additive line diagram of the concept lattice of a lezical field “waters”.
The set representation is based on the irreducible attributes, i.e. the positioning of
the attribute concepts determines that of all remaining concepts. If we interpret
the line segments between the unit element and the attribute concepts as vectors,
we obtain the position of an arbitrary concept by the sum of the vectors belonging
to attributes of its concept intent starting from the unit element. Other diagrams
for the same lattice can be found in Figure 2.10.
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contain parts of the ordinary line diagram and which can be connected by
lines. In the simplest case two boxes which are connected by a simple line are
congruent. Here, the line indicates that circles which coincide if one box is
put on top of the other are connected in the ordinary line diagram. A double
line between two boxes means that each element of the upper box is larger
than each element of the lower box. Figure 2.10 shows the concept lattice
from the preceding section. once as an ordinary line diagram and once as a
nested diagram. For reasons of comprehensibility we have left out the object
and attribute names.

Furthermore, we allow that two boxes connected by a single line do not
necessarily have to be congruent, but they may each contain a part of two
congruent figures. In this case, the two congruent figures are drawn in the
boxes as a “background structure™, but the elements are only marked by
circles if they are part of the respective substructures. The line connecting
the two boxes then indicates that the respective pairs of elements of the
background shall be connected with each other. Examples can be found in
Figures 1.20 (p. 51) and 2.17 (p. 90).

Nested line diagrams originate from partitions of the set of attributes.
The basis is the following Theorem:

Theorem 7. Let (G M, 1) be a context and M = My U M. The map
(A,B) = (BN M), BN M), (BN M), BN My))

is a \/-preserving order embedding of B(G, M,I) in the direct product of
B(G. M, ING x My) and B(G, My, ING x My). The component maps

(A,B)— ((BN Ml-)/, BN M;)
are surjective on B(G, M;, I NG x M;).

Proof. 1If (A, B) is a concept of (G, M, I), then B N M; is the set of all
attributes common to the objects of A in the context (G, M;, I NG x M;),
i.e., it is an intent of this context. Hence the above-mentioned assignment is
really a map into the product. The union of the intents BN M; and BN M,
again yields B, i.e., the map is injective. The fact that it is furthermore \/-
preserving (and thus an order-embedding) can again be seen from the concept
intents. It remains to be shown that the component maps are surjective. Let
C' be an intent of ((+, M;, ING'x M;). Then B := C'!! is an intent of (G, M, I)
with BN M; = (. i.e.. the image of the concept (B’, B) of (', M, I) under
the ith component map is the concept with the intent . a

In order to sketch a nested line diagram, we proceed as follows: First of all
we split up the attribute set: M = M; U My. This splitting up does not have
to be disjoint. More important for interpretation purposes is the idea that
the sets M; bear meaning. Now, we draw line diagrams of the subcontexts
K == (G, M;, I NG x M), i € {1,2} and label them with the names of
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Figure 2.10 Line diagram and nested line diagram.
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the objects and attributes, as usual. Then we sketch a nested diagram of
the product of the concept lattices B(I;) as an auxiliary structure. For
this purpose we draw a large copy of the diagram of B(K, ), representing
the lattice elements not by small circles but by congruent rectangular boxes,
which contain each a diagram of B(l,).

By Theorem 7 the concept lattice B(G, M, I) is embedded in this product
as a \/-semilattice. If a list of the elements of B((, M, I) is available, we can
enter them into the product according to their intents. If not, we enter the
object concepts the intents of which can be read off directly from the context,
and form all suprema.

This at the same time provides us with a further, quite practicable method
of determining a concept lattice by hand: split up the attribute set as appro-
priate, determine the (small) concept lattices of the subcontexts, draw their
product in form of a nested line diagram, enter the object concepts and close
it against suprema. This method is particularly advisable in order to arrive
at a useful diagram quickly.

2.3 Implications between Attributes

An imaginary example shall serve as an introduction to the problem: imag-
ine a manufacturer of computer hardware, whose different products can be
combined in various ways but not arbitrarily. In order to obtain a conceptual
structuring of the (reasonable) configurations, we would have to examine a
context the objects of which are the combinations and the attributes of which
are the components. If a list of these combinations is not available, we have
to draw it up. This can be done on the basis of our knowledge about the
existing possibilities of combining the elements.

In this case, the starting point of concept analysis is not an explicitly
stated context. Rather, we infer the context and at the same time the con-
cept system from the attribute logic, i.e., from the rules concerning the
combination of attributes.

This method does not only suggest itself in the example discussed above.
It often becomes necessary to classify a large number of objects with respect
to a relatively small number of attributes, and it is frequently useless or
impracticable to write down the whole context and to apply the procedures
for the determination of the concept system which were described in the
previous section. In such cases, the concept lattices can be inferred from
the implications between the attributes, i.e., from statements of the following
kind: “Every object with the attributes a,b,c,... also has the attributes
x,y,z,...0. Formally, an implication between attributes (in M) is a
pair of subsets of the attribute set M. It is denoted by A — B. (When
the sets are small, we shall omit the brackets (as we have done earlier),
i.e., we shall write A — m instead of A — {m}, etc.). In this section we
examine the attribute implications which hold in a context. The amount of
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information contained by these implications is evidenced by the fact that we
can reconstruct the structure of the concept lattice from them. Conversely,
the implications between the attributes of a context can also be read off
from the concept lattice. However, the systems of all implications between
attributes which hold in a context tend to be very large and to contain many
trivial implications. Therefore, we try to find subsystems which suffice to
describe the concept lattice. First we give some simple definitions:

Definition 36. A subset 1'C M respects an implication A - Bif A ¢ T
or B CT. T respects a set L of implications if T respects every single
implication in £. A — B holds in a set {1, T),...} of subsets if each of the
subsets 1; respects the implication 4 — B. 4 — B holds in a context
(G, M. I) if it holds in the system of object intents. In this case, we also say
that 4 — B is an implication of the context ((+, M, I) or, equivalently,
that within the context (GG, M.[I), 4 is a premise of B. O

Proposition 19. An implication 4 — B holds in (G, M, I) if and only if
B C A", It then automatically holds in the set of all concept intents as
well. a

How can we read off an implication from the concept lattice? It is suf-
ficient to describe this procedure for implications of the form A — m, since
A — B holds if and ounly if A — m holds for each m € B. A — m holds if
and only if (m’,m") > (A", A"), i.e.. if pm > A{pn | n € A}. This means
that we have to check in the concept lattice whether the concept denoted by
m is located above the infimum of all concepts denoted by an n from A.

It can occasionally be useful for the determination of the implications
to replace the original context ((v.M,I) by its complementary context
(Gy M, (G x M)\ I), in particular if the latter has considerably fewer con-
cepts as (G, M.I). For m € M and A C M the following equivalences
hold: m e A" & m} CA A Cw e |nedCnm e
G\m' CU{G\n' [ n € A}, Thus, 4 — m holds in the context (G, M, I) if
and only if in the complementary context every object with the attribute m
has at least one attribute n from A.

Proposition 20. If £ is a set of implications in M,

(L) :={X C M| X respects L}
is a closure system on M. If L is the set of all implications of a context,
(L) is the system of all intents.

The proof is trivial. The respective closure operator can be described as
follows: For a set .X C M, let

X=XU|{Bl4A—>BeL ACX)
We form the sets X4, X£€, X4££  until we finally obtain a set L(X):=
XN4£with £(X)* = £(X) (in the case of infinite contexts it can be necessary
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to continue this process transfinitely. £(.Y) is then is the closure of .X with
respect to the closure system $)(£) which we have been looking for.

By means of the closure system £(L) it is also possible to construct a
context for every given set £ of implications, the intents of which are precisely
the sets respecting £: (9(L), M, 5) has this property. In addition to £ in this
context hold all implications which follow from £ in the sense of the following
definition:

Definition 37. An implication A — B follows (semantically) from a set
£ of implications between attributes if each subset of M respecting L also
respects A — B. A family of implications £ is called closed if every impli-
cation following from L is already contained in L.

A set £ of implications of a context (G, M, I) is called complete if every
implication of (G, M, I) follows from L. &

In other words: An implication follows semantically from £ if it holds in
every system of sets in which £ holds as well. This is the case if and only if
n(L) = H(LU{A— BY}).

The closed sets of implications lend themselves to a syntactic character-
ization. This has been discussed comprehensively, for example in the book
of Maier [121], from which we cite the following proposition (formulated by
Armstrong [1]):

Proposition 21. A set £ of implications on M is closed if and only if the
following conditions are satisfied for all W, X, Y, Z C M :

1. X—=>XeL,
2. If X =Y el thenXUZ =Y €L,
S IX oY eLadYUZ —>WEL, then XUZ - WeL.

[

In order to demonstrate that a set £ of implications of a context is com-
plete, we have to show that every subset T' C M respecting £ is an intent.

A first attempt to find a manageable complete set of implications consists
in leaving out those implications which follow trivially from others or those
which hold in any context. For instance, A — B holds whenever B C A, and
from A — B and (' C B it always follows that A — (". Correspondingly,
fr.om‘ A; — B-f for.j 6 J it élways follows that UjeJ A; = UjeJBj~ If we
eliminate the implications arising like that, there remain certain implications
with a proper premise:
Definition 38. For an attribute set A C M of a context ((, M, 1) we denote
by

A= A"\ (AU | @A\ {nh)")

neA

the set of those attributes contained in A" but not in A or in the closure of
any proper subset of A. We call A a proper premise if A* # O, i.e., if
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AT AU A\t

neA
In particular, O is a proper premise if 0" # Q. &

Proposition 22. If T is a finite subset of M, then
T"=TU U{A' | A is a proper premise with A C T}.
The set of all implications of the form
A — A, Aa proper premise,

of a context with a finite attribute set is complete.

Proof. If T =T" the assertion is trivial, thus let m € 7"\ T. A subset A of
T which is minimal with respect to the property m € A” has to be a proper
premise, i.e., there is an implication A — A* with m € A*. Since m had been
chosen arbitrarily, the first assertion follows. If T respects all implications of
the form A — A* and A is a proper premise, from what we have just proved
it follows that 1" = T, i.e., that T is an intent. O

In certain respects, the set of proper premises is canonical with respect
to the property described in Proposition 22. In order to state this more
precisely, we first introduce a further term. A family of implications can be
simplified by merging implications with the same premise. We call a family
of implications contracted if there are no premises which occur more than
once. If £ is any contracted family of implications satisfying the condition of
the proposition, i.e., with

T"=Tu| {B|A=>BeLACT} forallTC M,

then £ contains an implication £ — F with F* C F for every proper premise
E, as can be seen easily, if we replace 1" by FE in the condition.

In order to determine the proper premises of a doubly founded context
(G, M, I), we can use the arrow relation /. Following Definition 36 we call
an attribute set P a proper premise of an attribute m if P is a proper
premise and m € P* holds.

Proposition 23. P is a premise of m if and only if
(M\¢g)NP#0

holds for all g € G with g/ m. P is a proper premise for m if and only if
m & P and P is minimal with respect to the property that (M \ ¢'YN P # O
holds for all g € GG with g/ m.
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Proof. For g € (- and P C M we have the equivalences
(M\¢JYNP+0 < Pqq¢ < g¢Pr.

Since P ¢ m' is equivalent to the fact that there is an object ¢ € P’ with
g/ m, the first assertion follows. The property of minimality of the proper
premises yields the second assertion. O

According to the proposition, we obtain the proper premises by determin-
ing for every attribute m the minimal attribute sets P with (M \¢')NP # O
for all g,/ m.

Even the set of implications described in Proposition 22 is in general still
redundant.

Definition 39. A set £ of implications of a context is called non-redun-
dant if none of the implications follows from the others. <&

Guigues and Duquenne [74] have shown that there is a natural complete
and non-redundant set of implications for every context with a finite attribute
set M. For the following results, we make the general assumption that the
attribute set M which occurs is finite. This permits a recursive definition
of the basic notion of the pseudo-intent (which takes the place of the proper
premise):

Definition 40. P C M is called the pseudo-intent of (G, M, I) if and only
if P # P"” and " C P holds for every pseudo-intent @ C P, Q) # P. O

Theorem 8. The set of implications
L :={P — P"| P pseudo-intent}
is non-redundant and complete.

Proof. Evidently, £ holds in (G, M, I). In order to show that £ is complete,
we again have to show that every set T'C M respecting £ is an intent. Each
such set in particular respects all implications Q — @"' where @ is a pseudo-
intent and @ C 7. If we assume that T # T", T itself satisfies the definition
of a pseudo-intent and the implication T'— 7" is in £ but is not respected
by T, a contradiction.

In order to show that £ is non-redundant, we consider an arbitrary
pseudo-intent P and show that P respects the set £\ {P — P”}. In fact, if
@ — Q" is an implication in £\ {P — P”} with Q@ C P, then Q"' C P must
hold, since P is a pseudo-intent. O

In practice, the implications are not stated in the form P — P” but in the
form P — (P"”\ P). We call this the Duquenne-Guigues-Basis or simply
the stem base of the attribute implications. In the case of the developing
countries (Figure 1.8) this basis consists of five implications (see Figure 2.11).
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OPEC

MSAC

Non-aligned

Group of 77, Non-aligned, MSAC, OPEC
Group of 77, Non-aligned, LLDC, OPEC

Group of 77, Non-aligned
Group of 77
Group of 77
LLDC, ACP
MSAC, ACP

AR AN

Figure 2.11 Stem base for the context of developing countries.

Again it is possible to show that this family of implications is in a way
canonical with respect to the properties stated. We will first note down a
simple proposition:

Proposition 24. If P and Q are concept or pseudo-intents with P ¢ @ and
Q ¢ P, then PN Q is an intent.

Proof. P as well as ) and thus also PN @ respect all implications in £ with
the possible exception of P — P" and Q@ — Q". If P # PN Q # Q, then
P N Q also respects these implications, i.e., it is an intent. O

The following proposition shows among other things that there can be no
complete set which contains fewer implications than there are pseudo-intents:

Proposition 25. Every complete set X' of implications contains an implica-
tion A — B with A" = P" for every pseudo-intent P.

Proof. A pseudo-intent P is always not equal P”. Therefore, provided that
Y is complete, there must be at least one implication A — B in ¥ which
leads out of P, i.e., with A C P and B ¢ P. On account of B C A", we get
A" ¢ P, and thus A” N P cannot be a concept intent. By Proposition 24 this
yields P C A” and thus P" = 4". O

The recursive definition of the pseudo-intents provides us with a first,
although inefficient, algorithm for generating them. In the following we
will develop a more practicable procedure. As an immediate consequence
of Proposition 24 we obtain:

Proposition 26. The set of all subsets of M which are intents or pseudo-
intents of (G, M. I) is a closure system. O

The closure operator for this closure system is obtained by a modification
of the operator £. Starting from a set .X, we successively form

X = XU J{BlA>BeL ACX. 44X}

X=X U [{BIA o BeL, ACKY A4 XY

and so on, until we finally obtain a set £*(X) with £*(X) = £*(X)*". This
set is the pseudo-intent or intent which we have been looking for. We should
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bear in mind that when using this method for generating a pseudo-intent P,
we only need implications 4 — B, the premise of which is a proper subset
of P. This permits a recursive generation of the pseudo-intents by means of
the algorithm described n 2.3 .

Algorithm for generating all intents and pseudo-intents of a context
(G,M.,I) in a lectic order. We assume that M = {1,2,...,n}. The sym-
bol <; has been explained in 2.1.

The lectically smallest concept or pseudo-intent is ). For a given set B,
we find the lectically next concept or pseudo-intent by checking all elements ¢
of M, starting from the largest and continuing in a descending order, until we
first obtain B <; L*((BN{1,2,...,i—1}HU{i}). £((BN{1,2,....i—1}HU{i})
then is the concept or pseudo-intent we were looking for. a

We will now return to the opening question of this section: how can
we determine the concept intents by means of the implications? We have
seen that in order to do so. we do not need all the implications, but that a
small subset of them is sufficient. So far we have only explained how these
implications can be obtained from an available context. By means of the tools
now on hand, however, we can also develop a method of generating sets of
implications which are free of redundancies. even if the context is not or only
partly available. This procedure, which is called attribute exploration, has
proved successful in many applications. In practice, we use a computer which
administers the sets of iinplications and is able to compute which information
is still lacking. The implications are then determined interactively, i.e., in
cooperation with the user.

The algorithm for the determination of the pseudo-intents permits a mod-
ification resulting in an interactive programi: it is possible to modify the
context by adding new objects, even while the generation of the list £ of
the implications is in progress. If the intents of these objects respect all
implications determined so far, the computation for the new context can be
continued with the results so far obtained. This is the content of the following
proposition:

Proposition 27. Let V. be a contexrt and let Py, Py, ..., P, be the first n
pseudo-intents of I with respect to the lectic order. If ¥ is extended by
an object g the object intent g' of which respects the implications P; — P/',
ie{l.... n}. then PPy, ..., P, are also the lectically first n pseudo-

intents of the eaxtended conteurt.

This can be proved for example by induction on n. a

Therefore, if we have found a new pseudo-intent P, we can stop the algo-
rithm and ask, whether the implication P — P” should be added to £. The
user can answer this question in the affirmative or add a counter-example,
which must not contradict the implications he has confirmed so far. In the
extreme case, the procedure can be started with a context the object set of
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which is empty. In this case, the user will have to enter all counter-examples,
thereby creating a concept system with a given “attribute logic”.

Instead of describing this program in detail, we shall demonstrate its
functioning by means of an example. From a book on measurement theory
[146] we take a list of properties of binary relations, which are used there in
order to define different types of relations, see Figure 2.12.

Property Definition
r | reflexive Rz forall z € §
i | irreflexive -z Rz for all z € S
s | symmetric xRy = yRx forall 2,y € §
as | asymmetric xRy = —~yRx for all z,y € S
an | antisymmetric rRy and yRe > z =y forall z,y € §
t | transitive Ry and yRz = xRz for all x,y,z € S
nt | negatively transitive | —zRy and ~yRz = -z Rz for all z,y,2 € §
¢ | connex zRy or yRr forallz £y € S
sc | strictly connex xRy or yRx for all z,y € S

Figure 2.12 Properties of binary relations.

Which implications exist between those properties? For every one of these
implications it is easy to determine whether it holds for all binary relations.
Only a finite number of such implications is possible (since we are dealing with
a finite number of attributes), but at any rate many more than we would care
to list exist. Our algorithm should help us to discover “good” implications
straight out. Implications which do not hold for all binary relations are
refuted by stating counter-examples.

First of all we equip ourselves with a small supply of examples by consid-
ering all relations on the one or two-element set. Up to isomorphism there
are twelve such relations (Figure 2.13).

Now we have a context to start with (generally, this context can even be
empty). Of course, only implications which hold in this context can hold for
all binary relations, but not vice versa. Please note that the four objects
marked by a < are superfluous, since their intents are the intersections of
other object intents and therefore respect all implications respected by the
other objects. We will leave them out in the following. Now we use the
algorithm in order to calculate the first pseudo-intent. The lectically smallest
pseudo-intent in this context is {sc}, with {sc}’ = {r,t,nt,c, sc}. In other
words, the implication

{sc} = {r,t,nt, ¢, sc}

holds in all examples stated so far. Does it hold for binary relations in
general? Of course not. A counter-example is for instance S = {0, 1,2},
R =5x5\{(0,1).(1,2),(2,0)}. This relation is reflexive, antisymmetric,
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g

. rlt|s|astan |t |nt| c|sc
{0} 0] X | X | X | x| x| x| %

{0} {(0,0)} X X X | x| x x
{0,1} 0] X | x| x| x| x| x
{0, 1} {(0,0)} X x | x
0,1} | {(0,0), (L.} |[ x x X | x
0.1} | {(0,0),(0,1)} X | x| x | x
{0,1} | {(0,0),(1,0)} x | x| x| x
{0,1} | S x S\{(0,1)} || x X | x| x| x| x
{0,1} | S x S\ {(0,0)} x x | x
{0, 1} {(0, 1)} x X | x| x| x]x
0,13 | {(0.1),(L.0)} x| x x | x
{0,1} Sx S x X X | x| x| x

Figure 2.13 Examples of binary relations.

o] 5 IR ]
1| {0} |©@
2| {0} [{(00)}
31 (0.1} |0
41 {01} [{(0,0),(1, 1)}
5 {0,1} | SxS\{(0, 1)}
6] {0.1} |{(0.1)}
7| {01} {(0,1),(1,0)}
81 {0,1} | SxS
9110.1,2) | Sx S\ {(0,1),(L,2),(2,0)}
10 | {0, 1,2} | {(0,1),(1,2),(2,0)}
11 {0.1.2} [{(0.1)}
12 1 {0, 1,2} | {(0, 1), (L,0)}
13]{0.1,2) | Sx S\ {(0, )}
4 {0.1,2} | Sx S\ {(0,1},(L0)}

Figure 2.14 A complete list of examples.

TT
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connex and strictly connex and has none of the other properties. We add
this example to our context and again ask for the smallest pseudo-intent. It
is still {sc}, but now {sc}” = {r,e,sc}, and we have to check, whether the
implication {sc} — {r, c. sc}, which we abbreviate by

sC — 1, C,

holds for all binary relations. As a matter of fact, every strictly connex
relation is reflexive and connex. Therefore, we can add this implication to
the list of implications L.
The next pseudo-intent is {t,c} with {¢t,c} = {t,nt,c}. This suggests
the implication
t,e = nt,

which in fact holds for binary relations and therefore is added to the list, as
well as the following one
an,nt — t,

which results from the pseudo-intent {an.nt} with
{an,nt}" = {an,t,nt}.
After that, we obtain the pseudo-intent {as}, for which
{as}' = {i,as,an, t,nt}
holds in the context of the examples. But the implication
as — t,an,t,nt

does not hold generally, as the following example shows: S := {0,1,2}, R :=
{(0,1),(1,2),(2,0)}. This relation has the attributes ¢, as, an, nt, and we add
it to the context. Since it obviously respects all implications accepted so far, it
has no consequences for the pseudo-intents found up to then (cf. Proposition
27).

In the following, we first confirm the implications as — i, an and s,c — nt
as well as s.an — t, then we state a counter-example for i,{ — as, an, nt etc.
The complete result is presented in Figures 2.14 to 2.17.

We point out that the premises of the implications in Figure 2.16 are
precisely the pseudo-intents of the context in Figure 2.15.

The procedure does not guarantee that the resulting context is reduced (as
in the example). Newly entered objects can make previously entered objects
dispensable. It is possible to “row-reduce” the context during the process
(i.e., to delete dispensable objects). This has no effect on the implications.
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7 ) s |las|an | t | nt| c | sc
1 X | X | X X | x| x| x
21 x X X | x| x| x| Xx
3 X | x| x| x | x| %
41 % X x | x
5 x X | x| x x| X
6 X X | X | X | x | x
T X | X X | %
8l % X X | X | X | %
91 x X X | x
10 X X | X X
11 X X X | x
12 X | %
13 || x X | X | x
14 || % X

Figure 2.15 The context of the examples.

strictly connex — reflexive, connex

transitive, connex — negatively transitive

antisymmetric, negatively transitive — transitive

asymmetric — irreflexive, antisymmetric

symmetric, connex — negatively transitive

symmetric, antisymmetric — transitive

irreflexive, transitive — asymmetric, antisymmetric

irreflexive, antisvmmetric — asymmetric

irreflexive, symmetric, asymmetric, antisymmetric, transitive —
negatively transitive

reflexive, connex — strictly connex

reflexive, negatively transitive — connex, strictly connex

reflexive, symmetric, negatively transitive, connex, strictly connex —
transitive

reflexive, irreflexive — all properties

Figure 2.16 A complete and non-redundant list of implications.
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Figure 2.17 The concept lattice for the context of the binary relations.
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2.4 Dependencies between Attributes

How can we apply the theory of implications in the case of many-valued
contexts? The attribute implications in the derived context offer one ap-
proach, however elementary. Basically, it describes implications between the
individual attribute values, at least as long as we keep to plain scaling.

In colloquial language we use the term dependency of many-valued at-
tributes as exemplified by the following sentence

“The price of a real-estate depends on situation and size”.

This is meant to express a simultaneous dependency of attribute values, per-
haps even a gradual one, in the sense of “the larger the more expensive”.

There are different notions of dependency for many-valued attributes,
which correspond to the different possibilities of scaling. For an integration
into a general theoretic framework, please refer to the corresponding litera-
ture.

We now describe the case of functional dependency, the (stronger) one of
ordinal dependency and will indicate generalizations. For reasons of simplic-
ity, we will first concentrate on complete many-valued contexts.

Definition 41. If X C M and ¥ C M are sets of attributes of a com-
plete many-valued context (G, M, W, 1), then we say that Y is functionally
dependent on .\ if the following holds for every pair of objects g, h € G:

(Vmex mlg) = m(h)) = (Vaey nlg) = n(h)).
&

That is to say, if two objects have the same values with respect to all at-
tributes from X the same must be true for the attributes from Y. This
notion of dependency is often used in the theory of relational databases. The
term “functional” can be explained as follows: Y is functionally dependent
on X if and only if there is a map f: WX — WY with

(m(g) |me X)=(n(g) | neY) forall g € G.

In the case of ordinal dependency, we consider an ordinal context, i.e., we
have for each attribute mm € M an order <,, on the set m(() of the values
of m. (We obtain the special case of functional dependency if we take the
equality relation for each of those orders.)

Definition 42. Let (G, M, W, I) be a complete many-valued context and let
<;n be an order relation on the set m((G) of the values of m for every attribute
meM. If X CM andY C M are sets of attributes, we call ¥ ordinally
dependent on .\ if the following holds for each pair of objects g, h € Gt

(vm,eX 771(9) Sm 777(11)) = (VTIGY n(g) S" n(h))
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Irrespective of which orders <,, we have chosen, ordinal dependency al-
ways implies functional dependency, since from m(g) = m(h) it follows that
m(g) <m m(h) as well as m(h) <, m(g), and vice versa. Thus, one would
expect that ordinal dependency is a kind of “order-preserving functional de-
pendency”. Intuitively, this is quite correct, but it is difficult to formulate,
since the condition of being order-preserving is only required for the tuples
(m(g) | m € X) that appear in the context. Not every map of this kind can
be extended to form an order-preserving map of WX to WY.

The ordinal dependencies (and as a special case within them the func-
tional dependencies) of many-valued contexts can be expressed elegantly by
implications of appropriate one-valued contexts. By means of the rule

(g.h)Ig m <= m(g) <, m(h),
we define a one-valued context
IK;@ = ((T‘ X G, M, I\Q:)

for a complete many-valued context (G, M,W,I) with orders <,, on the
values. For the functional dependencies the context can be simplified further:
It is possible to take advantage of the symmetry of the equality relation and
to define

Ky = (PBy(G), M, Iy)

by
{g;h} Iy m : <= m(g) = m(h).

Then,
PBy(G):={{g.h} |9, h € G, g # h}.

The contexts defined in this way exactly fit the above-mentioned defini-
tions of the dependencies and it is easy to prove the following proposition:

Proposition 28. In (G, M, W, 1) the attribute set Y is functionally depen-
dent on X if and only if the implication X — Y holds in the contert K. In
(Gy M, W, I) the attribute set Y is ordinally dependent on X if and only if
the implication X — Y holds in the context Kg. a

Hereby we have traced back the theory of functional and ordinal depen-
dencies completely to the theory of implications. In particular, the algorithm
mentioned in the previous section can also be used for the creation of a basis
for the functional or ordinal dependencies, respectively.

The translation works even if the many-valued context (G, M,W,I) is
not complete. In this connection, first of all we observe that ¥ is ordinally
dependent on X if and only if this is true for every single attribute in Y,
i.e., if {n} is ordinally dependent on .X' for every n € Y. This means that
it is sufficient to state in which cases a single attribute is dependent on an
attribute set. For the general case, this can be formulated as follows:
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Definition 43. Let (G, M,W,I) be a many-valued context with an order
relation <,, on the set m(() of values for each attribute me M. If X C M
is a set of attributes and n € M is an attribute, we say that n is ordinally
dependent on .\ if

Ymex dom(n) C dom(m)

and n(g) £ n(h) always implies that there exists an attribute m € X with

m(g) £ m(h). <&

In order to adapt Proposition 28, we have to modify the definitions of
the contexts Ky and K. We introduce a copy m for every attribute m € M
which is not complete. These new attributes have to be different from each
other and must not belong to M. We add the set

M = {m | dom(m) # G}

to the attribute set of the one-valued context. In the case of complete con-
texts, we have M = Q. in general

= (P, (G), M U M.I;) and Fp:=(GxG MU M. Iy),
with
{g,h} I m: <= (¢g.h) 1y m: <= g € dom(m) and h € dom(im)
and, as above,
(g- ) Lo m = <= m(g) <m m(h), {g.h}Inm: <= m(g) =m(h).
Proposition 28 can now be generalized as follows:

Proposition 29. The attribule n is functionally (resp. ordinally) dependent
on X if and only if the implications {n} U X — n and n — X hold in the
context Wy (or in the context g, respectively). a

Do the approaches presented above extend to notions of dependency other
than those of functional and ordinal dependency? For which cases is it possi-
ble to represent the dependencies of a many-valued context by means of the
implications of an appropriate one-valued context?

Up to now there is no definite answer to these questions. An obvious gen-
eralization can be obtained if we consider (complete) many-valued contexts
(G, M, W, I) with a given relation @,, on W for every attribute m € M. We
abbreviate the sequence of these relations by @ := (6,,, | m € M) and define
an attribute set ¥ C M to be ©-dependent on a set X' C M if the following
holds for each pair of objects g. h € G5

(Vmex m(g)@m(h)) = (Vney n(g)On(h)).

A possible interpretation of these kinds of dependency consists in viewing
the @,, as tolerances or fuzziness. Then, a @-dependency describes a “fuzzy
functional dependency™.
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Proposition 28 can be applied to this case without problems. The ©-
dependencies of (GG, M, W, I) are precisely the implications of the context

Ko := (G x G. M, Ip) with (9. M) le m <= m(g)Onm(h).

2.5 Hints and References

2.1 The algorithm in Theorem 5 has been taken from [56], see also [57].
Other algorithms were developed by Fay [53], Norris [131], Bordat [22]. For a
comparison see Guenoche [79]. Further developments can be found in Ganter
and Reuter [62], [59], Krolak Schwerdt, Orlik and Ganter [104]. With respect
to complexity see Skorsky [157]. A book by Vogt [180] describes a C++ class
library for Formal Concept Analysis.

Schiitt [154] gives an estimate of the number of concepts depending on
\]:

IB(G, M. D)< 22V 1 (for 1] > 2).

[S-R ]

2.2 The example of the waters from Figure 2.9 has been taken from the pa-
per [96] by Kipke and Wille. The automatic generation of diagrams has been
discussed in detail in the works of Skorsky, Luksch and Wille, see [157], [113]
and [204] but also Gepperth [69]. Besides, there are numerous implementa-
tions, the most widespread one is probably DiagraM for DOS by Frank Vogt.
ToscANA [101] is a commercially available program system which facilitates
and Improves the access to databases by means of elaborate nested line dia-
grams. See also [207], [208] as well as Kithn & Ries [105]. The geometrical
method has been described in [201] and in [171] and has been supported by a
program by Kark [93]. Skorsky [156] has examined the rule of parallelograms.
Other ways of representing contexts and concept lattices have been sug-
gested, which we shall not discuss here. See [201], Bokowski and Kollewe
[17], Kollewe [100], Lengnink [107], [108].
2.3 Implications and dependencies between attributes have already been ex-
amined in [191]. The implication base with the pseudo-intents was introduced
into Formal Concept Analysis by Duquenne and Guigues [74], [45], Theorem
8 has also been taken from their book. Similar questions have also been of
importance in the theory of relational databases. In this context see Maier
[121], Ch. 5. Further investigations can be found in Wild [187], [186], [188].
Proper premises were introduced in [64], see also Rusch and Wille [147].
An implication 4 — B only holds in a context if every object having all
the attributes from A also has all the attributes from B. Various authors have
tried to weaken this condition. Burmeister [24] describes implications in the
case of incomplete knowledge by means of a three-valued KLEENE-logic. This
has also been implemented in his afore-mentioned program CoNIMmPp. Luxen-
burger [117], [118], [119] examines partial implications, i.e., implications
which only hold for part of the object set.
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The results of Duquenne and (zuigues permit a more effective algorithmic
implementation of the attribute exploration process, which had already been
suggested earlier by Wille. This has been described in [56], [57]. A remarkably
early application of this technique was realized by Reeg and Weify [139]. In
the case of their investigation, the attribute set consisted of 50 common
properties of finite lattices.

Stumme [170] allows exceptions and background implications.

The method of attribute exploration has been further developed in differ-
ent ways (cf. [203]): On the one hand into concept exploration [198] (see
also Klotz and Mann [98]), which instead of attributes uses concepts. A spe-
cialization of concept exploration to the distributive case which has practical
applications to knowledge acquisition is presented by Stumme [169].

On the other hand, the attribute exploration can be developed into rule
exploration where the implications are replaced by Horn clauses from pred-
icate logic. This has been investigated by Zickwolff [219].

2.4 Most of the results of this section have been taken from [65]. A uniform
theory of the dependency of many-valued attributes has been sketched in
[200], compare also [64]. The @-dependencies can be looked up in Stéhr and
Wille [163]. Umbreit [176] furthermore examines implications and dependen-
cies between fuzzy attributes.



3. Parts and Factors

If one wishes to examine parts of a rather complex concept system, it seems
reasonable to exclude some objects and/or attributes from the examination.
We shall describe the effects of this procedure on the concept lattice. The
concept lattice of a subcontexrt always has an order-embedding into that of the
original context. Much more information can be obtained when dealing with
compatible subcontexts, which will be introduced later in this section. It is
easy to identify these particular subcontexts by means of the arrow relations.
Thus we obtain a factor lattice of the original concept lattice. The interrela-
tions between factor lattices, congruence relations and such subcontexts will
be described in the second section.

The complete sublattices of a concept lattice can also be described through
parts of the context, however not through subcontexts but through subrela-
tions of the incidence relation I, with the object and attribute sets fixed.
This kind of closed relations will be defined in the third section.

In the fourth section we shall introduce tolerance relations, i.e., general-
ized congruence relations which do not necessarily have to be transitive. It
turns out that it is possible to introduce a factor lattice even for tolerance re-
lations. Furthermore, a description within the context is possible: tolerances
correspond to certain supersets of the incidence relation I, namely the block
relations.

3.1 Subcontexts

Definition 44. If (G, M,I) is a context and if H C G and N C M, then
(H,N,INH x N) is called a subcontext of (G, M, I).! %

We open this section with the question of how the concept system of a
subcontext is related to that of (GG, M, I). If we merely leave out attributes,
Le., if for a set NV C M we consider the subcontext (G, N,I NG x N), the
modification remains transparent. Every attribute extent of (G, N, ING x N)
is also an attribute extent of (G, M, I) and, since every concept extent is the
intersection of attribute extents, we obtain:

! We write INH x N for IN(H x N) and instead of (H,N,INH x N)we sometimes
simply use (H, N).

B. Ganter et al., Formal Concept Analysis
© Springer-Verlag Berlin Heidelberg 1999



98 3. Parts and Factors

Proposition 30. If N C M, then every extent of (G,N,IN G x N) is an
extent of (G, M, I). O

This means that the omission of attributes is equivalent to a coarsening of
the closure system of the extents. The corresponding is true for the omission
of objects. At the same time we obtain a natural embedding of the concept
lattice of (G, N.I NG x N) into that of (G, M, I):

Proposition 31. For N C M, the map

BGNINGx N) — B(G,M,I)
(4,B) — (4,4

is a \-preserving order-embedding. Dually, for H C i, the map

BH M INHx M) — B(G,M,I)
(A,B) — (B.B)

is a \/-preserving order-embedding. O

Figure 3.1 A A-embedding of the concept lattice of a subcontext

An example is shown in Figure 3.1. If we combine the two parts of the
proposition, we obtain:

Proposition 32. If H C( and N C M. the map

BH,N.INH x N) — B(G,M,I)
(A4.B) = (47.4)

is an order-embedding. and so is the map

(4. B) = (B, B"). O
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These order-embeddings are bijective if (H,N,I N H x N) is a dense
subcontext, i.e., if yH is \/-dense and dually uN is A-dense in B(G, M, I.

If o : B(G, M. I) — V is an order-preserving mapping, then a := ¢ oy
and 3:=¢opare mapsa:G =V, 3: M — V with

gIm = ag < pm.

If, conversely, (v, 3) is a pair of maps satisfying this condition, then, for
instance, the map
(A B) = \[ ag

geA

is order-preserving. A useful special case is considered in the next proposition:

Proposition 33. An order-embedding of B(G, M, I) in a given complete lat-
tice V exists if and only if there are maps o : G =V, 3: M — V with

gIm = ag < pm.

Proof. If ¢ : B(G, M, I) = V is an order-embedding, then « := p oy and
3 := g o u have the properties specified. If, conversely, (a, B) is a pair of
maps with gIm <= ag < 3m, then the map ¢(A, B) := VgeA ayg is order-
preserving. We show that ¢ is, moreover, an order-embedding: If (A1, B1)
and (A, By) are concepts and if (A1, B1) £ (Az, By), then there exist an
object h € A; and an attribute n € By with (h,n) ¢ 1, i.e., ah £ Bn. On the
other hand, ag < 3n holds for all g € A3, and we have ah £ \/{ag | g € A2}
Consequently, ¢(A1, By) cannot be less than or equal to p(As, Ba). O

This means that the concept lattice of a subcontext is isomorphic to a
suborder of the entire concept lattice (which is not necessarily a sublattice).
The derivation operators with respect to a subcontext

(H,N.INH x N)

can be expressed in terms of those of (G, M,I): If A C H, then the set of
common attributes with respect to (H,N,I N H x N) is equal to A’ N N.
Dually, the extent of (H, N,I N H x N) belonging to a set B C N is equal
to B’ N H. However, the concepts of a subcontext cannot simply be derived
from those of (i, M, I) by restricting their extent and intent to a subcontext.
This can be done only for compatible subcontexts, which will be examined
next.

Definition 45. A subcontext (H, N,I N H x N) is called compatible if
the pair (AN H,BN N) is a concept of the subcontext for every concept
(A,B) e B(G, M, I). O

Restricting the concepts to a compatible subcontext yields a map between
the concept lattices. which necessarily has to be structure-preserving, as the
following proposition shows:
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I 44

X X
S x x % X
X X
X X X

Figure 3.2 Example of a compatible subcontext.

Proposition 34. A subcontext (H,N,INH x N) of (G, M, I) is compatible
if and only if

HgN(A,B):=(ANH,BNN) forall (A, B) € B(G, M, I)
defines a surjective complete homomorphism
Hyn:B(G,MI)—BH,NINHXN).

Proof. According to Definition 45, (H,N,INH x N) is compatible if and
only if Iy is a map. The fact that this map must necessarily be infimum-
preserving can be recognized by examining the extents: The map A = ANH
is evidently ()-preserving, and the infimum of concepts is defined in terms
of the intersection of their extents. (cf. Basic Theorem). Dually, we infer
that [Ty, n is supremum-preserving. The surjectivity can be seen as follows:
If (C," N N) is a concept of (H,N,IN H x N), then Iy N(C"C) =
(C"N H,C'"NN) is a concept with the same intent, i.e., the same concept.

O

If there is a surjective complete homomorphism from a complete lattice
V onto a complete lattice W, then W is sometimes also called a (complete)
homomorphic image of V. Thus, the above proposition says that the
concept lattice of a compatible subcontext of (G, M, I) is always a homomor-
phic image of B(G, M, I). For structure theory it is an important question
whether the converse is true as well, i.e., whether every homomorphic image
originates from a compatible subcontext. We shall defer this question until
Section 3.2.

How can we recognize compatible subcontexts? We first give a technical
condition, which is often used in proofs. For algorithms, however, the char-
acterization by means of the arrow relations is more appropriate. We shall
introduce it later on.

Proposition 35. (H.N,INH x N) is a compatible subcontext of (G, M, ),
if and only if:

al) for every object h € H and every attribute m € M with h4m, there is
some attribute n € N with h#n and m' C n’,

a?) for every attribute n € N and every object g € G with gfn, there is some
object h € H with h#n and ¢’ C I'.

Equivalent to these are the following conditions:
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bl) (ANN)YNHCA"” foral 4C(G.
b2) (BPNHYNNCB" forall BC M.

Proof. 1f (H,N,INH x N) is compatible and m € M, then (m'NH,m"NN)
has to be a concept of the subcontext. If, therefore, h € H is an object with
h#m, there must be an attribute n € m” NN with h#n. This is precisely
condition al). a2) follows dually.

Now if al) and a2) are satisfied, we show that bl) must hold: Assume
that A C G, h ¢ A”, h € H. Then there exists some m € A’ (i.e., m’ D A)
with A#m, i.e., by al) some n € A'NN with n’ D A and h¥n. Consequently,
h¢ (A NN) and thus (A'NN)Y NH C A”. b2) follows correspondingly.

It remains to be shown that (H, N.INH x N) is compatible if bl) and
b2) are satisfied. Let (A, B) be a concept of (G, M, I). Then (ANH)' NN D
A NN = BN N and, by applying b2), (ANH) NN = (BNH)YNN
C B"NN = BNN,ie., (ANH)YNN = BNN and dually ANH = (BNN)'NH.
Therefore, (AN H, BN N) is a concept of (H, N,IJNH x N). a

In the case of doubly founded contexts, the compatible subcontexts can
be easily identified by means of the arrow relations.

Definition 46. A subcontext (H,N,I N H x N) of a clarified context
(G, M, 1) is arrow-closed if the following holds: A 7 m and h € H together
imply m € N, and g/ n and n € N together imply g € H. <&

Proposition 36. Euvery compatible subcontext is arrow-closed.
Every arrow-closed subcontext of a doubly founded context is compatible.

Proof. 1f (H,N,INH x N) is compatible and h € H, m € M are such that
h /' m, then by 35.al) there is an attribute n € N with h#n and m’ C n'.
Because of h /'m, m’ is maximal with respect to h#m, i.e., m' = n', ie.,
m=n, ie,méeN. Dually, g, n and n € N yield g € H.

If, conversely. (H, N, INH x N) is an arrow-closed subcontext of a doubly
founded context, we can prove 35.al): Let h € H be an object and let m € M
be an attribute with i4m. By Definition 26 there exists an attribute n with
m' C n' and h /n, i.e., n € N, which was to be proved. 35.a2) follows
correspondingly. a

Thus, in the case of doubly founded contexts it is easy to determine the
compatible subcontexts. We enter the arrow relations / and / into the
context and examine the directed graph (G'U M, ~U,/). The compatible
subcontexts then correspond exactly to the arrow-closed components of the
directed graph. If we furthermore assume that (G, M, I) is reduced, we can
elegantly describe the arrow-closed subcontexts in terms of the concepts of a
context. For this purpose we need the transitive closure of the arrow relations,
as introduced in the following definition:

Definition 47. For g € (¢ and m € M we write g &/ m if there are objects
9 =91,92.--..9x € (G and attributes m,mq,...,my = m € M with g; / m;
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Figure 3.3 With reference to Proposition 37

for 7 € {1,..., k} and g; /mj_y for j € {2,...,k}. The complement (the

negation) of this relation is denoted by ¢, i.e., 9 ¥ m < not g o/ m. <

Proposition 37. Let (G, M,I) be a reduced doubly founded context. Then
(H,N.INH x N) is an arrow-closed subcontext if and only if (G\ H,N) is
a concept of the context (G, M, ).

Proof.  From the presuppositions doubly founded and reduced it follows by
Proposition 13 (p. 31) that for every object ¢ there is an attribute m with
¢/ m, and dually. First of all, let (H, N,I N H x N) be arrow-closed. If
g € H and ¢g /*m, then m € N must be true, i.e., ¢ € H holds if and only
if there is an n € N with ¢ /' n. Consequently, ¢ € G\ H if and only if
g X nforalln € N,ie, G\ H=N&. Now assume that m € M \ N
and g,/'m. g € H is impossible because (H, N,IN H x N) is arrow-closed.
Therefore, we get g € (+\ H, g ¢/ m and thus m ¢ (G'\ H)¥ . This shows

(G'\ H)% C N, which means that (G'\ H, N) is a concept of (G, M, X))
For the converse we assume that (G'\ H, V) is a concept of (G, M, ).
From g/ n and n € N it immediately follows that ¢ € H; if we have h 7m
and h € H, it remains to be proved that m € N. Assuming that m ¢ N,
there would be an object g € ((+\ H) with ¢ ' m, and because of h € H an
attribute n € N with h o n. Taken together, ¢ o/ m, h "m and h o/ n
vield ¢ o n, which is impossible. Thus, (H, N,IN H x N) is arrow-closed.
O

Proposition 38. Every compatible subcontext of a clarified (resp. reduced,
resp. doubly founded) context is clarified (resp. reduced, resp. doubly founded).

The arrow relations are inherited by compatible subcontexts, i.e., g,/ m
holds in (H,N,INH X N) if and only ifg € H, m € N and g/ m hold in
(G, M, 1), and the corresponding is true for 7.

Proof.  Several times in the proof we use the following argument: If hy, hy €
H are objects with 2/ NN C h, N N, then A} C hj. This follows from
Proposition 35: If m were an attribute with m € A} \ h}, we should obtain
by al) an attribute n € N N (h} \ k%), which in the case of NN C h4,N N
is impossible. (Of course, the corresponding applies to the attributes.) This
immediately yields the first assertion: Ay NN = hl, N N implies k| = h, i.e.,
objects with the same object intents in the subcontext have the same object
intents in general.
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If h € H is irreducible in ((/, M, I), then there exists an attribute m with
h+m and gIm for every ¢ € G with ¢’ D h’. By 3h.al) we find an n € N with
h#n and n’ D m’. i.e., with gIn for all ¢ € (¢ with ¢ O h’ and particularly
gIn for all g € H with ¢' NN D h'NN. Together with the dual consideration
this shows that a compatible subcontext of a reduced context is reduced as
well.

Now concerning the arrows: First of all we assume that h € H andne N
and that h/n in (G, M,I). Then h' is maximal with respect to n ¢ h'.
According to our previous considerations, in this case A’ NN is maximal with
respect to n ¢ A’ N N. This means that i/ n also holds in (H, N,INH x N).
Thus, all arrows from ((7, M, I) are being preserved in (H, N,I N H x N).

[s it possible, conversely, to infer hy/n in (G, M,I) from h /' n in
(H,N,INH x N)? If not, there would have to be an object ¢ € G with
g¥n and ¢’ O h’' and furthermore by Proposition 35.a2) an object hy € H
with hy#n and kY D ¢', from which would follow hy D h' and ho#n (the fact
that h5NN = h'NN is impossible, again follows from our first consideration).
Thus, b’ would not be maximal among the extents of (H, N, INH x N) which
do not contain n, in contradiction to the precondition i,/ n.

We are still lacking the proof that the property of being doubly founded
is inherited by compatible subcontexts. Thus, assume that h € H,n € N and
hin. If (G, M, I) is doubly founded there is an attribute m € M with A /'m
and n’ C m’. We apply Proposition 35.al) and obtain an attribute ny € N
with h#ny and m’ C nly. It follows that m’ = n!, and thus that h /7 ny, which
according to what we have just proved transfers to (H, N, INH x N). One of
the conditions of doubly foundedness is proved thereby, the other one follows
dually. O

We should also mention that dense subcontexts are always compatible:

Proposition 39. For a subcontexrt (H,N,INH x N) of (G,M,I) the fol-
lowing statements are equivalent:

1. (HN,INH x N) is dense.
2. (H,N,INH x N) is compatible and the map Il g N is injective.
3. for every concept (A, B) of (G, M, 1),

(ANH)Y" =4 and (BNN)" = B.

Proof. 1)< 3): (H.N,INH x N) is dense if and only if both, for every
object g € (i there is a subset X C H with yg =/ .y vz, i.e.,, with ¢’ = X'
and thus ¢ € X". and the dual condition holds for the attributes. Because
of vy < g for all 2 € X we have X C ¢" and thus the condition from 3) for
the case A = ¢”. The more general condition follows without difficulty.

3) =2): In order to show that (H,N,I N H x N) is compatible, we prove
the conditions b) from Proposition 35: If A C &, then A’ is an intent and
on account of 3) it satisfies (A’ N N)” = 4’, which yields (A’ N N) = A"
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and thus bl). b2) is dual. The injectivity of I y immediately follows from
(ANH)" = A

2) = 3): If Iy n is injective and (A, B) is a concept of (G, M,I), then
(AN H)" = A must hold, otherwise (4 N H)"” and A would be different
extents having the same intersection with H. O

3.2 Complete Congruences

In the preceding section we have seen that, for a compatible subcontext
(H,N,INH x N) of (G,M,I), the map Ilg y is a surjective complete ho-
momorphism of B(G. M, I) onto B(H, N, INH x N), i.e., that the concept
lattice of the subcontext is always a homomorphic image of B(G', M, I). We
shall now examine whether the converse is true as well, i.e., whether every
surjective complete homomorphism, every homomorphic image can be de-
scribed in terms of a subcontext. In the case of finite contexts this is true,
in the case of infinite contexts not in general. In order to clarify the situ-
ation, we require a notion from lattice theory, namely that of the complete
congruence relation.

Definition 48. A complete congruence relation of a complete lattice V
is an equivalence relation © on V satisfying:

2Oy for t € T= (\ 2)O( A v) and (\/ z)O(\/ ve).

teT teT teT teT

We define
[r]@ :={y eV | 2Oy},

which is the equivalence class of @ containing r. The factor lattice
VO ={z]0|reV}
has the order
[(£]0 < [y|O = rO(xrAy) (& (zVy)Oy).

In order to demonstrate that this is really an order relation we can, for
instance, argue as follows: If we define

re = /\{y EV |yOx} = /\[r]@

and ¢ = V{y €V |yOuz} = V[l]@

for © € V, this immediately yields [z]@ = [z0,2°] and [z]0 < [y)O &
to < yo & ¢9 < y®. Thus, the congruence classes, i.c., the classes of
a congruence relation, are intervals. They are ordered according to their
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smallest, or, which is the same. according to their largest elements. We infer

that
/\[13]@ = /\ Iy V Ly

terl teT teT

6 and \/ [21]@ = 6.

teT

Figure 3.4 Congruence and factor lattice

If in the following we speak of congruence relations or congruences, we
mean complete congruence relations. The significance of the congruences
for the problem we are concerned with is revealed by the following Homo-
morphism Theorem. It asserts among other things that every homomorphic
image of a complete lattice can be found within the lattice itself, namely as
a factor lattice.

Theorem 9. (Homomorphism Theorem) If © is a complete congruence
relation of a complete lattice V', then x — [2]0 is a complete homomorphism
of V onto V/O. If, conversely, ¢ : Vi — V5 is a surjective complete
homomorphism between complete lattices, then

ker o= {(x,y) € Vi x V1 | p(z) = p(y)}
is a complete congruence relation of Vi besides,
[z] ker ¢ — ()
describes an isomorphism of Vi /ker ¢ onto V;.

Proof.  'The homomorphism properties of the map = + [2]@ have been
proved above. ker ¢ is evidently an equivalence relation. Moreover,

(ri,yr) Ekerpforallt el & ole) =¢(y) forallteT

- ;(/\.c,) = N\ elar)

terT teT
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= Aelw=¢ (/\ yf)

teT teT

the \/-compatibility follows by analogy. ([z]ker @) — ¢(x) describes a bijec-
tion which evidently satisfies the conditions for homomorphisms. O

The map x — [2]O is occasionally denoted by 7g and is called canonical
projection onto the factor lattice.

We shall supply one further result from lattice theory, which we shall need
later on. It describes which equivalence relations are congruences in a given
lattice.

Theorem 10 (Characterization of Complete Congruence Relations).
An equivalence relation @ on a complete lattice V is a complete congruence
relation of V' if and only if every equivalence class of © is an interval of V
(we then assume that [2]O© =: [ze, I(')] for all 2 € V'), the lower bounds of
these intervals being closed under suprema (i.e., \/,cp ¥ = yo ) and the up-
per bounds of these intervals being closed under infima (i.e., A cp 9 =29).

Proof. Let @ be a complete congruence relation of V. Then for x € V,
zo = N\[]@ and 2 := \/[]O are elements of [z]0. If zo < y < 2, from
yOy and 2oO@r® it follows that

y=(reoVy)O® vy =z°

and thus y € [£]@. This means that [¢]0 = [2e,2®]. The maps z = zo and
z — ¢ form a Galois-connection between V and V¥, since < y = zo <
Yo, r >y =22 >y r < (r0)? r> (2%)e. By Proposition 7 it follows
that 2 — 2 is a \/-homomorphism and x — 2? is a A-homomorphism of V
in itself. In particular \/,cp 2l = (Vier 2') g and Ayep 20 = (Arer ;r,k)@
which was to be proved. Conversely, we assume that @ is an equivalence
relation on V the equivalence classes of which are intervals with supremum-
dense lower bounds and infimum-dense upper bounds. Assume that 2,60y,
for t € T. Then (z1)e = (y)o and (1) = (y)® for t € T. Consequently,

\/(l’t)é) < \/ Ty, v Y < \/(l‘z)q

teT teT teT teT

Y

Since, in general, a < b implies a® < b® (because a < b yields a < a® Ab® <
a® and thus, since a® A b® is an upper interval bound, a® A b° = %),
from (zy)o < V,cp(2t)o for every s € T" we furthermore obtain (2)® =

(20)0)® < (Vier(2)0)® and thus \,cp(20)® < (Ve (20)e)” . Therefore:
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Voo we {V(J't)éﬁ(\/(rt)@)@} :

teT teT teT teT

i.e., (Vier ) ©(Vier ve). Dually, we can show the /\-compatibility of ©,
whereby we have proved that @ is a complete congruence relation.
O

In the light of the Homomorphism Theorem our question “What is
the connection between the compatible subcontexts and the congruences?”
comes up again. From the Homomorphism Theorem it immediately follows
that the concept lattice of a compatible subcontext (H,N,I N H x N) of
(G, M, I) is always isomorphic to a factor lattice of B(G, M, I): (H,N,InN
H x N) induces a complete congruence @y n on B(G, M, I), namely the
kernel of the complete homomorphism Il g n, and we get

B(H.N, IO H x N) = B(G, M, 1)/Op.x
with
(Al.Bl)@HlN(Ag, Bg) SANH=4nNnH<& B NN=B;nNN.

It is easy to identify the smallest and the largest elements of the congruence
classes. If (A4, B) is a concept, the smallest element of the congruence class
[(A, B)]@g, ~ is the concept ((ANH)", (ANH)") and the largest is the concept
(BNN)Y,(BNN)".

We say that a complete congruence @ is induced by a subcontext if
there is a compatible subcontext (H, N, INH x N) with ©® = @ y. Using
the connection between compatible subcontexts and congruences, we shall
prove the following: in the case of a doubly founded concept lattice every
congruence is induced by a subcontext. Provided that the context is reduced,
this subcontext is uniquely determined by the congruence. These restricting
preconditions are not superfluous, i.e., the general theory is somewhat more
complicated.

First, we shall examine the problem of uniqueness. A congruence can be
induced by various subcontexts. These, however, only differ in their reducible
objects and attributes. Among all the possible subcontexts there is always a
largest one.

Proposition 40. If a complete congruence O is induced by a subcontext
(H,N,INH x N). then

H C G :={g € (i |vg is the smallest element of a O-class} and

N C Mg :={m € M | pum is the largest element of a O-class}.

In this case, @ is also induced by the compatible subcontext

((;(-). A”(-). In (}'(.) X J[(—)).
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Proof. 1f © is the congruence induced by (H,N,INH xN) (i.e., ® = Oy n),
then according to the above-mentioned description of the smallest elements
of the @y n-classes we have:

g € Go & there is X C H with X' =¢.

This immediately yields H C GGg and dually N C Me.

Why is (Ge. Me, I NGe x Me) compatible? We use Proposition 35 and
prove condition al): If ¢ € Ge and m € M with g#m, then there is a set
X C H with ¢’ = X', i.e., in particular some h € H with h#m and ¢’ C h’.
Since (H,N,INH x N) is compatible, there is an attribute n € N with hfn
and m’ C n/. This means that g#n, n € N C Mg and m’ C n’ hold as well.
Thus, condition al) is satisfied, and a2) can be shown dually.

Finally, it remains to be proved that (Go, Me,I N Ge x Me) induces
the same congruence as (H, N,I N H x N). In order to do so, it suffices to
show that from (Aq, B1)©(As, B2) it always follows that A1 NGe = A2NGe;
the converse implication immediately follows from H C Gg and N C M.
We assume that ¢ € 43 N G'e. Then there is some X C H with X' = ¢/,
consequently X D B; and therefore X" C Ay, from which it follows that
X=XNHCA NH=4,NH and thus g € A,. O

Hence, it is possible to “saturate” a compatible subcontext by adding
reducible ohjects and attributes, without changing the corresponding con-
gruence.

Definition 49. A subcontext (H, N,INH x N) of (G, M, 1) is called sat-
urated if:

from g € G,X C H and X’ = ¢’ it follows that ¢ € H and

from m € M,Y C N and Y’ = m’ it follows that m € N. &

The preceding proposition together with this definition immediately
yields:

Proposition 41. If a congruence @ is induced by some subcontext, then it
is also induced by a saturated subcontert, which is then equal to

(Go, Mo, INGeo x JVI(-)),
In a reduced context every subcontext is saturated. a

Now we turn to the second part of the question: Which congruences
are induced by subcontexts? On account of the propositions we know that
H = Gg and N = Mg can be chosen, if @ is at all induced by a subcontext.
It is easy to state congruences which do not have this form, these examples are
however infinite. The following propositions provide an exact clarification.
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Proposition 42. 4 complete congruence relation @ is induced by a subcon-
text if and only if {[yh]® | h € G} is supremum-dense and {{un]@ | n €
Mo} is infimum-dense in B(G, M, 1)/6O.

Proof. 1f @ is induced by a subcontext, then
BH,N.INHxXxN)=B(G,M,I)/0,

and the isomorphism (A, B) — [(4, B)]® maps the supremum-dense set
{yh | h € H} onto {[yh]@ | h € H}, i.e., this set is supremum-dense in
B(G,M,1)/0, and dually {[un]@ | n € N} is infinum-dense. Because of
H C Gg and N C Mp thus the direction “=" of the assertion follows.

We begin the proof of the other direction by showing that (Gg, Me,IN
Ge X Mg) is compatible under the conditions specified. Assume that h € Gg
and that m € M with hfm. Then [vh]® £ [um]©@ and, since {[un]@ | n €
Mo} is infimum-dense in B(G, M, 1)/O, there is some n € Mg \ h' with
un > pm, ie., n’ D m’. This yields 35.al) and dually 35.a2).

In order to show that @ is induced by (Ge, Mo, N Ge X Mg), we have to
prove that
(A.B)OC, D) ANGe =CNGe

for (4, B),(C, D) € B(G, M, I). Let (A, B) be the smallest concept in the
O-class containing (A, B). For h € (G we have vh < (A4, B) < vh < (4, B),
since yh also is the smallest element of a ©-class, and (4, B) = \/{vh | h €
ANGe} because {[vh]@ | h € G} is supremum-dense. (A, B) and (C, D)
are congruent if and only if the classes [(A, B)]© and [(C, D)]© have the same
smallest element, l.e.,if ANGo = (' NGe. ]

If [v]© is \/-irreducible in B(G, M,I)/O, then the smallest element of
the congruence class [v]® must also be \/-irreducible and thus must be an
object concept vg with ¢ € GGo. Hence, the set {[yh]© | h € G} contains
all \/-irreducible elements, and likewise {[un]@ | n € Mg} contains all A-
irreducible elements of B((G, M,1)/@. Thus, from Proposition 42 we can
infer:

Proposition 43. If B(G, M, 1)/0 is doubly founded, then @ is induced by
a subconteuxt. O

If we only regard the concept lattice up to isomorphism, every congruence
is induced by a subcontext of an appropriate context: Every complete lattice
V can be represented as a concept lattice B(V, V, <); by Proposition 42, in
this representation every complete congruence is induced by a subcontext. In
the case of doubly founded contexts we can go even further. For this purpose
we first of all transfer Proposition 3%:

Proposition 44. Fvery factor lattice of a doubly founded complete lattice is
doubly founded.
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Proof.  Let [x]® < [y]© be two elements of B(G, M,[)/O and assume
w.l.o.g. that x is the largest and y the smallest element of its class, i.e., that
v = \[2]® and y = Ay]©. Hence, in the doubly founded concept lattice
B(G, M, I) we find an element s that is minimal with respect to s < y,
s £ v Ay. We claim that [s]@ has the corresponding property of minimality
with respect to [x]@ < [y]@. It is certain that [s]@ < [y]@. On the other
hand [s]@ < [r]@ is impossible, since it would yield s V € [x]@ and thus
sV x < r. Consequently, we have [s]© < [y]@, [s]® £ []@ and shall prove
the minimality: If [1])© < [s]@, r = A[r]@ being the smallest element of its
class, then r < s and, because of the property of minimality of 5, » < x and
hence [r]@ < [x]©@. The second condition is proved dually. ]

If we combine Propositions 43 and 44, we obtain:

Theorem 11. IfB(G, M, 1) is doubly founded, then every complete congru-
ence relation is induced by a subconteuxt. O

At the end of this section, we shall use the above results in order to
analyze the system of all complete congruence relations of a concept lattice
V. This set of congruences is ordered by set inclusion C; it even forms a
closure system on V' x V' and thus a complete lattice, the lattice (V') of
the complete congruence relations of V.

If we suppose that V' is doubly founded, then we may assume that V'
is the concept lattice of a reduced, doubly founded context (G, M, I). This
yields the following simplifications: Every compatible subcontext of a re-
duced context is saturated (cf. Definition 41), the compatible subcontexts are
precisely the arrow-closed subcontexts (Proposition 36), and every complete
congruence is induced by a subcontext (Theorem 11). Thus, in this case the
arrow-closed subcontexts correspond bijectively to the complete congruences.

The order of the congruence relations is also reflected by the subcontexts:
If ® and ¥ are two congruences of V', then

OCVY & (4, BYo(C,. D)= (A, B)¥(C, D)
for all (4.B).((,D) eV
& ANGe=CNGe = ANGy = C NGy and
BNMe=DNMe=BNMy=DNMy
for all (A4, B),((,D) eV
& Gy C Gp and My C M.
Hence, if we order the subcontexis by

(Hi. N, INnH; x Ny) < (Hz,i\yg.l N Hy x Ny)

& Hy C Hy and Ny C Ny,

under the preconditions specified, the ordered set of the arrow-closed sub-
context is dually isomorphic to the lattice of complete congruences. Now,
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however, the union as well as the intersection of arrow-closed subcontexts
are arrow-closed too. Therefore, the lattice of arrow-closed subcontexts is
completely distributive. Thus, Proposition 37 makes it easy to state a con-
text for the congruence lattice as well.

Theorem 12. The congruence lattice of a doubly founded concept lattice
B(G, M, 1) is isomorphic to the completely distributive lattice B(G, M, ¥).

Proof. If (G, M,I) is reduced, then every congruence is induced by exactly
one subcontext (H, N,IN H x N). Furthermore we know by Proposition 37
that those subcontexts correspond to the concepts of (G, M, ¥): (H,N,IN
H x N) induces a congruence if and only if (G'\ H, N) is such a concept.

The order of those subcontexts is dual to that of the concepts of
(G, M, %) as well as to that of the congruences. This means that the latter
two must be isomorphic to each other.

For the structure of B(G, M, ). however, it is irrelevant whether
(G, M,I) is reduced, provided that B(G, M,I) is doubly founded. In this
case, we can switch to the reduced context (G, Mipe, I N Gipe X Mipy) with
Girr and Mj; being the set of irreducible objects and attributes, respectively.
The -relation is inherited by this subcontext, since in Definition 47, apart
from ¢ and m, there only appear irreducible objects and attributes. There-
fore, B(G, M, %) and B(Gir, Mip, ) are isomorphic, every concept of

(G, M, ) is of the form <((}'\(}'in) UABUAZ N (M \ M-m))), (4, B)
being a concept of (Gipry Mirr, Y- ]

Figure 3.5 The congruence lattice of the lattice from Figure 3.4 is at the same
time the lattice of arrow-closed subcontexts of Figure 3.3. The marked element
corresponds to the congruence from Figure 3.4 and the compatible subcontext in
Definition 45.
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3.3 Closed Subrelations

Definition 50. A relation J C [ is called a closed relation of the con-
text (G, M, I) if every concept of the context (G, M, J) is also a concept of
(G, M, 1), &

Theorem 13. If J is a closed relation of (G, M, 1), then B(G, M, J) is a
complete sublattice of B(G, M, I) with J = J{Ax B | (A, B) € B(G, M, J)}.
Conversely, for every complete sublattice U of B(G, M, I) the relation

Ji=|J{Ax B| (A B) €U}

is closed and B(G, M, J) = U.

Proof. Let J be a closed relation of (G, M, I). According to the definition,
B(G, M, J) is a subset of B(G, M, I) containing (M1, M) = (M”, M) as well
as (G, G') = (G.G7)%. The characterization of the suprema and infima in the
Basic Theorem shows that B(G, M, J) is a complete sublattice of B(G, M, I).
The relation J = [J{4 x B | (4. B) € B(G. M, J)} holds for every context
(G, M, J).

Now, conversely, let. 7 be a complete sublattice and

J=J{AxB (4, B)eU}.

We have to show that J is a closed relation with {7 = B(G, M, J). 1t is evident
that 7 C B(G, M, J). Thus, it remains to be shown that every concept of
(G, M, J) belongs to 7. We first prove this for the object concepts: Assume
that g € G and D:= ({4 | (4,B) € U.g € 4}. D is an extent of (G, M, J),
and consequently g7/ C D. For every attribute m € g’ there exists a concept
(A,B) € U with (¢9.m) € 4 x B and because of D C A it follows that
m € D’. Therefore, ¢/ = D’ and ¢’/ = D. This shows that for every
g € G the concept (¢77,¢”7) belongs to 7. Every concept of B(G, M, J) is
however the supremum of such object concepts, thus U D B(G, M, J), which
remained to be proved. a

This means that the closed relations are in a one-to-one correspondence
to the complete sublattices. The map

C(l'):=J{ax B|(4,B) €U}

maps the set of complete sublattices bijectively onto the map of closed rela-
tions of B(G, M, I). It is furthermore order-preserving, Uy C Uy & J; C Js.
However, C is neither U nor ﬂfpreserviug. The intersection of closed rela-
tions does not necessarily have to be closed, the closed relations in general

2 In conformity with Definition 17 (p. 13) we write X! or X7 instead of X, in
order to make clear when we are referring to the context (G, M, 1) orto (G, M, J),
respectively.
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do not form a closure system. This is surprising in so far as the family of
complete sublattices does form a closure system: for every subset T of a com-
plete lattice, the intersection of all lattices containing 7' is also a sublattice
(namely the complete sublattice generated by T').

If ¥ is a family of closed relations and D := (] J, then there is, nonetheless,
always a largest closed relation in D, namely

J = U{A X B | (A, B) concept, A x B C D}.

This is easily seen if we consider the following: If (A4, B) is a concept of
(G,M,I) and J is a closed relation with A x B C J, then (4, B) is also a
concept of (GG, M, J). Thus, the concepts (A, B) with Ax B C D are precisely
those which are contained in each of the sublattices B (G, M, L), L € §. This
means that they form precisely the intersection of those sublattices, i.e., they
themselves are a complete sublattice. These considerations yield the following
proposition:

Proposition 45. For cvery set T C B(G, M, I) of concepts, there is a small-
est closed relation J of (G, M, I) containing all sets A x B with (A,B) € T.
B(G, M, J) is the complete sublattice of B(G, M, I) generated by T. O

Figure 3.6 Example of a closed relation in a context, from [60].

How can we recognize whether a relation is closed? A first clue is provided
by the next proposition.

Proposition 46. A subrelation J C I is closed if and only if
X7 5 I
holds for each subset X C (¢ and for each subset X C M.

Proof. (X77,X7)is a concept of (. M, I), if and only if X/’ = X/! and
X771 = X7, If we set ¥ := X7 the second condition can be rewritten as
Y71 = ¥77 because of X = X777, However, the inclusion Y77 C Yy 7!
holds for every subrelation. D
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Figure 3.7 Diagram of the concept lattice for the context from Figure 3.6. The
sublattice consisting of the blackened elements belongs to the above-mentioned
closed relation.

The following characterization is somewhat more ambitious:

Proposition 47. The closed relations of a context (G, M,I) are precisely
those subrelations J C I which satisfy the following condition:

(C) (g,m) € I\ J implies (h,m) & I for some h € G with g7 C k7 as well
as (g,n) ¢ I for some n € M with m” Cn’.

Proof.  Let J be a closed relation of (GG, M, I) and assume that (g, m) € I'\J.
(977,9”7) is a concept of (G, M,I), i.e., ¢/ = ¢g’/71. Since m ¢ g”, there is
some h € ¢’/ with m € h!, i.e., with (h,m) € I and g’ C h”’. The second
part of (C) follows dually.

Conversely, let J C I be a relation satisfying (C) and let (A, B) be a
concept of (G, M, .J). We have to show that (A, B) is a concept of (G, M, I),
ie, that A = B! and B = Al. B C Al is trivial, we show B D Al
If we assume that there is an attribute m € A! which is not an element
of B = A7, then there should be an object g € A with (g,m) ¢ J but
(9.m) € 1. By means of condition (C) we should find some h € G with
m & hi and k7 D ¢/ D B. Because of h7 D B, however, in this case we
should obtain » € 4 which would contradict m € A'. A = B! is proved
dually, i.e., J is closed. m]

Proposition 48. If.J is a closed relation and
(H,N,INH x N)

is a compatible subcontext of (G, M, 1), then JN H x N is a closed relation
of (HN,INH x N) and (H,N,J N H x N) is a compatible subcontext of
(G, M, J).
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Proof. 1f (A, B) is a concept of (G, M, 1), then (AN H, BN N) is a concept
of (H,N,IN H x N). This holds in particular for the concepts of (G, M, J),
in which case (4 N H, BN N) is even a concept of (H,N,JN H x N). Each
concept of (H, N,J N H x N) originates in this way, i.e., JN H x N is closed
and (H,N,J N H x N) is compatible. O

The proposition has the following background: A homomorphism maps
sublattices onto sublattices. If (H, N,INH x N) is a compatible subcontext
and J is a closed relation, then Il x maps the sublattice B(G, M, J) onto
the sublattice B(H,N,J N H x N).

Proposition 48 contains as a special case the statement that a closed rela-
tion remains closed if we omit reducible objects and attributes. By Proposi-
tion 38, a dense subcontext is always compatible. In the following proposition
we establish a connection between closed relations and the arrow relations.
First, we shall explain an abbreviation used in this connection:

U= A(gom) | g/ moryg /im}.

In the following proposition this refers to the arrow relations in the context

(G, M, J):

Proposition 49. Let (G, M, J) be a doubly founded clarified context. Then
the following statement holds: J is a closed relation of (G, M, I) if and only
if

JCICGx M\ (LU.

Proof. I J is a closed relation of (G, M,I) and (g,m) € I\ J, then
by Proposition 47 there exists some h with (h,m) ¢ J and ¢/ C b7, i.e.,
¢’ C b’ and thus (g,m) ¢ /.

If, on the other hand, J C T C G x M\ (U ), then, according to
Proposition 46, it suffices to show for given X C G (and dually for X C M)
that X7/ D X7, Hence, assume that X Cd, B = X7 and g € B, If
we had ¢ ¢ B”, then there would be an attribute m € B with (g,m) ¢ J
and furthermore, on account of the doubly-foundedness, an attribute n with
g /'n and n/ D m’, i.e., in particular n € B and consequently (g,n) € I, in
contradiction to ¢ /' n. o

Full rows and full columns of a context belong to every closed relation
and it is sometimes awkward to have to carry them along. For simplification
purposes, we therefore occasionally use the notation

D=M xMUGxG.

The relation [J consists precisely of the trivial incidences in I. In the following
proposition we simply assume that [ = @ and give some simple examples of
closed relations.
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Figure 3.8 With reference to Proposition 51: Between (B',B) and (C,C") lie
precisely the concepts of the context (C,B,INC x B).

Proposition 50. If (A, B) and (C', D) are concepts of a contexrt (G, M,I)
with G' = O = M', then

INAxM, INGxD, IN(AxMUGx D)

and, if (A, B) < (C, D), even INC' x B are closed relations with
BG M INAx M)={(G,0)}U B)]

B(G, M, ING x D)={(0,M)}U [ Dy)

B(G, M, IN(A X MU(vxD)) (( B)lU[(C, D))

B(G M, INC x B)={(0,M), }U[A B), (C, D)].

Proof. Tt suffices to undertake the proof for J := I'N (' x B. It is clear that
(G,0) and (@, M) are concepts of B(G, M,J). Furthermore every concept
(X,Y) € B(G. M, I) with (4,B) < (X,Y) < (C,D) is also a concept of
(G, M, J), since X xY CIN ('x B C.J. Hence, assume that (X,Y) €
B(G, M, J). Wemay assume that X C ('and Y C B. Because of AXB C J,

Y C B immediately yields A = B7 CY’ = X, ie, A C X and thus
X' C AT = B. With X/ = XInB it follow> that AI = X7, Dually, we
recognize that Y/ =Y/ i.e., that (X,Y) € B(G, M, I). a

As an immediate consequence we obtain:

Proposition 51. If (A, B) and (', D) are concepts of ((, M, I) with (A, B)
<(C, D), then

[(A,B).(C.D)] = B(C,B,INC x B). 0

Example 7. We demonstrate this proposition by means of the concepts vb
and pc in the context from Figure 3.6. We have
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75 = (5".57) = ({59} {c.d.e, fLg}).
pe = (') = (G\ {8} {c}).

~ R

According to the proposition, [v5, puc] = B(C, B,INC' x B) with

o= {1,2,3.4,5,6,7,9,10}
and B = {e,dye, f g}
It turns out that in this subcontext the objects 1, 2, 3, 5, 9 and 10 as well as

the attribute ¢ are reducible. The reduced context is presented in Figure 3.9
together with its concept lattice. It is an interval in the center of Figure 3.7.

Figure 3.9 The concept lattice of this subcontext is isomorphic to an interval.

We give two further examples of closed relations:
If I' is a group of automorphisms of the context (G, M, I), i.e., of pairs of
maps («, 3) with

a:G—=0G, 3 M- M, glm <= o(g)IB(m),
then we obtain a closed relation Ir by means of the definition

(gom)yelp <= gls(m) forall (o,3) €T
(<= «alg)Im forall («,3) € I'),

as can be easily proved. The corresponding sublattice B((, M, Ir) consists
precisely of those concepts (A4, B) of ((, M, I) which are invariant under I,
i.e., for which holds

(ad,8B) = (A, B) forall (a,5) €1

It may happen that a closed relation differs very little from the incidence
relation I, in the extreme case only by one “cross”. This case corresponds
to the dismantling of doubly irreducible elements. Therefore, we shall give a
short description, only sketching the order-theoretic results and referring to
the corresponding literature for the proofs.
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An element « of an ordered set shall be called doubly irreducible if «
has exactly one lower neighbour «. and exactly one upper neighbour a* and
furthermore the conditions

r<a=>r<da, r>a=>r>dad

(which are dispensable in the finite) are satisfied. According to Proposition
2 (p. 7), in a complete lattice the doubly irreducible elements are precisely
those which are \/-irreducible as well as A-irreducible.

We talk about the dismantling of a doubly irreducible element a in an
ordered set (P, <) if we mean the transition from (P, <) to the ordered set

(P\{a}. (P\{a})’n ).

In the following we shall write (P \ {a}, <) for this ordered set .

If we dismantle a doubly irreducible element a of a complete lattice V,
then we obtain a complete sublattice V' \ {a}. Obviously, the property of
being doubly irreducible is also necessary for this purpose. We get a further
converse:

Proposition 52. If a is a doubly irreducible element of (P,<), then
(P\ {a},<) is a complete lattice if and only if (P, <) is a complete lattice. O

We omit the (easy) proof and point to an application instead: If we want
to determine whether a given ordered set (P, <) is a complete lattice, we can
first remove doubly irreducible elements and then examine the remaining
structure. If (P, <) is finite we can gradually dismantle all doubly irreducible
elements until there finally remains a DI-kernel without doubly irreducible
elements.

It can be shown by means of a simple argument that the DI-kernel is
unique, i.e., that it does not depend on the order in which the doubly irre-
ducible elements are being dismantled.

Dismantling an element corresponds to cancelling a cross in the context:

Proposition 53. If a = v¢ = pum is a doubly irreducible concept of a clari-
fied context (G, M, I), then

B(G M, 1)\ {a} = B(G, M, I\ {(g,m)}).

Proof.  We have already noted that B(G, M, I)\{a} is a complete sublattice.
By Theorem 13 the corresponding closed relation is given by

J:=|J{A x B | (A, B) # a}.

Now, if (h,n) € I is an arbitrary incident object-attribute pair, then (h,n) €
h" x h" and (h,n) € n’ x n”. Hence, from (h,n) ¢ J it follows that (h", h') =
a= (n',n"), i.e., (since (G, M, 1) is clarified) h = g and n = m. 0
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3.4 Block Relations and Tolerances

Definition 51. Let V be a complete lattice. A complete tolerance re-
lation on V is a relation @ C V x V which is reflexive, symmetric and
compatible with suprema and infima, i.e., for which holds

2Oy fort e T = (/\ ;L‘t)(‘)(/\ y¢) and (V It)(')(v Yt )-

teT teT teT teT

Hence, a complete tolerance relation is a congruence relation if it is transitive.

&

Figure 3.10 The pairs which are linked together in the figure on the right (including
the pairs of neighbouring elements) form part of a tolerance relation of the lattice
on the left.

Proposition 54. If @ is a complete tolerance relation on V', then it follows
alone from a®@b and x,y € [a Ab,aV b] that zOy.

Proof.  From a@b and aBa it follows that a@a A b and correspondingly
bOa A b. This yields aAb @ aVb. It follows that zV (a Ab) O zV (aVb), i.e.,
£@(a V b) and correspondingly (a V b)@y. Because of 2,y < a V b we obtain
rOy. a
Definition 52. If @ is a complete tolerance relation and a € V, we define

ag := /\{1 €V |aOz} and a® := V{;c €V |aOz}.

The intervals [a]o := [ag, (a9)?], (a € V) are called the blocks of @. <
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Figure 3.11 The blocks of the tolerance relation from Figure 3.10.

ae is the smallest (and dually a® is the lalgebt) element related with a
under @ . The dual deﬁmtwn [a]? := [(a®)e,a®] also yields the blocks of
@: Because of ((¢e)®)o = ao and ((a ))O)O = a® we obtain [ale = [a()]o
as well as [a]® = [a®]o. From a@b and a < b it follows that bo < a < b,
Le., a € [blg. Correspondingly, from a@b and a > b it always follows that
a € [b]®. The blocks of a tolerance relation do not have to be disjoint, unless
we are dealing with a congruence relation. We have

[dlo N[blo # O <= ao < (ho)® and b < (ap)?

Proposition 55. The blocks of @ are precisely the marimal subsets X of V.
with x@y for all v,y € X.

Proof.  Because of Proposition 54 we have x@y for all z,y € [a]o. Now
if = is an arbitrary element with :0a and :Qag, we obtain z > aeg and
< (ap)?, ie., € [a]o. Hence. every block is maximal with regard to
the property specified. If X is an arbitrary maximal set of elements of V.
which are pairwise related under ©, then from the compatibility it follows
that A X and \/.X are elements of .X. Hence, because of the maximality,
X=[AX.VX]and (AX)? =V X.(VX)o =AX,ie.X isablock of ©.

O

o e . D . X 3 o
Proposition 56. The map x v 1o is a \/-morphism and the map r = x®
is a \-morphism. The two maps are adjoint to each other.

Proof.  We show that (. 1") is a Gialois connection between V and V¢,
We have » < y = 20 < yo = 2o Zd Yo, & Sd y=xr>y= @ > y(').
v < (20)? and & > (49)o = + <? (+9)o. Hence.

A\ e = Nee) =\ ol
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and correspondingly

d‘(/\ ) = y*(vdgrt) = /\y/ﬁ(a‘,,). O

Definition 53. The set of all blocks of a complete tolerance relation of V'
is denoted by V' /@ and ordered by

Bi<By:<= ABi<A\B. (= \/Bi<\/B).

o

The definition says that the smallest elements of the blocks are ordered
in the same way as their largest elements. This is correct because of r¢ <
vo < (r0)? < (y0)?. In fact, even more is true: The set of the upper
bounds of the blocks is closed under infima, that of the lower bounds is
closed under suprema, in analogy to the case of the complete congruences
(cf. Theorem 10, p. 106). This is described by the following theorem:

Theorem 14. With the order described above, V /O is a complete lattice
(the factor lattice of V' by ©). The following equations hold for blocks B,
and for elements vy, t €T, of V' respectively:

v By = [V /\Bf]@ resp. /\ B, = [/\ VB,:](.)

teT teT teT teT

Vizde = ade resp. Awd® =[A\x)®

Proof.  The proofs of the equations follow easily from Proposition 56. O

How can we describe complete tolerance relations of concept lattices in
terms of the contexts?

Definition 54. By a block relation of a context (G, M,I) we mean a re-
lation J C G x M which satisfies the following conditions:

1. 1 CJ,
2. for every object g € G, g7 is an intent of (G, M, I),
3. for every attribute m € M, m” is an extent of (G, M, I).

&

We can use this definition as a starting point for some observations: If .J
is a block relation of (G, M, I), then every extent of (G, M,J) is an extent
of (G, M,I) and every intent of (G, M,J) is an intent of (G, M, I). The
intersection of any number of block relations of (G, M, I) is again a block
relation, since ¢N7/t = Ng¢’t, and the intersection of intents is always an
intent, and dually. Hence, the block relations of (G, M, I) form a closure
system and thus a complete lattice.
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Figure 3.12 The block relation J belonging to the tolerance from Figure 3.10
additionally contains the pairs marked by dots.

Theorem 15. The lattice of all block relations of (G, M,I) is isomorphic
to the lattice of all complete tolerance relations of B(G, M, I). The map B
assigning to any complete tolerance relation @ the block relation defined by

9B(O)m : <= vgO(yg Apm) (< (yg V um)Oum)
is an isomorphism. Conversely,
(A,B)3~Y(J)(C,D) <= AxDUCxBCJ
yields the tolerance corresponding to a block relation J.

Proof. First, we show that J := §(@) is a block relation. Since @ is reflexive,
I C J. According to the definition,

g’ ={m € M |vgO(vg A um)}.

We claim that this is an intent of (G, M, I). For this purpose we consider the
concept

Nium | 190 (g A pm)} = (g7, ¢"").
If n is an attribute of this concept, we get
pn > N{um | 190(vg A pm)},
and hence also
vg A pn > N{vg A pm | 790 (vg A pm)}.

If we are aware that this infimum is in a @-relation with vg, we recognize
that (yg A un)@~g, i.e., that n € g7. Hence, g/ = g7/ is an intent. Dually
we prove that every set of the form m” is an extent of (G, M, I).
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Now we start from a block relation J and define a relation 7(J) on
B(G, M, I) by
(A B)T(J)((\D): <= Ax DUBxCCJ.

Evidently 7(J) is reflexive and symmetric, and, if T is an index set and
there are concepts with (A4, B;)@(Cy, D;) for t € T we argue as follows: For
g € A; we have ¢/ D D, = C'I and consequently g/l C C1 = C;. Hence, for
9 € Ner At we obtain g7 C M, e,

JII C) ’
>(ne

) 4 x (ﬂ Ct>l CJ

teT teT

which proves

Analogously we show that

) Ci x (ﬂAt)IgJ,

teT teT

and altogether we have proved

A (Ae, B)r(J) \ (Cr, Dy).

teT teT

The dual argument proves, moreover, that 7(J) is compatible with suprema,
i.e., that it is a complete tolerance relation.

Both maps 3 and 7 are evidently order-preserving. In order to prove the
theorem we furthermore have to show that they are inverse to each other.
Let @ be a complete tolerance relation of B(G, M, I). We want to show that

(4, B)O(C, D) <= (A, B)7(8(9))(C, D).

According to Proposition 54, we may limit ourselves to the special case

(A, B) > (C, D). We have

(A, B)O(C, D) g V(C,D)O(C, D) for all g € A
v9@0yg A (C, D) forall g € A

~gO~g A pm for all g € A and m € D
Ax D Cp(o)

(4, B)T(53(0))(C, D).

rrroa

For the last part of the proof let J be a block relation of (G, M, I). Then
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(g.m)eJ <« gem’
= g” C ¢’’ nm? and
@ nmh =@ um)! (¢ um?) = (g7 nm?)’
— glxgnml) cJ
= (v9)r(J)(hg A pm)
< (9.m) € B(r(J)).
This proves that J = 3(7(J)). O

Corollary 57. If @ is a tolerance relation on B(G, M, 1) and J := 3(O) is
the corresponding block relation, then

B(G,M.1)/0 =BG, M,J).

More precisely, we have:

1. [(BI,B), (C, (,71)] is a block of @ if and only if (C,B) is a concept of
(G, M, J).
2. The map
[(B', B),(C,C")] = (C, B)

is an isomorphism of the lattice of the blocks of @ onto the concept lattice
of (G,M,J).
3. If (C, B) is a concept of (G, M, J), then

[(B!,B),(C,C")] =B(C,B,INC x B)
for the corresponding block of ©

Proof. According to Theorem 15, two concepts (4,B) < (C,D) of
B(G, M, I) stand in the relation © to each other if and only if C' x B C J,
i.e., if B C C7 and (' C B’. For an arbitrary concept (X,Y) of (G, M,I)
therefore

(X,Y)e = (X7, X7) and
(X.Y)? = (¥, v'7) and consequently
((‘Y’}r)@)@ — (/YJJHX'JJI)‘
If we assume that B := X7 and (' := X7/, then (C,B) is a concept of

(G, M, J) and the block [(.X,Y)], proves to be of the form we claimed:
(X, V)] = [(X.Y)e, ((X.¥)e)?] = [(B".B),(C.CT)].

Therefore, the map
(X, V)]e = (X7, X7)

is an order isomorphism mapping the blocks of @ onto the concepts of
(G, M, J).
The third part of the assertion follows from Proposition 51. O
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Figure 3.13 The concept lattice B((, M, .J) of the block relation .J is isomorphic
to the factor lattice by the tolerance relation. As an example, we state the subcon-
text belonging to the concept ({3.4,5,6},{c.d.e, f.g}) of J. lts concept lattice is
isomorphic to the corresponding block of the tolerance.

We close this section with two observations. The first deals with the ques-
tion which families of intervals form the systems of the blocks of a tolerance.
This is answered by the following theorem:

Theorem 16. Let V' be a complete lattice. T an index set and
Fo={le.7) | 1€T)
a family of intervals from 'V which are assumed to be pairwise distinct, i.e.,
s #t= (2, Ts] # [2,.T¢]. Then the following conditions are equivalent:
1. F is the family of the blocks of a complete tolerance relation on a complete
sublattice of V.
2. a)The set {Ty |t € T} of the upper bounds of the intervals is \-closed.
b) The set {x, |t € T} of the lower bounds of the intervals is \[-closed.
¢} The upper and the lower bounds are ordered in the same way, i.c.,
r, <x, <= T, <7T;.
3. There 1s an order < on T with respect to which (T,<) is a complete
lattice and there are maps
a:T' =V, injective and \/-prescruving,
a:1' =V, injective and \-preserving,
with a(s) <a(t) < al(s) <a(t), and F = {{a(t),@(t)] |t € T}.
Proof. 1 = 2: Every block of a complete tolerance relation @ is of the

form [2]® = [(x®)e.1?], i.e., the upper bounds of the blocks are precisely
the elements of the form +?. From Proposition 56 it follows that

Nl 1ter)= (Ao [teThH®,

L.e., the result is again an upper bound of a block. This proves a) and dually
we infer b). ¢) again follows from Proposition 56: ¢ < y® <= (29) <
(¥)

@ -
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2= 3 Weorder T'hy s <t:<+= x, <ux. Because of ¢) this is
equivalent to Ty < 7;. Hence, the map defined by a(t) := z, is an order-
isomorphism of (7, <) on {x, |t € T'}, correspondingly @(t) := T; defines an
order-isomorphism of (T, <) on {7; | t € T'}. Therefore, according to a) and
b), (T, <) is a complete lattice.

3= 1: We first show that under the conditions mentioned under 3, the
set

U= J{lat).a) [t eT)

is a complete sublattice of V. Hence, let z;,s € S be a sequence of elements
from U. For every s € S there is a ¢, € T with z; € [a(ts),@(ts)]. We
claim that \/ ¢ x; also lies in such an interval, namely in [a(t),@(t)] with
t:= \/seStS' Since « is \/-preserving, a(t) < stS z, is obvious, and since
@ is order-preserving, for every s € S we have r, <a(t;) < a(\/,csts) and
thus \/,cg s < a(t). Hence, U is closed with regard to suprema as well as
with respect to infima, as the dual argument shows.
The relation

O :={(x,y) | Jer x,y € [a(t),a(t)]}

evidently is reflexive and symmetric. Moreover, from (z,,ys) € @,5 € S it
follows that xs,y. € [a(ts), @(ts)] holds for suitable ¢, € T i.e.,

Vi[5 € Sh Vv s e 8} elal\t).a\/ 1),

(Viz: [s €5\ seshee.

Hence, @ is \/-compatible (and dually, of course, A-compatible as well), i.e.,
it is a complete tolerance.

Finally we have to show that the intervals [a(¢), @(t)] are in fact the blocks
of @, i.e., the maximal sets of elements which are pairwise related under the
relation ©. If [u, v] is a block, then (u,v) € @, i.e., u,v € [a(t),@(t)] for some
t, hence every block of © is of this form. On the other hand, every [a(t), @(t)]
is maximal too; from [« (s), @(s)] C [«(t), @(t)] we can infer @(s) < @(t), that
is s < t, as well as o(t) < a(s), that is ¢ < s. Together this yields s =¢t. O

The second observation establishes a link between compatible subcontexts
and block relations. Transitive tolerance relations are congruence relations,
hence we can describe a complete congruence relation (under suitable condi-
tions, cf. Theorem 11) in two ways: in terms of a compatible subcontext and
in terms of a block relation.

Proposition 58. Let © be a complete congruence relation of a doubly
founded concept lattice B(G, M, 1), (Ge, Mo, INGe x Mg) the correspond-
ing saturated compatible subcontext and J = ((O@) the block relation for ©.
Then:
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(gom)eJ = ¢'NGoCw
= m'NMeCyq
Go = H{geGlg' =g}
Mo {meM | m! = m‘]}.

Il

Proof. According to Theorem 15, (g.m) € J <= (vg,79 Apm) € 6. Two
concepts are congruent if and only if their extents have the same intersection
with Gg. In the present case, this means ¢" N Go = ¢ N m’' N Go which
corresponds to the first line of the assertion. The second line can be inferred
dually.

According to the definition, ¢ is in GG if and only if y¢ is the smallest
element of a ©-class. This is equivalent to the fact that for every attribute m
from (vg,vg A um) € O it already follows that pom > ~g, i.e., that (g, m) € J
always implies (g, m) € 1. O

The connection between congruence relations and block relations, accord-
ing to the theorem, can also be explained as follows: If ¢ is an homomorphism,
© = ker ¢ and J is the block relation belonging to @, then

(g.m)€J = pyg < ppm.

3.5 Hints and References

3.1 Compatible subcontexts as well as their characterization by means of the
arrow relations were introduced in [192]. Proposition 37 has been taken from
a paper by Knecht and Wille [99].

3.2 Congruence relations belong to the standard subjects of textbooks on
abstract algebra. Theorem 9 is “classical”. Books on lattice theory, however,
usually examine lattice congruence (where the requirement is compatibil-
ity with suprema and infima of finite sets only). These congurences differ
considerably from the complete congruence relations. Of course, every com-
plete congruence is a lattice congruence in the weaker sense. But whereas
the lattice congruences always form a distributive sublattice of the lattice of
equivalence relations, the situation in the case of the complete congruences
is more complicated: The supremum of two complete congruences does not
have to coincide with the supremum as equivalence relations, and every com-
plete lattice is isomorphic to the lattice of the complete congruence relations
of a suitable concept lattice (Teo [174], Gritzer [76]). Therefore Theorem 10
cannot simply be derived from the corresponding theorems for algebras, but
follows [190]. With regard to the congruence theory for concept lattices see
also Reuter and Wille [144].
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3.3 Closed relations were introduced in [198], in order to simplify the de-
scription of subdirect products, which had been tackled in [193]. The con-
cept lattice from Figure 3.7 originally resulted from an analysis of biological
data, see [60]. The dismantling of doubly irreducible elements was examined
by Duffus and Rival [44]. They also proved the uniqueness of the DI-kernel.
A very simple proof was given by Farley [52]. Distributive lattices that are
generated by their doubly irreducible elements were examined by Monjardet
& Wille [128].

It is possible to describe in terms of structure what happens if we add “a
cross” to the incidence relation I. Here, we shall limit ourselves to cardinality:
The concept lattice can become larger but it can also become smaller. A
simple estimate by Skorsky shows

B(G, M, TU{(g,m)})]
B(G, M, T)

1 3
— < -.
2 -2

The concept lattice can only become smaller if g ,/*m. Assume w.l.o.g. that

(GyM,I) is clarified. If neither ¢ /m nor g/ m, then, by Proposition 49,
B(G, M, 1) is a complete sublattice of B(G, M,IU {(g,m)}).

3.4 Czedli [30] had discovered that tolerance relations also yield a factor lat-
tice. Bandelt [7] examined this connection in more detail. The interrelation
between complete tolerance relations and block relations was first described
in [195]. Wille has also suggested the use of tolerance relations in order to

obtain counting formulas by means of the Mébius function. In this context
see also [140] and Vogt [178].



4. Decompositions of Concept Lattices

A complex concept lattice can possibly be split up into simpler parts. Here
the mathematical model must prove its worth by providing efficacious and
versatile methods for the decomposition. Every such decomposition principle
can be reversed to make a construction method. Therefore, some of the
following subjects will be taken up again in the next chapter with this second
focus.

If a lattice can be represented as a sublattice of a direct product, this
is called a subdirect decomposition. The theory described in the preceding
chapter permits an elegant description of these decompositions by means of
the context. This is the subject of the first section.

The tolerance relations introduced in 3.4 result in coverings of the concept
lattice by overlapping intervals. This fact will be used as a principle of
decomposition in the second section.

A surprisingly versatile context operation consists in inserting one context
into another one. We shall explain this in more detail in the third section
and describe the corresponding lattice construction, the substitution product.
Then we shall use some effort to prove a decomposition theorem for this
product (Theorem 25).

In the fourth section we shall finally introduce the tensor product of com-
plete lattices by means of the direct product of the contexts. Similarly, as in
the case of the direct product of lattices (which corresponds to the context
sum), tensorial decomposability is rare. Therefore, we transfer the idea of
the subdirect product. which we explain in 4.1, to contexts and obtain the
notion of the subtensorial decomposition of concept lattices.

4.1 Subdirect Decompositions
The direct product of ordered sets has already been introduced in Definition
7. We shall repeat it here for the special case of complete lattices:

Definition 55. Let T be an arbitrary index set. For a family (V;)ier of
complete lattices, the product is defined to be

X V= (X Vtvg)

teT teT

B. Ganter et al., Formal Concept Analysis
© Springer-Verlag Berlin Heidelberg 1999
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with
(i‘f)fe]‘ S (yt)teT =4 Lt § Yt fOI' all t € l‘

The lattices V;, t € 1" are the factors of the product, and the maps

T X Vi — ¥,

teT
with
Ts((2e)ter) 1= 25
defined for s € " are the canonical projections. O

Without difficulty we prove:

Proposition 59. FEuvery product of complete lattices is a complete lattice.
The infimum and the supremum can be formed component-wise. The canon-
ical projections are surjective complete homomorphisms. a

The direct product of concept lattices corresponds to the direct sum of
the contexts, cf. Definition 34.

Definition 56. A (complete)! subdirect product of complete lattices is
a complete sublattice of the direct product for which the canonical projection
maps onto the factors are all surjective.

A subdirect decomposition of a complete lattice V' is a family @,
t € T, of complete congruence relations of V' with

ﬂ@:@
teT

where A denotes the trivial congruence A := {(x,2) | x € V'}. The lattices
V /O, t € T, are called the factors of the subdirect decomposition. <

Theorem 17. If V is a complete subdirect product of the lattices Vi, t € T,
then the kernels of the canonical projections

{kerm; |t €T}

form a subdirect decomposition of V.. Conversely, for every subdirect decom-
position @, t €1 of V', by

t(v) := ([v]Ot)ter

we obtain an isomorphism of V' onto a subdirect product of the factor lattices
V/O, tel.

! For stylistic reasons, we will frequently leave out the adjective “complete”, l.e.,
in the following “subdirect™ should be replaced by “completely subdirect™ where
necessary.
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Figure 4.1 The lattice on the left is a subdirect product of the two lattices on the
right.

Figure 4.2 The two congruences represented here form a subdirect decomposition
of the lattice in Figure 4.1. The factor lattices by these congruences are precisely
the factors of the subdirect product represented in the figure above.
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Figure 4.3 The nested line diagram helps us to follow the definition of the subdirect
product.
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Proof. 'The kernels of the canonical projections are congruences. Hence, in
order to prove the first part, we only have to show that their intersection is the
trivial congruence A. Two elements (v;)rer and (w;)¢er of the direct product
are different if there is some s € T" with v, # wy, l.e., with 7.(v) # m5(w),
which is equivalent to (v.w) ¢ kernw,. Hence, from v # w it follows that
(v,w) € [, ker m¢. which was to be proved.

Now we show that the map ¢ defined in the second part has the properties
claimed. ¢ is a complete homomorphism. since for an arbitrary family (v;);es
of elements of V' we have

¢ /\ vj /\ vj| O

JjedJ jeJ

teT

1
>
=

jo

/\ ([vj] @t)teT

JjeJ

= /\ t(vj).

JjedJ

Likewise, we show that ¢ preserves suprema. ¢ is injective, since from v, w €
V., v # w follows the existence of some t € T with (v, w) ¢ @;. This means,
however, that [v]@; # [w]@, i.e., that ((v) # ¢(w).

Hence, ¢ is an isomorphism of V' onto the complete sublattice (V') of the
product X ,cp (V/6©,). It remains to be shown that the canonical projections

s (V) — Vi, s€eT,
are surjective. This follows from
T (e(V)) ={[v]®; v €V} =V/O,. a

In the definition of the subdirect decomposition, we have not excluded
the trivial case that one of the congruences is the trivial congruence A. The
lattices which only allow such decompositions are described by the following
definition:

Definition 57. A complete lattice V' is called (completely) subdirectly
irreducible if every subdirect decomposition of V contains the trivial con-

gruence A. O

This property can also be formulated as follows: If V' is isomorphic to a
subdirect product of lattices Vi, t € T, then V is canonically isomorphic to
one of the factors V. (Canonically isomorphic here means that the canonical
projection 7 is bijective and is therefore an isomorphism from V' to V;).
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It is particularly easy to read off this property from the lattice of con-
gruence relations of V', since V' is subdirectly irreducible if and only if this
lattice has exactly one atom:

Proposition 60. A complete lattice V' is subdirectly irreducible if and only if
V has a smallest non-trivial? congruence, i.c., a complete congruence relation

O with @ # A and © <V for all complete congruences ¥ #+ A.

Proof. If @ is such a congruence and if ¢ is an isomorphism of V onto a
subdirect product ¢(V') of lattices V;,t € T, then, because of

ﬂ ker(m, ot) = A,

teT
it is not possible that
O < ker(m o) for all t € T.

Hence, ker(m o¢) = A for at least one t € T.
If, on the other hand, there is no such minimal congruence, then

Nielecev)o#a)=a

for the family €(V) of all congruences of V. Hence, these congruences form
a proper subdirect decomposition of V. O

The examination of subdirect decompositions can be carried out directly
on the context if we use the interplay between congruence relations, compat-
ible and arrow-closed subcontexts which we have developed in the preceding
sections. In order to do so, we must presuppose that the lattice V' we exam-
ine is doubly founded and thus isomorphic to the concept lattice of a reduced
context I, since in this case the congruences are in one-to-one correspondence
to the arrow-closed subcontexts of .

Proposition 61. If (G, M, ) is a reduced context of a doubly founded con-
cept lattice, then the subdirect decompositions of B(G, M, I) correspond bijec-
twely to the families of arrow-closed subcontexts (G, My, I N Gy x M,) with
Uter Ge = G and U, My = M.

Proof.  According to the observations preceding Theorem 12, Nier @ = A
holds for a family @,, ¢t € T of congruences if and only if UteT Gy = G
and (J;cp My = M holds for the corresponding arrow-closed subcontexts
((;f, M, ING, x 1[,) O

It is particularly easy to recognize the subcontexts belonging to subdi-
rectly irreducible factors of B((7, M, I). We must be aware that for every
object g there is always a smallest arrow-closed subcontext containing ¢g. We

? We allow the total congruence V' x |
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shall call such a subcontext a 1-generated arrow-closed subcontext. (The
corresponding is true for the attributes, but since in a reduced context ev-
ery object is connected to an attribute by a double arrow and vice versa, it
suffices to concentrate on one of the sets G or M, respectively).

Proposition 62. A doubly founded reduced context (G, M, 1) is I-generated
if and only if B((GG, M, I) is subdirectly irreducible.

Proof. If (G, M,]I)is l-generated, then for every family (G, My, INGy x M),
t € T, of arrow-closed subcontexts there is some t € T with (; = G and
M; = M. By means of Proposition 61 we recognize that this is equivalent to
subdirect irreducibility. O

Theorem 18. Fuvery doubly founded complete lattice has a subdirect decom-
position into subdirectly irreducible factors.

Proof. W.l.o.g. we may assume that V is the concept lattice of a reduced
context (G, M,I). We may then assume that V. = B(G, M, ). For g € GG
let (G, My, 1N Gy x M) denote the smallest arrow-closed subcontext of
(G, M, I) containing g. Proposition 36 (p. 101) shows that this subcontext
is reduced as well. According to Proposition 62 the corresponding concept
lattice is subdirectly irreducible. Hence, together with Proposition 61,

(g My ING, x My), g €G,

provides a subdirect decomposition of V' into subdirectly irreducible factors.
O

Figure 4.4 Using the arrow relations in the context, we can examine which sub-
direct decompositions are possible for the concept lattice.

To close this section, we apply the theory we have developed to the ex-
ample given in the beginning (Figure 4.1). A representation of the lattice
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3 2 1 4
Figure 4.5 We recognize five |-generated subcontexts: one for each object.

as a concept lattice is presented in Figure 4.4. The arrow relations of the
context are shown in Figure 4.5 as a graph. We can read off that there are
exactly five 1-generated subcontexts. In the main, there is only one subdirect
decomposition of this lattice into subdirectly irreducible factors. The respec-
tive subcontexts are generated by the objects 2, 4 and 5. We can add the
subcontexts generated by the objects 1 or 3, they are, however, contained in
the subcontext generated by 2 and therefore dispensable.

The subdirect. decomposition shown in Figure 4.2 corresponds to the two
subcontexts ({1,2,3},{a,b.c,d}) and ({1,4,5}, {c,€, f}). We recognize that
the second factor can be chosen smaller: object 1 is superfluous, the second
subcontext can be replaced by ({4,5},{e, f}). Figure 4.6 shows the corre-
sponding congruence. It can replace the second congruence in Figure 4.2.
The factor lattice obtained from this congruence has three elements.

Figure 4.6 A coarser congruence may be chosen for the second congruence in the
subdirect decomposition from Figure 4.2.

4.2 Atlas-decompositions

A map which is meant to represent a larger area on a larger scale necessarily
beconies unwieldy. Usually, we make shift by splitting it up into an atlas: a
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collection of manageable part maps covering the desired area, together with a
general map as well as additional information, which show how the individual
maps are related.

An analogous procedure for large unwieldy lattices can be introduced
with the help of the tolerance relations. According to Theorem 14 (p. 121),
a tolerance relation on a complete lattice V' provides a decomposition of V'
into intervals which are themselves elements of a complete lattice. Thus, V'
can be understood as being constructed from a family of complete lattices,
whose indices in turn form a complete lattice. This means that the blocks of
the tolerance appear in the role of the part maps in the atlas and the factor
lattice acts as the “general map”.

It is, however, in the case of the tolerances not quite as easy as in the
case of topographic maps to explain the interconnection between the part
maps. In the general case, this is done through a family of adjoint pairs of
mappings. It is easier in the case of glued tolerances: here those maps ensue
automatically.

Definition 58. Let () be a complete lattice and, furthermore, let V, be a
complete lattice for every element ¢ € ). Let

p,:Vy—=V, and ¢p:V, =V,
be maps for every pair ¢ < r in (). Such a family
(Vi lee@)
is called a ()-atlas if the following conditions are satisfied:

V,CVimg=r.
V, NV, is an order filter of V;, and an order ideal of V; if ¢ < r.

{g€Q |z e V,}is an interval [£min, Zmax] in @ for every z € quQ

?,Q

ple = =vylr forall x € V.
@y <y holds in V. if and only if + <47y holds in V.
Prpy = ¢y and Ypul = vp.

o _\,,25:1 for all r € V, NV, v, and ¢! = A% forally € ViNV; 4 .

A

The sum of the ()-atlas is defined as the pair

Uvi.c

q€Q

with
L E Y i< Tmin < Ymin and @ymm r<y

Tmin

for all v,y € U,eq Ve O
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Condition (4) says that for ¢ < r the two maps ¢y and ¢ are mutually
adjoint in the sense of Proposition 9 (p. 14), as can easily be seen from
Propositions 4 and 6. Hence, ¢, is \/-preserving and ¢, is A-preserving. If
we denote the boundary elements of V; by 0; and 1;, respectively, we obtain
in particular ga;()q =0, and y“rj_]'l,v =1,

Proposition 63.
Tmin < Ymin  and  @¥min g <y

L'min
is equivalent to

" . . Yy
LTmax S Ymax and S u’r::;i Y.

Proof.  Let @min < Ymin and p§=ir x < y. In the following we shall use the
abbreviations

¢ = Pmins 7= Ymins 5= Tmaxs €T Ymaxe

By (h) we obtain
y2egr =gt

Hence, pjx is an element of V. NV, v, and by (1) it follows that y € V,. 5,

Le., s <t. Since r > rmin, we have s A7 € [Zmin, Tmax] and = € V; 5, follows

from (2). Together with (6) and (3) we obtain

'\SAIY > —
‘qu L = 2.

Thus
Panrt = Piprpy 0= gqr <y
because of (5). With (4) and (6) we obtain
v <y =Y.

The opposite direction of the equivalence follows dually. 0

Theorem 19. The sum of a Q-atlas is a complete lattice V', in which infima

and suprema can be described as follows:
I__J Iy = \/ Pt and |—| = /\ Yt
tel teT teT teT

with r, € V. r = VteT qr and s = /\teT qe- The complete lattices 'V,
q € Q) are precisely the blocks of a complete tolerance relation @ of V', and
— V, describes an isomorphism of Q onto V /Q; furthermore, we have

vy =20, foralreV,
and
U.(’{'y =yMl, foralyeV,.

In this way we obtain a bijective assignment between the complete tolerance
relations on a complete lattice and the representations of this lattice as the
sum of a Q-atlas.
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Proof.  Without difficulty we prove that C is an order which corresponds,
moreover, on each of the V, to the order given there. Furthermore, we prove
that » C y always follows from ¢y = y: By (6) we first obtain @y imax g =y
and thus Zmax < Yymax. With
P Y=y =y

we get p¥mex p = y and, because of (4), ¥ < ¥imax y. Consequently, z C y
holds according to Proposition 63. Dually we infer that r = VoY always
implies z C y.

We now show that the supremum has the form specified in the theorem:
Assume that r, € V,, and x; C y for t € T. By Proposition 63 and (2) we
obtain y € V.. v, forallt € T and thus y € V. v, for v := V1 q:.
Therefore, from @Y= r; < y it follows that p¥mi=Vdtz, < y because of (6)
and

AT L/m V7 AYminVT YminVqt . Ymin V7 _
o L™ = Pynavar Pa, 2t L Pyminva, Y =Y
“ " 6) : 3 herebv w : o 1 1
because of ()) (6) and (3). Thereby we have proved \/,.p ¢y x¢ E y. Since

Vier ¢4, 2t is an upper bound of each x¢, t € T, Vier ¢4t is the supremum
of the x4, t € T, in (V,C). Because of Proposition 63, the dual proof yields
the equation for the infimum. Thus, we have proved that the sum of a ()-atlas
is always a complete lattice.

For x,y € V now assume that

1@y <= r,y €V, for at least one ¢ € ().

The proved description of the suprema and infima immediately yields that
O is a complete tolerance relation of V. We can use Proposition 55 (p. 120)
to show that the V,, are precisely the blocks of ©. This requires however to
prove the maximality of the V. Assume therefore that ¢ € @ and that y is
an element with

r@y  forall xr eV,

In particular, we have y@0,. which yields {0,,y} C V, for some r € @) and
because 0, < 0, it follows that » < ¢. Likewise, we obtain from y©1, some
s € Q with y € Vi and s > ¢. In all, we have ¢ € [ymin. Ymax] and thus by (2)
€ V,, which together with (0) yields the assertion.
Evidently, ¢ — V,, describes an isomorphism of @ on V /0. For ¢ < r,
r €V, and y € V, we have

X UU, = Y({l Vy,U, = qu'

and dually y M1, = yyy. If we define for an arbitrary complete tolerance
relation = morphisms between its blocks through these equations, we obtain
a V/Z-atlas whose sum again is V. This shows the bijective assignment we
claimed. O
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The conditions become simpler in the case of tolerances with overlapping
neighbourhoods.

Definition 59. A complete tolerance relation @ of a lattice V' has overlap-
ping neighbourhoods if

By < B, in V/O implies BN B, #0Q.

Let Y (V') denote the smallest tolerance relation comprising all pairs (z,y)
with z <y in V.

In the case of doubly founded lattices, a tolerance with overlapping neigh-
bourhoods is called glued, and ¥(V') is called the skeleton tolerance. The
factor lattice V /¥ (V') is then called the skeleton of V. <

The intersection of any number of tolerance relations is again a tolerance
relation. Therefore Y (V') is well-defined.

Theorem 20. Y(V) is the smallest tolerance relation of V' with overlapping
neighbourhoods. In particular, the skeleton tolerance is the smallest glued
tolerance.

Proof.  First we show that X(V') has overlapping neighbourhoods. For this
purpose, let By =: [a,b] and By =: [¢,d] be blocks of ¥(V') with B; < Bs.
We show that the assumption B; N By = O leads to a contradiction. It would
imply that b < bV ¢ and from b < 2 < d it would follow that generally

Bi =[xy < [2]zv) < [dlzv) = Ba,

i.e., because of By < By, that [z]z(v) = Bz and thus x > c¢. For this reason
we have that bvVe = A{z | b < x <d}, from which we can infer that b < bV e
and consequently (b,bV c) € Y(V). Because of (bV ¢)p(v) = ¢ this yields
¢ < b<d,i.e., the desired contradiction b € Bs.

It remains to be shown that ¥'(V') is smallest among the tolerance rela-
tions with overlapping neighbourhoods. Hence, let @ be any such tolerance
relation and x < y a pair of neighbouring elements of V. We must show
that there is a block of @ containing » and y. This is certainly the case if
r € [ylo, i.e., we may assume r ¢ [yle and in particular [z]e < [y]e. Now
we consider an arbitrary block [u,v] with [z]e < [u,v] < [y]e. Because of
u < yo <y, y € [u.v] would immediately follow from y < v. It would
imply y©u and thus a contradiction v < yeo. Hence, y £ v and, because of
z=(vAy) O (vAy®) = v, we obtain zOv and thus x € [u,v]. Hence, every
block between [x]e and [y]e contains x. Since the lower bounds of the blocks
are closed under suprema, this also holds for

B, :=\/[{BeV/O|[z]e <B<[yo}.

Hence, this block must be a lower neighbour of [y]e. Since © has overlapping
neighbourhoods, it follows that B, N[yle # O, i.e., \| B; € [y]o. If y € By,
then y A\/ B, = x and thus x € [y]e, contradicting [z]e < [y]e! O
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The corresponding block relation J(X(V')) can be described easily.

Theorem 21. Let (G M, I) be a doubly founded context and let
V= Y(B(G,M,I))

be the skeleton tolerance. Then the following statements hold for the corre-
sponding block relation J := 3(X):

a) J is the smallest block relation of (G, M,I) containing all pairs (g, m)

with g ./ m.
b) J contains all pairs (g, m) with g/ m org /' m.

Proof. b) From g,/ m it follows that yg A pm = (y9)« < vg, i.e., (g,m) € J
according to the definition of . Dually we show that J furthermore contains
all pairs (g, m) with ¢ /m.

a) Let K be a block relation comprising all pairs (g, m) with g ,/*m and
let furthermore (A, B) and (', D) be concepts with (A4, B) < (C, D). We
want to show that (A, B) and (C'. D) are related under the tolerance relation
B71(K) belonging to K. For this purpose, we consider an object g € C
and an attribute m € B with g#m. Since the context is doubly founded,
we find an object h with k' D ¢’ and h/m, i.e, in particular h4m. We
again make use of the fact that the context is doubly founded to get an
attribute n with n’ O m" and h /' n and thus h /' n (since pun > pm > (yh),).
Consequently, (h,n) € K, which is equivalent to (vh,vh A un) € 3=H(K),
or shorter (vh, (vh).) € 371(K). From that we infer ((A, B) V yh, (4, B) V
(vh)«) € B~HK), i.e., ((C, D), (A, B)) € 371(K), as claimed. O

Now we concentrate on the case of glued tolerances; in particular we
presuppose that the lattices are doubly founded. We describe the system of
the blocks of a glued tolerance in abstract terms:

Definition 60. Let V,, ¢ € Q) be a family of doubly founded complete lat-
tices. Let the index set @ be a lattice of finite length. We call (V, | ¢ € Q)
a (Q-atlas with overlapping neighbour maps, if for each two elements
g, € @ the following conditions are satisfied:

0. V,CV.,=qg=r.

1. If ¢ <r, then V, NV, is an order filter in V, and an order ideal in V.
2. If ¢ is a lower neighbour of 7, then V, NV, # 0.

3. The orders of V, and V, coincide on the intersection V, N V.

4. VNV, CVia . NV, y,.

3. ¢<r<s=V, NV, CV,
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This is compatible with Definition 58. The maps postulated there ensue
canonically in the glued case, as the following proposition shows.

Proposition 64. A Q-atlas with overlapping neighbour maps is a Q-atlas in
the sense of 58 if we define the maps oy and ¥y as follows:

A gy e— 2 g e— e » - .
Logle=viv=u fordleeV,:

2. let
ppri=1rV0, (inV,),
vy yi=yAly (inVy)
forq < r:
3. let

s L v A1
Pq '~ Pipos © © Pgo>

Moo 041 5 .. g ghdm
L‘L(/ T {‘#('ID ° © LLqm-l

f07‘q:q0<ql<"'<(Im:r'

Proof. Conditions 0) and 1) are the same as in Definition 58. Condition 2)
of Definition 58 follows like this: The set

leeQlreVy

is by 5) convex and by 4) closed against V and A, i.e., an interval in the
lattice ¢ (which is of finite length).

The remaining conditions refer to the maps pj and ¢7. First, we have to
show that the maps in the manner specified are well-defined for all ¢ < r. In
the case that ¢ < r, then V, NV, by 2) is not empty and, with 1), we find
0. € V,. Hence, the supremum x V 0, can be formed within V, for all z € V,
and by 1) lies in V.

Since @ is of finite length, for any two elements ¢ < r in @ there exists
at least one, but possibly several chains of neighbour elements between ¢
and r. We have to show that the definition of ¢} is independent of the
choice of such a chain (the proof of ¥y then works analogously). Hence, let
go < g1 < -+ < qqn and g < r; < --- < r, be chains with g9 = 79 and
gm = rn. The proof works through induction on the length of the interval
[(Jo, Q'm}-

BYcase: qi Vo = q.
Since the smallest elements of V,, and V;, belong to V,,, the supremum
04, V0, can be formed in V. This element belongs to V,, as well as to V. ;
i.e., the two lattices are not disjoint. Because of 4) we have

V:Jl N V"'L g \Z

qo m ‘/Z[m’
ie., V,, and V, are not disjoint either, and 0,, has to be an element of

V.- Because of 5), 0, therefore belongs to all lattices V, , i € {0,...,m}
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and to all lattices V., j € {0.....n}. The sets V;, NV, and V,, NV, are

therefore all nonempty. Since by 1) they are order ideals, the elements 0

and 0., . respectively, must all belong to V.
Hence, for & € V,, it follows that

91

(par o ropi)e = (.. ((2V0,)V04,)V...) VO,
and all those suprema are being formed in V,,. Therefore,

o r=2V0, V.-V, =2V0,,

q0

and correspondingly

err=eV0,V---V0, =2V0,

o

which on account of ¢,, = r, vields the desired result.

nd e q1 V r1 < ¢my. Assume that

g1=s51 <85 <-<5 = qVrg
n=th<t<-- <ty = qVr

and s; < sj41 < - <8 = ¢ as well as by = 554, fori € {1,...,01—j}.
By the induction hypothesis

S o0 AS2 G — Atk RPN R
\’951-1 ° OFs1 ©Pge = Py © O Pt O ¥Prys

Hdm ce 42 — 31 o0 082
S‘/qm‘l © °© S0<11 - S0'5"1—1 ° o"psl

and
ta

r ra ti_; )
o O <= N “ee
P © OPr T Fti © O Py

NOW, by il’lSGI‘tiOH we obtain
Adm el — pTn 1
Pam_, O OPas = Ppr_ O O Py

Thereby we have shown that the definition of ¢y 1s independent of the choice
of the chain.

Furthermore, we have to prove (4), i.e., that the pairs of maps P Yy
g < r are adjoint pairs.. If ¢ < 7, then this follows immediately from the
definition, since for x € V,, y € V, we have

ppr<y = V0, <y = <y

and dually
v <Yy = 2<yAl; = z<y.
Thus, we get
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A N A g
Fini—1 °© © T qo 1 S y

s Admi=1 AL q1 .. Hdm

T -2 °© °© 5‘:7’10 1 S 1‘*(]711-1 y
—
P T S L‘L”(“ O+++0 uw’lm u‘

qo T dm—1

Condition (5) follows immediately from parts (1) and (3) of the definition.
What remains to be shown is condition 6) of Definition 58. In order to do
so, we first consider the case ¢ < r. for which from x € V, NV, , it follows
that:

g =2V 0, =2 V0, Vs =2V 0y, = ,.o'lxit

(if ¢ Vs <r Vs does not hold, then the last of these equalities is inferred as

above for pf»). The general case is obtained by concatenation along a chain
of neighbours. a

The sum of a @-atlas with overlapping neighbour maps given by
(V, | g € Q) is described by

U<

9€Q
< being the transitive closure of the union of the orders on the summands.

Theorem 22. The sum of a QQ-atlas with overlapping neighbour maps is a
complete lattice V' where the summands V. q € Q) are precisely the blocks of
a complete tolerance relation @ and where ¢ =V, describes an isomorphism
of Q onto V /().

Conversely, in a complete lattice V' the blocks of a tolerance @ with over-
lapping neighbourhoods. for which Q := V' /@ is of finite length, always form
a Q-atlas with overlapping neighbour maps whose sum is V.

Proof.  First of all, we shall prove that the order C of the Q-atlas, which
is described by Proposition 64, is equal to the transitive closure < of the
union of the orders on the summands. According to the definition, C on the
summands V, coincides with their respective orders, which is the reason why
from x < y always follows & C y. If, conversely,  C y, i.e., imin < Ymin and
@Ymin p <y, then for

T'min

Tmin = ¢0 < ¢1 < *** < ¢m = Ymin

as in Proposition 64 it follows that

Y;,E/unu r = ( .. ((l \V 0,11 ) V qu) V.. ) V qu B

Rt min

which yields < y. Thus, we have proved that
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U Vi< = U \ 7.

q€Q q€Q

Therefore, Proposition 64 yields the assertions of the first part of Theorem
19. Furthermore, we get that in a complete lattice V' the blocks of a glued
tolerance © form a (Q-atlas. It only remains to be shown that this Q-atlas is
in fact a Q-atlas with overlapping neighbour maps. Conditions 0), 1), 2) and
3) of Definition 60 are obviously satisfied. From 0, <x <1;and 0, <z <1,
it follows that

Opvr =0, VO, <2 <1 AL = Iyar,

which proves 4). 5) can be seen from the fact that ¢ <r < sand 0, <z <1,,
because of 0, < 0, and 1, < 1, immediately yield 0, <z < 1,. 0

Figure 4.7 Computer-generated lattice diagram

Figure 4.8 The standard context for the lattice from Figure 4.7
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Theorem 22 can be applied quite practically for the representation in
diagrams, provided that the lattice which is to be represented has a tolerance
with overlapping neighbourhoods. This can be checked by entering the arrow
relations into the context and enriching the relation

J=1u,/U/

in accordance with the conditions in Definition 54 (p. 121), until a block
relation is obtained (namely 5(Y)). According to Corollary 57 (p. 124), we
obtain the blocks (*maps™) as concept lattices of subcontexts. Diagrams are
created from these. The overlaps can be read off, even in the case of a reduced
labelling of the individual maps, since every concept is stated with its correct
extent and intent. According to Theorem 22, the lattice is uniquely described
by this set of diagrams. The correctness of the atlas can be verified by means
of the conditions in Definition 60.

We shall demonstrate this using the example of a lattice of subgroups.
Figure 4.7 shows a computer-generated diagram, which was taken from a
book on orthomodular lattices [91]. The standard context for this lattice (cf.
page 27), including the arrow relations, is presented in Figure 4.8. A short
examination shows that J := I U, U A is already a block relation, i.e., that
it is equal to 3(X).

The concept lattice of (G, M, J) is a three-element chain. The subcontexts
belonging to the blocks of the relation are represented together with their
concept lattices in Figure 4.9. In the case of the lattice presented in the
middle of this figure, it can be easily seen how the blocks overlap. The
smallest element of this block is the concept with the extent {2}. We discover
it in the lower lattice on the right side. The largest element of the lower lattice
has the intent {15, 18}. It can easily be found in the middle lattice.

Hence, the lower and the middle lattice have the five elements of the
interval

({2}, {14,15.16,17,18}), ({2, 3,4,5}, {15, 18})]

in common. Analogous are the middle and the upper lattice, which overlap
in the interval

[v6, u18],

also having five elements.

In the present case, it turns out to be particularly convenient that we
have chosen congruent diagrams for the overlap areas. Thereby, it becomes
possible to superimpose the individual part-diagrams, Figure 4.10), and, thus,
to obtain a new diagram for the lattice (Figure 4.11), which, due to its
construction method, reflects the structure particularly well.
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Figure 4.9 The blocks of the skeleton tolerance
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Figure 4.10 Atlas of the part diagrams. The dotted lines link equal concepts in the
different part diagrams. If the diagram is contracted along those lines, we obtain
the diagram in Figure 4.11.
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Figure 4.11 The same lattice as in Figure 4.7, but with a diagram which better
reflects the structure.
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4.3 Substitution

In the case of the substitution sum a context is inserted into another one at
the place of an “empty cell”, i.e., a non-incident object-attribute pair. We
can visualize the construction by imagining the respective row and column
suitably multiplied, so that there is room for the context which is to be
inserted. For reasons of convenience we presuppose that the two contexts are
disjoint and non-empty, and thus we obtain the following definition.

Definition 61. Let I, = (G, My, 1) and ¥y = (G4, M3, I3) be contexts
and (g, m) € I; a non-incident object-attribute pair in ;. We presuppose
that Gy # O # Mz and (G \ {¢g}) N G2 =0 = (M \ {m}) N M,. We define

substitution sum of ¥ with K; on (g, m) to be the context
¥y (g, m)Ky := (G, M, 1)
with G := (G \ {g9}) UGa M := (M \ {m}) U M; and
Li={(hyn) €l |h#gn#m}UGy x g" Um™ x My U L.

We speak of a proper substitution sum if G%Q =0 = MZI2 holds®. Then
g’t is an intent and m?t is an extent of (G, M, I). The corresponding concepts
shall be denoted by a and b. O

Figure 4.12 To form the substitution sum K; (g, m)Ks, the context Ky is inserted
into “the empty cell” (g, m) of K; . The hatchings in the resulting context are meant
to indicate that every object &€ (2 is incident either with all or with no element
from M> and, dually, that all objects from (G2 have the same intents with regard
to the attributes ¢ M.

From the definition it immediately follows that the substitution sum is
restrictedly associative:

® The cases Ko = ({g},{m},Q), ie, Ki(gym)Ka = Ki, as well as K =
({g}, {m}, Q) are admitted. In the following we shall consider proper substi-
tution sums only.
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Proposition 65.
1 (g, m) (g (hon)Es) = (K4 (g, m)Ey ) (h, n)Ks,

ifg e G, meM; . heGy n€M,and (g,m) &1y, (hyn) ¢ I>. m]

The substitution sum generalizes several of the context operations we have
already introduced. The context sum, the disjoint union and the construction
from page 41 leading up to the vertical sum of the concept lattices can be
obtained as special cases of the form

(Ko (g, m)Ey ) (h,n)EKy

if we choose the contexts

g x|, g , resp. |g X
h| x h h

for Ky, since as results we obtain

v | X ¥ | @ K | X

and

X ‘ K‘Z ‘ @ ‘]Kg @ KQ

We shall examine how the concept lattice of the substitution sum is re-
lated to those of the summands. It turns out that the concept lattice of the
second suminand is “hung up” several times in the concept lattice of the first
summand, similarly to the sails of a ship in the rigging. (see Figure 4.13).

Figure 4.13 Sails and rigging

The first proposition shows that we can rediscover B(K; ) as a sublattice:
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Proposition 66. The rigging of a proper substitution sum
(G.M 1) =¥, (g,m)Ky,

defined as
U =BG, M, I \ 1),

is a complete sublattice of B(I4 (g, m)lz) that is isomorphic to B(K). U
contains in particular all concepts which are > a or <b.

Proof.  Proposition 47 (p. 114) shows that I\ I; is closed. The context
(G, M, I\ I3) is up to clarification identical to ¥y, i.e., the isomorphy follows
from Theorem 13 (p. 112). A concept (4, B) < b satisfies 4 C m!t and
therefore A x B N1y = O. which implies (A, B) € U/, O

The remaining concepts of ¥ := (G, M, I), i.e.,
those which do not belong to B((+, M. I\ 1), all con- My ¢
tain “one cross from I” and thus are entirely con-
tained in the subcontext (G5 Um!t, My Ug/t). This G| o 0
subcontext, according to the definition of I, is the o
sum of Iy and 3 := (m!t, ¢/t I3 := IN(m! x ¢'1)),
1.e., the concept lattice of this subcontext is isomor- O
phic to B(i2) x B(F3). We do not claim that we
thereby obtain a sublattice, but by Proposition 32
(p. 98) we know that we find an order-embedding of
this concept lattice into B(IK) by assigning the con-
cept (A1, A1) of I to every concept (A, B) of I, +F5. The proposition just
mentioned suggests a further order-embedding, namely (A, B) — (B!, B'1).
In the present case, however, this yields the same map, since A/ = B or
B! = A for every concept (A.B) of Iy + 3.

We denote the image of this mapping by P and summarize:

Proposition 67. The map

e By +13) — B (g, m)¥y),
(A, B) = (A Ay (= (B, B")),

is an order-embedding, mapping the concept with the extent (i3 (= 77111) onto
b and the concept with the intent M3 (= ¢'t ) onto a. The range P covers all
concepls which do not belong to U. a

We call P the sails of the substitution sum. The following theorem shows
that the two parts, rigging and sails, determine the structure of the concept
lattice of a substitution sum. However, we must indicate how {7 and P are
joined together. Before doing so. we shall introduce the corresponding lattice
construction.
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Definition 62. For complete lattices {7 and W, [W| > | and elements a,b €
U with a £ b, we define the substitution product U/(a,b)W of U and W
on (a,b) to be the concept lattice of the (proper) substitution sum

U (a, YW = B (U, 1, <) a, ) (Wo, Wy, <))
with Wy := W\ {Ow } and Wy := W\ {lw}. O

Hence, according to this definition, the substitution product of U and W
is the concept lattice of the context ((, M, ) with

G = (U\{a)UW\{0ow}),
M = (U\{HUuW\ {lw}),

and

g<minlU, ifgeUmel

g<binlU, ifgeUmeW
a<minl, ifgeWmeU
g<minW, ifgeWmeW

glm <+

The rigging of this substitution sum is naturally isomorphic to U; there-
fore, we also denote it by {/. We also take over the names a and b for the
corresponding elements of the substitution product.

Figure 4.14 A substitution product.

Theorem 23 (Properties of the substitution product). The concept
lattice V' of the substitution sum

V= B4 (g, m)Es)

with rigging U and sails P has the properties (Subst 1) — (Subst {), specified
below. a,b are as in the propositions and W := B(K,). Conversely, every
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complete lattice V' satisfying (Subst 1) — (Subst 4) is isomorphic to U(a, b)W .
In particular,

B(K (9. m)Eg) = B(IKy1)(vg, pm) B (Kz).

(Subst 1) V=UUP. PNUC(bJU[a),a,be U, a£b.
(Subst 2) U is a complete sublattice of V,
(Subst 3} W is order-isomorphic to P N (a], and

p=(pAa)V(pAb) aswellas p=(pVa)A(pVb)

for allp € P,
(Subst 4) Ifuell andpe P\U, thenu<p=u<bandu>p=u>a.

Proof. In Propositions 66 and 67 we have already shown that B(KK; (g, m)Kz)
has the properties (Subst 1) and (Subst 2), and furthermore that P is order-
isomorphic to the direct product of B(K;) and B(K3). This yields the first
part of (Subst 3). A concept p = (X,Y) of K; (g, m)K; which does not belong
to U satisfies X C Gy Um!t and Y N My # @. Every subconcept of it which
belongs to I/ must therefore have an extent which is entirely contained in
ml1, i.e., it is < b. This proves (Subst 4). Now we can infer the second part
of (Subst 3), since an upper bound of (p A a) V (p A b) which is less than or
equal to p must be contained in P and must therefore be equal to p.

We now assume, conversely, that V' has the properties (Subst 1) -
(Subst 4). First we derive some information from the structure of P. From
(Subst 3) we infer that P C [a Ab,aV b]. The mapsp+— pVband g gAa
are isomorphisms between PN (a] and PN[b) which are inverse to each other,
since it holds for p < « that

(pVb)Aa=(pVb)A(pVa)=np,

and dually. In this way we do not only obtain the isomorphism ¢ : W —
P N (a] postulated in (Subst 3) but a further isomorphism 7 : W — PN [b)
by virtue of 7(z) := o(2) V b. From (Subst 1) we can see that the elements
of PN (a], with the exception of the boundary elements @ and a A b, do not
belong to /. The corresponding is true for P N [b).

In order to prove the isomorphy of V' with U(a, )W, we use the Basic
Theorem on Concept Lattices. The context defining U(a, b)W has the object
set G = (U\{a})U(W\{0w }) and the attribute set M = (U\{b}U(W\{lw })
(cf. the explanation following Definition 62). The maps

y:G—=V, p: M-V,
which are defined by

o x fteel d i(z) = x ifeelU
T o) ifeew M A=\ ra) iz ew,
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satisfy the conditions mentioned in the Basic Theorem, as we shall show. For
this purpose we have to prove that 4(() is \/-dense and (M) is A-dense in
V and that glm is equivalent to y¢g < fim.

We have ¥((7) = UU(PN(a]), since o(0w ) = aAb according to (Subst 2) is
an element of U. Likewise, (M) = UU(PNI[b)). Because of p = (pAa)V(pAb),
every element p ¢ U is the supremum of some element of P N (a] and some
element of (b], i.e., in any case of elements of (7). Dually, we show that
(M) is infimum-dense.

In order to prove gIm <= Fg < pm, we distinguish four different
cases, depending on whether ¢ € UV or ¢ € W and whether m € U or
m € W. If both are contained in U, the assertion is obviously right. If
g € U, m € W, then by Definition 62 gIm is equivalent to ¢ < b in U.
On the other hand, g(m) = 7(m) ¢ U or p(m) = b, i.e., by (Subst 4)
g < fim <= g < b, and, because of ¥¢g = g the conditions are equivalent.
The case ¢ € W,m € U is treated dually. Finally, we have to deal with
the case g,m € W: In this case we have gIm <— g<meW <«—
o(g) <o(m) <= o(g) <a(m) Vb (since from o(g) < o(m) V b it follows
that o(g) = o(g) Aa < (o(m) Vb) Ab = o(m)), and because of J(g) = o(g)
as well as pi(m) = 7(m) = o(m) V b everything has been proved. |

It is easy to derive further information on the set P. In the following
proposition we compile some information (without proof).

Proposition 68 (Further Properties). The concept lattice
B(IK1 (g, m)Ks)

of a proper substitution sum has (using the notations in Theorem 23) the
following properties:

(Subst 5) The sails P are isomorphic to a direct product
P = (PnN(a]) x (PN(b]).
The elements of P N (b] are precisely those of the form x = (z V a) Ab.
(Subst 6) It holds for x € PN (a], y € PN[b) that
r<y <= r<yAha <= zVb<y.

(Subst 7) Each element of P N (a] is the supremum of object concepts in
PnN(a], and each element of PN [b) is the infimum of attribute concepts
in PNb).

(Subst 8) If 1w is \[-irreducible, then a is an object concept. If Ow is \-
irreducible, then b is an attribute concept.
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The substitution product of a lattice V' with the two-
element lattice is always isomorphic to V. There-
fore, we call V' substitutionally indecomposable
if V' has more than two elements and if from V = X

Vila, b) Vs, it always follows that |Vi| = 2 or |V,| = 2.

. : . ; substitutionally
We conclude our investigation by settling the ques- indecomposable
tion: under which circumstances does substitutional
decomposability of a concept lattice B(K) imply de- X
composability of the context [K7 This implication does X
not apply generally, since due to the addition (in spe-
cial cases also the removal) of reducible objects and substitutionally

decomposable

attributes a context can loose its property of being a
substitution sum.

In the following theorem (which we shall prepare by means of a proposi-
tion,) we therefore switch over to a dense subcontext.

Proposition 69. A contert K is isomorphic to a proper substitution sum of
contexts with concept lattices isomorphic to U and W, if and only if there is
a lattice isomorphism  of B(K) onto a substitution product U(a,b)W with

Yy(G) CUU(a] and (M) CUUD),
for which additionally the following special condition is satisfied:
— if Ow is N\-irreducible, then b € pu(M),
— if lw is \[-irreducible, then a € y(G).
Proof. If . = K (g, m)Ks, then, by the preceding theorem,
B(K) = B(K1)(vg, pm)B(Ky).

If h € G is an object, then the object concept belongs either to the rigging
U or it is contained in the object set (y; then, however, vh < vg = a. If
Ly is \/-irreducible, then 1y is an object concept in Ky, this object then
also belongs to [ and is mapped under ¥y on a. We argue dually for the
attributes.

Now, conversely, let ¥ be an isomorphism with the properties stated in the
proposition. Let P again be the sails of U(a,b)W, and furthermore assume
that g, ¢ GG and my, € M. We define a context I, by

Gu:={9eG|yygeU\{a}}, G1:=GuU{gs}
My :={meM |vpum e U\ {b}}, M, := My U{m}

Ly = 1N (Go x M) U {(gasm) | pm > a} U{(g,ms) | ¥v7g < b}.

The concept lattice of this context [y := ((1, My, I;) is isomorphic to U,
since 1y(G) is \/-dense in U/(a,b)W, and by (Subst 4) (¢(G) NU) U {a}
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then is \/-dense in /. Dually, (vp(M) N ) U {b} is infimum-dense in U,
Therefore, the maps 47 : Gy = U/ and gy : My — U being defined by

) _ Jung, ifg € Gu.  Jypm, fallsm e My,
nlg) = {(1‘ if g = gas and yi(m) b, if m = my,

by the Basic Theorem are sufficient for the isomorphy of B(K; ) with U, since
evidently gIm <= 719 < pym.
The context 5 := ((5. M2, I3) 1s explained through

(;2 =G \ (r’( 1‘[2 =M \ 4‘[('. [2 =1nN G2 X A/Ig

We claim that B(1%,) = W(= PN («]) and argue again with the help of the
Basic Theoren. using the maps 42 : GGy = PN (a] and py : My — PN (al,
which are defined as follows:

~ag = U, pom = (Pum) A a.
With (Subst 6) we obtain
vyg < (Ypm) Aa = Pyg < Pum,

e, y29 < pam <= (g.m) € I,. (Subst 7) says that the object concepts are
\/-dense in PN (a]. By (Subst 1), however, PN (a] does not contain elements
of U with the exception of @ and a A b. Therefore, v,(7; is \/-dense in the
lattice PN (al, since by (Subst 8) the largest element « is also a supremum of
elements of 72 (¥5. If we take into account that by (Subst 3) x — x Aa is an
isomorphism of P N [b) on P N (a], we obtain that, dually, uy M, is A-dense
in PN (al.
Without difficulty we verify that

V=W (gq, ms) . O

Theorem 24. IfB(F) = U{a,b)W, then there is a dense subcontext Ky of X
which is a proper substitution sum of contexts with concept lattices isomorphic
to U7 and W, provided that the isomorphism ¥ : U(a,b)W — B(K) can be
chosen such that the following (necessary) extra condition is satisfied:

— If Ly is \J-irreducible, then v(a) is an object concept vg, of ..

— If Oy is N\-irreducible, then (b) is an attribute concept pmy, of K.

Proof. 1f
v B = U(a, h)W
is an isomorphisi, so that =1 satisfies the extra condition, then we define
subcontext Ky := (Glg. Mo, I N (g x Mg) through
{91 vyg € UU(d]}
{m | vpum e U Ub)}.

Il

(o
JUQ

Il
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We only have to prove that Ko is a dense subcontext, since in this case
Proposition 69 yields the rest of the assertion.

For this purpose we show that y(/g is \/-dense. The corresponding asser-
tion Mg is proved dually. Since v is an isomorphism, we can prove instead
that ¥yGo is \/-dense in U'(a,b)W. (i is certainly \/-dense, i.e., every
element s € U/(a, b)W can be represented as a supremum

5= v X, X :=(s]nyyG.
We distinguish four different cases:
s€l,s}a By (Subst4), X CU.

s <a  Then, trivially, X C (a].

s€ P By (Subst 3), s = (sAa)V(sAb) and sAb € U, sAa < a. Therefore,
we have s = \/(X N (a]) VV(X NU).

s>a By (Subst 3) for every p€ P, aVp=aV(pAb) withpAbeU.
Hence, each element of X' which does not belong to I/, can be replaced

by elements of (a] U (b], and those in turn are suprema of elements of
B3 0 ((a] U (8]).

This means that in the end those elements of v are sufficient which are
contained in U7 U (a], i.e., the images of (o, as claimed. O

We shall use these results to prove a theorem on “unique prime factor
decomposition™ for the substitution product of finite lattices. However, this
does not work quite smoothly, the extra condition makes itself felt and pre-
vents a result without exceptions. The decisive technical aid is a refinement
result, which shows that two substitution products can only be isomorphic if
they are made up of the same factors.

Proposition 70. Let Vi, Vi, Vs, Vi be doubly founded complete lattices. As-
sume that V3 and Vy each have a \/-reducible unit element and a \-reducible
zero element. If

Vi(aq, b1)Vs = Va(ag, ba)Vy

holds for suitable elements ay,az, b1, by, then there are lattices Wy, Wy, W3,
Wy and elements c¢q,...,cq4 as well as dq, ..., dq with

Vi

Vs

Wi(er, dq1)Wa, Va
Wi(cs, d3) Wy, Vi

1%

Wi(cz,da)Ws,
Wa(ca, dg) Wy

R
IR

The proof of the proposition can be illustrated by Figure 4.15. It repre-
sents a substitution sum K := K; (g, m)K;. The subcontext K, is drawn in,
K} =: (G7, M{, I7) denotes the context resulting from KK; by omission of the
object g and of the attribute m. We obtain a context which is isomorphic
to K; by adding an arbitrary non-incident object-attribute pair from Kj.
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Figure 4.15 With reference to the proof of Proposition 70.

Hence, except for the names of ¢ and m, I, is also given, and those names
are irrelevant for the substitution sum. Therefore, in this situation we write
.=, (, )Ky as an abbreviation for the fact that K = [K; (g, m)K; holds for
suitable ¢, m.

Proof. Assume that
Vii=Vi(er, d1) Vs = Vy(eg, d2) Vs

and that [ is the (reduced) standard context for V. We can apply The-
orem 24, since the extra condition is irrelevant because of the additional
preconditions. Hence, K is in two ways a substitution sum:

=W (g1, m)Ks = ¥y (g2, mae) Ky,

with
B, ) =V, and K =: (G, My, I;)

for i € {1,...,4}. The presuppositions of the proposition guarantee that K3
and K4 have neither full nor empty rows or columns.

Hence, the isomorphy of the substitution products corre- )
sponds to the isomorphy of two substitution sums. In the L}/W 1\,2
following, we shall make use of this circumstance. There are, .

. . . Lol . - e . ‘/‘/2 W3
however, some complications, since the result for substitution /
sums which corresponds to Proposition 70 does not hold in Vi, ¥ V3
. 7! 4
general. If, however, we manage to find contexts L.y, Lo, L3,

L4 with

Ey =1Ly, )Ly, o =1L4(, )Lz,

Vg =La(, )la. Fy =1Laf, )Lg, L, L

then the statement of the proposition results from Theo- K\ 'ﬂ:‘;
rem 23. This is true for some special cases. These will be
dealt with first:
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Figure 4.16 With reference to the proof of Proposition 70.

15 case: Gi3 C Gy and M3 C My (see Figure 4.16).
We define a subcontext
K5 = (G, M3, I5)
through
G =Gy \ Gs
and
M§ := My \ Ms.

As above we expand this context into a context [y by adding a non-incident
pair from K3. The latter cannot contain any full rows or full columns, because
K4 does not contain any either. Therefore, we have

K =y (, Ky, Ki =Ky(. Ko, Ky =Ko(, )Ks

If, as a fourth context, we add the trivial context O := ({g}, {m}, ©), we
obtain the desired refinement with

K, =Ky (, Ko Ky, =Ko (, )0
Kz = 0(. )Ks Ky =Ko(, )Ks

(cf. the left diagram of Figure 4.17). Of course, thereby we have also dealt
with the converse case (G4 C Gz, My C M3.

gnd case: (1'3 N (;4 =0 = jw?, N ;‘114.

We define (middle figure)

Gy = G\ (GsUGy),
[‘IS* = M \ (AM:J, U AL;)

Let Ko be the subcontext with the object set G := G§* U {g,h} and the
attribute set Mo := MJ* U {m,n}, with (g, m) and (h,n) being non-incident
object-attribute pairs of K3 or K4, respectively.
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Figure 4.17 With reference to the proof of Proposition 70.

We recognize that Kq(g,m)Ks is equal to K;. Furthermore, Ky =
Ko (h,n)Ks. Once again by using the trivial context O we obtain the re-
finement represented in the diagram on the right, which yields the statement
of the proposition.

The cases Gz C G4, My C M3 (resp. dually) and GsNGy # @, MsNMy =
@ turn out to be trivial: If, for instance, Gz C G4 and m € M3\ My,
then m' NGy = @ or M’ N G4 = G4 and consequently m' N G3 = @ or
m' N G3 = (3, contrary to our presuppositions. If M3 N My = ), then
Gz C (4 is obviously impossible, since otherwise K3 would have constant
columns. So, if ¢ € G3N Gy, h € G3\ G4 and m € My, then from gIm
it immediately follows that AIm and thus hIn for all n € My, which in
turn necessitates gln for all n € My. Similarly, from g#m it follows that
¢’ "My = . This means that K4 would contain a full row or an empty row,
which is contrary to the presuppositions.

What remains is the case that the two subcontexts K3 and K4 intersect
non-trivially. We can proceed similarly as we have done so far and introduce
contexts Ly, ..., 1y, as presented in Figure 4.18:

Figure 4.18 With reference to the proof of Proposition 70.

With HI =G \ (G3 U G‘4), [Vf =M \ (]W;g U M4), H; = G4 \ G3,
]Vg = AM4 \ ]‘/[3. H§ = G3 \ (}47 ]Vg = 1M3 \ ]W4 and H4 = G3 N G4,
Ny 1= M3 N My we define subcontexts [L;...,ILy, which indeed yield the
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refinement indicated in the diagram, provided that the substitution sums
appearing in the process are proper substitution sums. However, it may
happen that L4 contains full rows or full columns (for [Ly and L3 this shall
be excluded, as in the first case).

A simple trick helps us along: We extend the context K by an object go
and an attribute m., with ¢/ 1= ¢4 N M[ and m/ :=m)NGF, g4 € G4 and
my4 € My being chosen arbitrarily. The new object and the new attribute are
reducible in [ as well as in the subcontexts K;,...,Ky, 1.e., the respective
concept lattices are isomorphic. If by LI we denote the context resulting
from L4, we obtain

Ky =140, )Ly Ky =1L, )Ls
Vs = La(, LT ¥y =Lo(. L],
and thus the assertion. =]

By means of this proposition we can finally prove the result which we
asserted above. In this context, the three-element lattice C'5 plays a special
role, because it is the only substitutionally indecomposable lattice which does
not satisfy the additional condition from Proposition 70.

Theorem 25. If no substitutional decomposition of the finite lattice V' con-
tains a factor isomorphic to C's, then any two substitutional decompositions of
V into indecomposable lattices have the same length and pairwise isomorphic
factors.

Proof. According to Proposition 65 each substitution decomposition can be
brought into a left-bracketed form. Hence, let

Vo2 (Mo M) ) )M 1)( )My,

V2 (o (N1 OIN2) <) ONas1) (O,

be two decompositions of V' into indecomposable factors My, ..., M, or Ny,
..« Ny, respectively (the names of the elements in brackets are irrelevant for
the proof). Assume that n is the largest possible length which this kind of
decomposition of V' can have. We proceed by induction on n.

According to Proposition 70 there are lattices Wy, ..., Wy with

(((311( . )J[z)( , )A‘Ig)( M1 = Wi, YW,
(e NaCONDCONa L Nt = WAL W,
M, 2 Ws(, )Wy and N, = Wy(, /W,

Since M,, and N, are substitutionally indecomposable, |W;| = |Ws5| = 2 or
|W4| = 2. In the first case M, = Wy = N,, and

(s My M) o )Moy = Wy 2 (L (N1 )N2) o )N,



4.4 Tensorial Decompositions 163

and the assertion follows by means of induction. 1f |Wy| = 2, then My, = W3
and N,, = W5, and we have

(”lyl( ’ )Nrn)( ) )]wm =V = (vvl( ) )iMm)( s )Nn

Since Nj is indecomposable, for n = 2 we obtain |W1| = 2, and thus m = 2,
M; = N, and Ny = M. If n > 2 we can infer that every substitutional
decomposition of Wy has at most n — 2 factors, because otherwise we would
have a decomposition of V with more than n factors. By induction we can
infer that all decompositions of W, into indecomposable factors have the
same number k of factors. This number, however, must equal n — 2, since

Wil )M = (o (N2 )N2)(, IN3) <) )Np—1

Also by the induction hypothesis, every decomposition of this lattice has
precisely n — 1 factors. o

4.4 Tensorial Decompositions

Definition 63. Let 7' be an index set. The direct product of contexts
Ky := (Gy, My, 1), t € T is defined to be the context

X e = X G, X M, V),

teT teT teT
with
gVm: < Jter g:elimy
for ¢ := (gt)rer and m := (M )ier- O

We had introduced this definition already in Section 1.4 for the special
case of two factors:

El X E’ig = ((7'1 X (;2, 1”1 X AMz,V),

(91,92)V(mi,mz2) : <= gilimy or galymy.

For reasons of simplicity we will use the following abbreviations throughout
this section:

Gi= X Gy M:=X My, g:=(gt)ter and m:= (m)eer-
teT teT

A tiresome complication in the notation stems from the trivial case of the
“full rows” and “full columns”. We use the notation introduced in Section
3.3

C:=M"xMUGx G".
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Figure 4.19 The direct product of two small contexts.

Figure 4.20 The concept lattices of the direct product of the contexts from Figure
4.19.
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However, the reader can assume without great loss of generality that full rows
and columns do not occur. and can set (¥ = MV == O everywhere.

Every trivial context having only one concept, i.e., every context of the
form (G, M, G x M), acts like a zero element for the direct product: If one
of the factors is trivial. so is the product. Occasionally, we have to exclude
this case.

Figure 4.21 The maps ¢; : B(Ki) = B(E; x Ky).

Proposition 71. For everyt € T, the relation
Vii={(g,m) e G x M | g:ym; } UDE

is a closed subrelation. If V # G x M, then the corresponding sublattice
B(G, M, V) is isomorphic to B(K, ), and the map

e B(Ke) = B(G, M, V)
with
(A, B):=({g€G g€ AyUMY, {meM|m, € BbUGY)
is a canonical lattice-embedding.

Proof. 'The fact that V; is closed can be proved easily, for instance by means
of Proposition 47 (p. 114): If (g, m) € V \ V,, then in particular m"v # G,
i.e., we can choose an object g ¢ m". Using this object, we define an object
h to be
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h ._{g,. if s £ ¢

gs ifs=t"
We get (h,m) € V and hY = V¢,

It is a matter of routine to prove that ¢, has the properties claimed. O
Proposition 72. If g, h are objects of the direct product XtET [, then

v v heMY  or

Proof.  “=": We presuppose the negation of the right side. Assume that
m ¢ hY and n, € gt \ A" for some t € T'. Consider the attribute m, defined

by
s Jms ifs £t
T I ne ifs=t-
Then m € g¥ \ hV, ie., ¢V Z kY. The direction “<” is trivial. O

Proposition 73.
9 m = Ver  gr o my,

9/ m <= Yeer g: Smy.

Proof. We prove only the first statement. First of al] we notice that, because
of (9,m) ¢ V <= VY(g;,my) ¢ Ir, we can limit ourselves to non-incident
pairs. If, for some ¢, g,/ m, does not hold. there must be an object hy € G,
with g; C hi, g; # h} and (hy,m;) & I,. The object g, defined by

_ )y ifs#t
T R ifs=t

[

satisfies
9V C3% ¢ #¢% and (5,m) gV,

which yields =(g " m).

Analogously, we infer the converse direction: If gt .« m; holds for allt € T,
then we certainly have (g, m) € V and we only have to consider an object
h with g¥ C hY, ¢¥ #£ 4V, By Proposition 72 we obtain ¢/ C hy, g. # k.
for some s € T, from which, because of 9s " My, it immediately follows that
hslsm and thus hVm. O

Together with Proposition 13 (p. 31) this yields
Corollary 74. An object g of a direct product is irreducible if and only if all
ge are irreducible. The corresponding is true for attributes.

The direct product of reduced conterts is reduced, the direct product of
doubly founded contexts is doubly founded. O
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Our interest lies in the concept lattice of the direct product. We shall call
this lattice the tensor product of the factor lattices B(I; ). Thereby we obtain
a new lattice construction and thus a new decomposition principle. However,
in order to do so we have to show that the tensor product is independent
(up to isomorphism) of the choice of the underlying contexts It This is the
result of the theorem which follows the next definition.

Definition 64. The tensor product of complete lattices Vi, t € T' is de-
fined as

@ Vi = B(X (V. Vi, <)),

teT teT
i.e., for the special case of two factors as
Vi o Vo= B(V) x Vo, Vi x 13, V)

with
(g1.92)V(my,my) : &= g1 <my or gz < my. &

Figure 4.22 B O g(ﬂ'x_)) = g(ﬂ{l X H{Q)

Theorem 26. The concept lattice of a direct product of contexts is isomor-
phic to the tensor product of the concept lattices of the factor contexts:

B(X F) = Q) B(K).
teT teT

For the proof we use the Basic Theorem on Concept Lattices. According to
Definition 64, the tensor product ®{€T§(Kt) is the concept lattice of the
context (G, M, V) with

G=M= X B(K)
teT

and
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(A Bi)eer ¥V (CY, Di)ier <= Fier Ay C (L.

In order to prove the isomorphy we claimed, we have to give maps

7:G = B(X ) and pM—B(X ¥
teT teT

which have the properties postulated by the Basic Theorem. We choose
Y Ar, Aeer) =g |V gs € AJUMY {m |3 m € A

A(B Biier) = (191 3 g0 € B}, GY U{m | ¥, m; € B,}).

First, we have to show that these are concepts, i.e., that

{91Veg €AY = {m|3; my € A)} and
MY U {g|Vigre A} = {m |3 m; € 1;}V

The inclusions C are trivial. Therefore, let m be an attribute with my & A,
for all t € T. Then for every t € T there exists an object g, € A, with
(9e,me) & Ii; and thus g := (g;)er satisfies (g.m) & V. This proves the
inclusion D in the first case, the second case as well as the dual proof for p
are analogous.

Next we show that (¢ is supremum-dense by proving that 4G contains
all object concepts of B( X ¢ k). We have (with ¢ := (g¢)eer)

’?((9;/~g;)tel‘) =(..., {"’ | Jrer me € 9}) = (- ”gv).

Finally, we have

YA, Bi)eer) < il((Cyy De)ier)
f—p {g € G ’ erj‘ g € Af} U A[v g {g € G ! ElteT g: € (ﬁf}
g 3}6'[ rtf (; ('f.

since VA, € (f «— JgecVier 90 € A\ Ch. However, the condition
dier A+ C C} is equivalent to (At, Be)ter V (Ct, Di)ier. which remained to
be proved. O

Theorem 27. The congruence lattice of a tensor product of finitely many
doubly founded lattices is isomorphic to the tensor product of the congruence

lattices:
@ Vi) = Qe

te’l teT

Proof.  According to Theorem 12 (p. 111), ¢(V;) = B(G,, M, X'), where
9t " m¢ in Vi if and only if there are objects ¢g1,...,¢, and attributes
my,...,m, with
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G= 0 N 2 N g/ = .

If such a sequence of elements of length n exists, then it also exists for every
number which is larger than n, since in this case there is an attribute k € V;
with ¢; /' k and consequently ¢,/ k \_ ¢, whereby the sequence can be
extended arbitrarily. We can apply Proposition 73 and, since 7' is finite, we
obtain

g/ min X¥ << g minkforaltel,
teTl

and consequently

g m <= gi K m for somet € T.

Therefore,
(G ML) = (X (G My X)),
teT
which together with Theorem 12 proves the assertion. O

The tensor product has been defined as the concept lattice of the context

(G, M V) = X (Vi, Vi, <),
teT

with GV = {m |3 m; =0} and MV = {g| 3; g = 0}. The concept lattices
of the factor contexts are naturally isomorphic to the lattices V;. Therefore,
it seems reasonable to denote the embedding of V; into ®),cp Vi with the

same letter as the corresponding embedding in Proposition 71. Hence, we
define ¢, : V; = @, Vi through

es(rs)i=({g€Glgs<e UMY {meM |z, <m,}UGY),

with (G, M, V) := X ep(Viu Vi <).

Proposition 75. For each object concept y := ¥(g) and for each attribute
concept z = fi(m) of the tensor product as well as for every subset S C T,
we have
y < \/ gs(xs) = Jses y <eslay)
SES

> /\ go(ls) = Fses v > g5(xs).
SES

Proof. In other words, the proposition claims that the extent of \/ ¢ . (,)
is exactly the union of the extents of the ¢,(xz;),s € S, and dually. This
immediately results from the explicit descriptions of these sets which were
given above. a
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Hence, the sublattices ¢;(V;) are mutually distributive: The supremum
resp. infimum of elements from different ;(V;) can be obtained by forming
the union of the extents or intents, respectively. This implies a calculation
rule which will be formulated in the following definition:

Definition 65. We call two subsets X and Y of a complete lattice mutually
distributive if the following inequalities hold for every index set .S and for
every pair of sequences (s)ses. (Ys)ses of elements z, € X, y; € Y

V(Is/\ys)z A(VII‘V V y.s)s

SES RCS reR sES\R
/\(J?SVys)g V(AIT/\ /\ Ys)- O
SES RCS reR s€ES\R

The inequalities can be replaced by equations without changing the state-
ment, since the respective other directions hold in every lattice.

Proposition 76. If V; and V;, (i # j) are factors of a tensor product
RV
teT
then the sublattices £;(V;) and £;(V}) are mutually distributive.
Proof. We only prove the first inequality
Vi@ongw) > NV ea@)v Voew).
SES RCS re€R s€ES\R

For this purpose, it suffices to prove that every attribute concept z which is
> the left side is also > the right side of the inequality. Hence, let z be an
attribute concept and assume that

R.:={reS|ex) <z}

Then we obviously have \/ . p ¢;(r;) <z and can follow the following chain
of inferences:

= Vees z2>gi(as) Aejlys)

fe— v.s-eb’ > Ct(l‘-ﬁ) or: > fl(ys)

fe V_;E,u\R: ot Z ”j(.l/s*)

— > gi(x,)V v i (ys)
reER sES\R,

— > AN (Veate)v o)

In the case of the second equivalence we have used Proposition 75. i
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The formulation “mutually distributive™ suggests the following result:

Theorem 28. The tensor product of completely distributive lattices is com-
pletely distributive.

Proof.  We leap ahead to the characterization of complete distributivity
through a context condition in Theorem 40 (p. 221) and show that this con-
dition can be transferred from the factors to a direct product of contexts.
In order to improve the readability we replace the expression h € k” by the
(equivalent) statement k' C h'.

Assume that ¥ := (G, My, I;), t € T are contexts and that (G, M,[) :=
Xier Kr. Assume further that g € Cand m € M are elements with (g, m) ¢
I. Then, we have

(ge,mue) 1

for all t € T. Moreover, if the I; satisfy the condition from Theorem 40,
there exist elements h; € Gy as well as n; € M; with

(heyme) € I, (geone) € I and ky C Ay for all k € Gy \ ny

for every t € T. We set h := (h¢)ier and n := (n¢)ier and find (hym) & I
and (g,n) ¢ I. If now k € G\ n', L.e.. ky € G\ nj for all t € T', then for
every t € T' it holds that

Ko

and, according to Proposition 72, consequently

ECh,

which was to be proved. O

We had generalized the direct product of lattices to the subdirect prod-
uct in order to obtain a more versatile decomposition principle. We can
proceed similarly in the case of the tensor product. Two possibilities suggest
themselves: On the one hand, we can form a subtensorial product of com-
plete lattices in analogy to the subdirect product. On the other hand, we
can introduce a subdirect product of contexts. If we do this correctly, both
constructions are equivalent.

Definition 66. A subtensorial product of complete lattices V;, t € T' is

a factor lattice
Qv /o
teT

of the tensor product for which the restrictions of the projection mapping

7r@:®V,—>®V,/(~). > [2]O

teT teT
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onto the sublattices (V) are all injective.

A subtensorial decomposition of a complete lattice V' then is a se-
quence (V; |1 € T) of complete sublattices of V' for which there is an iso-
morphism ¢ of V' onto a subtensorial product &), ¢ Vt/ O with

mo(et(Ve)) = v(Vi), teT o

Subtensorial decompositions can be characterized internally. For reasons
of simplicity, we limit ourselves to the case T'= {1, 2}.

Proposition 77. A pair (V1, V2) of complete sublattices is a subtensorial

decomposition of V' if and only if Vi and V5 are mutually distributive and
their union generates V.,

Proof. 1If V] and V5 are mutually distributive sublattices of V', then by
Theorem 37 (p. 205). &3, there is a complete homomorphism

p:VioV, =V,

for which it holds that p o<y = idy, for t = 1 and t = 2. If V} U V5 generates
V', then this morphism must be surjective, i.e., V then is a factor lattice of
Vi,

If, conversely, (Vj, V) is a subtensorial decomposition, then Vi and V;
are mutually distributive, since this property is inherited by factor lattices.
Their union generates V', because V| © V; is generated by (Vi) Ue(Vz). O

In the case of doubly founded concept lattices, the notation for subten-
sorial products can be further simplified. By Theorem 26, @, B(KK:) is
isomorphic to the concept lattice of the direct product

(G, M, V)= X K,

teT

of the respective contexts. The closed relation V; always corresponds to
the sublattice (B(K:)). In the doubly founded case, we can be sure
that a subtensorial product is always induced by a compatible subcontext
(H N, VN H x N) of (G;M,V). Such subcontexts are described by the
following definition:

Definition 67. A subdirect product of contexts
= (G My L), teT,
is a compatible subcontext
(H,N,V N H x N)

of the direct product X,y I; having the property that for each ¢ € T the
subcontext
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(H;.A\VT. [7 N H( X A\‘vt)

with
Hiy:={hy |h€ H} and N,:={n¢|n€ N}

is dense in ;. O

Proposition 78. The subdirect products of contexts are precisely the com-
patible subconterts of subtensorial products.

Proof. According to Proposition 38 (p. 102), the condition (here restricted
to ¢ (B(K:))) that the map IIy n is injective, is equivalent to the fact that
the subcontext (H,N,V; N H x N) is dense in (G, M,V;). This in turn is,
according to the same proposition, equivalent to the fact that

ANV =4 and (BNN)V'V' =B

holds for each concept (A, B) of (G, M,V;). If we set A; := {g: | g € A},
we recognize by means of the description of the concepts of (G, M,V,) in
Proposition 71 that

{9elge ANH} = A NH,

and therefore

(ANH)YY = {g € G |gr € (A N H)"").
Consequently,

(ANH)YYVt =4 <= (A, NnH) =4,

This is again the condition from Proposition 38. Hence, (H, N,V;NN x N)
is dense in (G, M, V), if and only if (H;, N;, [y N H; X NV;) is dense in K,. O

The restriction of the closed relations V¢ to such a subcontext then yields
the subrelations J; := V; N H x N with

B(H.N, J;) = B(K, ).

We now want to find out under which conditions a context is isomorphic to
a subdirect product. For this purpose we define

Definition 68. A subdirect decomposition of a context
K = (G, M, 1)

is a family (I;)ie7 of subrelations of I with the following properties:

Lo I =Uper I
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2. There are surjective maps
a:G— H, 3:M—= N
onto a subdirect product (H,N,VNH x ) with
glim << agV,sm.

&

If (H,N,VNH x N) is a subdirect product, then (V; N H X N)ier is a
subdirect decomposition, as can be easily recognized by choosing the identical
map for  and j, respectively.

The maps « and 3 do not have to be injective. Nevertheless, from «g =
ah it always follows that ¢/t = h!t for all t € T and in particular ¢’ =
h'. Hence, («, 3) is *up to clarification” an isomorphism of (', M, I) onto
(H N,.VN H x N) and even of (G, M, I;) onto (H,N,V, N H x N) for all
t € T. In particular, the contexts Iy := (G, M, I;) and (H,N,V,NH x N)
have isomorphic concept lattices. 1t suggests itself to use these contexts as the
factors of the direct product (note that such factors are not further specified
in the definition). We show that this is possible, but before that, we clarify
the contexts. For this purpose we define for each of the contexts

K == (G, M, 1)
equivalence relations 6, on ¢ and ¥, on M through
(g h) €@, = glt=nl
(mn) €V <= mlt = nlt,
Hence, ©; = ker~; and ¥; = ker y;. The context
K = (GO, MW, I)

with .
(9]0, [m]¥) € It : &= (g, m) € I,

then is the corresponding clarified context.
Then, we can naturally assign a subcontext of the direct product

X M? = X ("/(')u X J‘I/th)

teT ter teT

of the clarified contexts [y to the context I := (G, M, I).
The symbol V is only used for a better distinction. It denotes the inci-
dence of the direct product, i.e.,

(gt)tGTFS(”I()(GT — gsls]"'s-
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The role of the maps a and 3 from Definition 68 is taken over by the maps
¢ and 7, which are defined as follows:

G = X GOy, g = ([9]Ot)ter
teT

T: M — X M/, m = ([m]¥)ier.
teT

The image context .
(1GTM, VNG x T™)

obviously has the property that the projection maps

([9]@1)ieT + [9]Os, ([m]¥)ter = [(m]¥,

are surjective on the factor contexts whereby their images are certainly dense.
Furthermore, we have

glm (nE) < agVipm (in G,IM, VNG x TM)).

Hence, if it is compatible, this subcontext is certainly a subdirect product.

Proposition 79. (I;)ier is a subdirect decomposition, if and only if the sub-
context -
(LG TM, NV NG x T™)

of Xiep K2 is compatible.

Proof. If this subcontext is compatible, it evidently satisfies all conditions of
a subdirect decomposition. The other direction is more laborious. Hence, let
(H,N,VNHx N) be a compatible subcontext of an arbitrary direct product
Xte»p((;'t. M;,J;) and let a : G — H, 3: M — N be mappings satisfying
glim < agV.3, as in Definition 68. We have to show that under these
conditions the subcontext mentioned in the proposition is also compatible.
For this purpose, we use the characterization from Proposition 35 (p. 100).
Hence, let h € 1 be an object of the subcontext, i.e., h = ([9]@¢)ter for an
object ¢ € (. Furthermore, let m := ([m;|¥:)ter be an arbitrary attribute
of the direct product of the K2 with (h,m) ¢ V. Then, we have to show that
there is an attribute @ € TM with

(h,7) ¢ V and m"¥ C 7.
From the preconditions we obtain

(l9]E+, [mt]q’t) ¢ ft

forallt € T, i.e.,
(g.my) ¢ 1, foralltel.
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Then, we also have
(aeg.B3my) € ¥V, forallt eT.
If

ag = (gt )ter

and
Bme =: (M et for every s € T,

then we have
(geom! )€ Ji forallteT.

If we set
L= (mD)ier.

then [ is an attribute of the direct product with (ag,l) ¢ V. Since (H, N, VN
H x N} is compatible, there must be an attribute 3n € N with

(ag.3n) ¢V and (¥ C (3n)"
If we set 3n =: (n4)rer, then with Proposition 72

(mH)¥e C (ng)V for all t €T,
l.e.,

(3m)¥e C (8n)V forallt €T,

which yields
mlt C nlt forallt eT.

Hence, we obtain
(It C ([’ forallteT

and with m:=n _ .

m" C Y
Because of (ag, 3n) ¢ V, we have (g,n) ¢ I and therefore (g, n) ¢ I, for all
t €T, which yields the statement

(h) ¢V,

which we were still lacking. O

Proposition 79 contains a structural description of subdirect products.
It is particularly easy to make use of this fact when we are dealing with a
doubly founded context. We shall explain this in the following theorem. The
notations used for this purpose are to be understood as follows: A family
(It)ter of subrelations of (. M, 1) is called doubly founded if each of the
contexts ((v, M, /;) is doubly founded. The arrow relations ,/ and 7 also
refer to these contexts.
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Theorem 29. A doubly founded family (I;)icr of subrelations is a subdirect
decomposition of (G, M, 1) if and only if:
1. 1= UreT I,
2. if g fm for allt € T, then there exists an object h € G with g{* = hlt
forallt €T,
3. if g 7 my for all t € T, then there exists an attribute n € M with
mtl' =nlt forallt€T.

Proof. From Proposition 79 we infer that (I;)¢c7 is a subdirect decomposi-
tion if and only if the subcontext

(1GLIM N NG X TM)

is closed. Because of the condition of foundedness, this is equivalent to its be-
ing arrow closed. This is, however, precisely what is postulated in conditions
2) and 3) of the above theorem. Condition 2), for instance, is a rephrasing
of the condition

([9:]@t)ter  Tm  implies  ([g:]O:) € .G,

since ([g¢]©;) forms part of 17, if there is an object h € ¢ with [¢;]©; = [h]O;
forallt e T. O

Together with Proposition 77 this can be extended into a practicable
condition. For this purpose, we call a pair (z, y) of a doubly founded lattice
V weakly distributive if

g<rVy <= g<rorg<y
holds for every \/-irreducible element ¢ € J(V') and dually
m>xAy <= m>rorm2>y

holds for every A-irreducible element m € M(V). Hence, two concepts
(A1, By) and (Ag, By) certainly form a weakly distributive pair if 4; U A is
an extent and B; U Bj is an intent. We have seen above that this is always
the case for pairs (r,y) of elements of a tensor product with » € ¢;(V;),
y € ¢;(V;) and ¢ # j. This implied that those sublattices were mutually
distributive. In fact, the following statement can be shown by means of the
same proof as as was given for Proposition 76:

Proposition 80. If all pairs (x¢,y:). t € T are weakly distributive, then

V(J',Ayt): /\(VJ?'S\/ \/ Ye)

teT SCT ses teT\ s

holds as well as the dual equation. a



178 4. Decompositions of (‘oncept Lattices

Theorem 30. Let Vi and Vi be complete sublattices of V and let V', Vi and
V, be doubly founded. Then (Vy, Vi) is a subtensorial decomposition of V if
and only if the union V4 UV, generates the lattice V' and every pair (21, 22)
with 1 € Vi and ©o € V3 is weakly distributive.

Proof. TFrom the Propositions 77 and 80 it immediately follows that the
conditions specified are sufficient for a subtensorial decomposition. It remains
to be shown that weak distributivity is necessary as well. For this purpose
we use Theorem 29 for the standard context

(V) = (J(V),M(V),<)

of V. Consider an element r; € V; and an element x5 € V5 as well as a
\/-irreducible element g € J(V) with ¢ € 2, and ¢ £ 5. Then there are
elements my, my € M(V) with y < my, 22 < mg and g 4§ mi, g 4 ma,
where /7 isthe arrow relation with respect to the closed subrelation I;, which
belongs to V;. According to Theorem 29, there is an attribute m € M (V)
with m’t = m{l and m'? = mgz. Condition 1 of Theorem 29 forces m! =
m't Um!2, from which it follows that ¢ £ m. Since m = m; Vmy > 1 V 23,
this implies ¢ £ 21V 1y, which is one of the conditions of weak distributivity.
The other follows dually. a

Corollary 81. Two doubly founded complete sublattices Vi and V5 whose
union generates a sublattice that is also doubly founded are mutually dis-
tributive if and only if every pair (1, x2) with x1 € V1 and x5 € V5 is weakly
distributive. a

Figure 4.23 The dotted lines in the diagram on the right link the weakly distribu-
tive pairs of incomparable elements.
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Example 8. We examine the lattice represented in Figure 4.23 to see if it
has a subtensorial decomposition. Apart from pairs of comparable elements
(which are automatically weakly distributive), the lattice only contains three
weakly distributive pairs. They are represented in the diagram on the right
side by the dotted lines. We recognize that there is only one non-trivial
decomposition into two sublattices that satisfy the conditions in Theorem
30. Those two sublattices are marked in the right diagram by the filled or
doubled circles, respectively.

(Llafbleld] [Lflafblec[d] [L]afb]c]d]
1] x| x 1ilx{ x| A2/ 1 VNV
20 x| x| x 2]l x | x| x |/ 2 NNV
3 X | X | % 3N A % 3.2 x| x| x
4 X HIPAPAPEE 4 arars
ILiffablc|d [_zab,c,d
L x 1,2.4
2 X | x 3 =
3,4 X

Figure 4.24 Context for the lattice from Figure 4.23, together with the closed
relations for the sublattices. Below, the clarified contexts.

N a,b c d
a b,e,d| a bc,d| a b,c,d
1 [L2.4 X x ' AR
3 % % s X S X
9 [ 1,24 X X X X 7
3 X X X X Va X
34 | 12,4 7 ,/ X X
’ 31 S X / x X X «—
T T 1 T

Figure 4.25 The direct product of the two clarified contexts from Figure 4.24.
The context from Proposition 79 is marked by the arrows on the margin.

Figure 4.24 represents the context K(V') and the closed relations be-
longing to the sublattices, including their arrow relations. For those small
contexts, it is easy to verify that the conditions in Theorem 29 are indeed
satisfied. Therefore, we can switch over to the clarified contexts to find a
concrete representation as a subtensorial product. Proposition 79 explains
how we have to proceed. The subcontext

(tG,TM,V NG x M)
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Figure 4.26 The concept lattice for the context from Figure 4.25 is the tensor
product of the sublattices from Figure 4.23.

of X,ep K2, which is mentioned there, is marked in Figure 4.25 through
arrows on the margin. From the arrow relations we can see that it is arrow
closed and thus compatible. Finally, Figure 4.26 shows the concept lattice
of the context from Figure 4.25, 1.e., the tensor product of the two sublattices
forming the subtensorial decomposition. The lattice we started with can be
recognized as an interval below the largest element; its elements are indeed
separated by the projection map.

4.5 Hints and References

4.1 The introductory lines of this section, approximately up to Proposition
60 are analogous to known results of General Algebra. The complete lattices,
however, do not form part of the structure classes treated in General Algebra
and therefore require separate proofs. Some of them can be found in Pierce
[135]. The concept-analytic results are based mainly on [192].

4.2 This section follows [195]. The decomposing and gluing technique de-
scribed in this section was developed and successfully employed by Herrmann
[85], an updated version can be found in Day and Herrmann [34]. Vogt [178]
has employed the technique of atlas-decomposition when investigating the
structure of subgroup lattices of finite Abelian groups.

4.3 The substitution sum and the substitution product were used by Luksch
and Wille [115] for the concept-analytic evaluation of pair comparison tests.
They were formally introduced in [114] and thoroughly examined by Stephan
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[161], [160]. From the dissertation of Stephan we have taken in particular
Theorem 25 and the preparatory Proposition 70. However, we have intro-
duced a little change in the notation compared with the literature we quote
and now write {/(a, b))}V, where in earlier publications appeared U/ (b, a)V.

4.4 Tensor products of complete lattices have been introduced in many arti-
cles. Qur presentation (Sections 4.4, 5.4) does not claim to be complete, but
is meant to supply the basic knowledge. The definition of the tensor product
discussed in this section has been taken from [197] and the generalization
in [206]. Precursors can be found among other things in Waterman [183],
Mowat [129] and Shinuely [155]. A description of the extents and intents of
direct products of contexts (as (i,-ideals) can be found in [206]. The signifi-
cance of this product for category theory was discussed by Erné [19]. Other
sources are Bandelt [7], Raney [138] and Kalmbach [92].
Subtensorial products are treated in [67].



5. Constructions of Concept Lattices

A construction method by means of which we obtain from two contexts K
and Ky a new context, let us say K, can only be a useful construction principle
for concept lattices, if it is invariant under reduction. This means that,
if the same construction is applied to contexts whose concept lattices are
isomorphic to those of K; and K, then the concept lattice of the result
should be isomorphic to that of .

We have already presented some such methods in the first chapter. Now
we shall describe four constructions in detail.

In the case of the subdirect product we consider sublattices of direct prod-
ucts. In 4.1 we have already examined how we can recognize the correspond-
ing closed relations of the context sum. Now we are going to show how such
relations can be constructed as a fusion of contexts.

Although the subdirect products are of central significance for General
Algebra, they are rarely regarded as means of construction. One reason is
their ambiguity. A subdirect product is not uniquely determined by stating
its factors. This can however be easily remedied by choosing fixed generat-
ing systems in the factors. Thereby we obtain the P-product of algebraic
structures and the P-fusion of contexts. A possible application of this con-
struction consists in jointly unfolding different data sets which relate to the
same situation.

The atlas-gluings introduced in 4.2 will be supplemented by a method in
which the lattices are glued “sideways”. This can be depicted particularly
easily if the the overlap area of the lattices involved is the union of an ideal
and a filter.

The third section deals with the technique of doubling convex subsets of a
concept lattice. This construction has been used successfully in mathematical
lattice theory, among other things for the examination of free lattices.

Finally we shall return to the tensor product of complete lattices. We
shall give a lattice-theoretic characterization of this product and introduce
the tensorial operations, by means of which we can trace back calculation
within a tensor product to calculation within its factors.

B. Ganter et al., Formal Concept Analysis
© Springer-Verlag Berlin Heidelberg 1999
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5.1 Subdirect Product Constructions

We introduced the (direct) sum of contexts in Definition 34 (p. 46), however,
we formulated it only for the case of two contexts. More generally, for a
family of contexts K := (G, My, I;), t € T we define the sum by

> (Ge My 1) - U(rt U M, UL ulJasx M

teT s#t

presupposing that the sets G, t € T as well as the sets My, t € T are
pairwise disjoint. If necessary, this can be enforced by previously replacing
every context [ := (G, M, It) by the isomorphic context K, = (G,, M, [,)
with Gy := {t} x G and M; := {t} x M, as in Definition 34 (p. 46). Then
we obtain

Theorem 31. The concept lattice of a sum of contexts is isomorphic to the
product of its concept lattices:

B K )= X B
teT teT
The map
(A, B)— ((ANG, BN M) |[teT)
is a natural isomorphism.
The projection map on B(Iy) combined with this isomorphism is the map

(4. B) = (AN Gy, BN M,).

The corresponding compatible subcontext is ¥y =: (G, My, I).

Proof.  We only have to show that the concepts of the sum context are
precisely the pairs (A, B) with 4 C|J G, B C |J M; which have the property
that for every ¢ € 7' the restriction (AN Gy, BN M;) is a concept of ;. This
is easy: By means of the definition. we realize that for a set 4, C G} the
derivation in the sum context can be determined as follows:

Ap=Altu M.
s#L
For an arbitrary subset A C (¢ we therefore get (with A; := AN G})
A=(Jay=Nar=J4a"
teT teT teT

Dually, the extents of the sum context are precisely the unions of extents
of the summands, which yields the isomorphy we claimed. The statement
on the compatible subcontexts can be verified by means of Proposition 34
(p. 100). O
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In this section we want to characterize complete subdirect products, i.e.,
complete sublattices of a direct product for which the projection maps are
surjective, in the language of contexts. We have already taken first steps in
this direction, since to every complete sublattice corresponds a closed relation
J in the sum context and, by Proposition 48 (p. 114), the surjectivity of the
projection maps is equivalent to the condition J N Gy x My = [I;. This is
summarized in the following proposition:

Proposition 82. The subdirect products of concept lattices B(Gy, My, It) are
in one-to-one correspondence to the closed relations J of the sum context
ZtET(C:t’ A[t. I[) with J N (,/l't X 11115 = ]t fO?‘ all t eT. O

We want to describe such relations .J more precisely. For this purpose we
need the notion of a bond between contexts, which will be treated in more
detail in section 7.2. To simplify the formulation we introduce an abbreviated
notation: If ¥, := (G, My, 1) and K = (G, My, I;) are contexts and if

Jst € Gy x My is a relation, then for X' C G, Y C M, we write

X! instead of X7+ and Y* instead of Y7o,
Definition 69. A bond from a context K; := (G, M;, I;) to a context
K == (G, My, It) is a relation Jg; C iy x M, for which the following is true:

- g'is an intent of K, for every object g € (i
- m® is an extent of Iy for every attribute m € M;.

&

A bond can be well illustrated in the imagery of

the cross tables by writing the two contexts diagonally
below each other and entering the bond in the right K, It
upper quadrant (a bond from [ to 5 can be entered
into the left lower quadrant). Each row of J,; has to K,
give an intent of ¥; and each column of J; has to give

an extent of [, .
Proposition 83. If J,; is a bond from ¥, to K and if Js is a bond from
s to K, then for g € G\, m € My the following holds:

t

m € g‘)'S é 7_nb 2 gSS i i gS 2 mSS : ; g € mSST'

Proof. (cf. Figure 5.1.) The equivalence in the middle

E]

m* D g¢"" = ¢' Dm™

follows immediately from Proposition 10 (p. 18), because ¢* is an intent and
m* is an extent of ;. The other two equivalences are dual to each other and
result easily from the definitions. We have for example
me gt = meg (since m € My)
@ 7_,1/ :—) gSS
<~ m'Dyg" (since ¢** C G, and m* = m/ N Gy).
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M, M, M,
g = G,
EE G.
A0 1L )5
{ |:| }m®

gs
Gt
gsst m

Figure 5.1 With reference to the proof of Proposition 83.

Proposition 84. If J,; is a bond from K, to K, and Jg is a bond from K,
to K¢, then
Jrs o dgri={(g,m) € G, x My | ¢*° Cm*}

is a bond from I, to K. For an arbitrary bond J,¢ from K, to K, J,; C
Jrs o s tf and only if

g' Cg*" forall g € G,
or, equivalently, if m” C m**" for all m € M,.
Proof.  According to Proposition 83
{meM | (gm)edodut={me M, |g"* Cm'} = g¢**",
for fixed ¢g € ,, i.e., this set is an intent of K;. Dually we show that

{g € G, | (gm) € Jrs 0 Jp =m*"

holds for every m € M,. Thus, J,, o.J, is a bond. The second assertion of
the proposition follows from the same argument. a

We can visualize the definition of J,.; o J;; without falling back on the
contexts K. and [, since we have

Jysodg = U B" x At,
(A,B)eB(K)

which can be easily interpreted with the help of Figure 5.2:

We add (g,m) to J,s o Ji whenever there is a concept (4, B) of K,
satisfying B C ¢* and 4 C m*®. Therefore, K is a dense subcontext of the
context in Figure 5.2.



5.1 Subdirect Product (lonstructions 187

Figure 5.2 With reference to the definition of J,. 0 J.;.

Proposition 85. If J C I is a subrelation in the sum context (G, M,I) :=
Yier Kb with the property that

[t = th =JnN Gt X A/It

holds for allt € T, then the following statements are equivalent

1. J is a closed relation.
2. The Jg := J N (G x M) are bonds and

Jri C Jrs 0 Jst

holds for all r,s,t € T.

Proof. If J is closed, then, for every object g € G, (g7, ¢””7) is a concept of
> K. We learn from Theorem 31 that the subcontexts K, are all compatible,
and draw the two following conclusions:

First, g* = ¢/ N M, must be an intent of K, . This, together with the dual
argument for attributes, shows that all .J5; must be bonds.

Second, (¢7/ NGy, g’ NM,) must be a concept of K,. Hence, g’/ NG, = ¢**
and in particular ¢** C g7/, from which we can infer

gsst :-) gJJt — gt

for arbitrary ¢t € 7. This holds for every object g and, according to Proposi-
tion 84, implies J,; C J,, o J,;. Hence, we have proved (2).

If, on the other hand, we presuppose (2), then we can use Proposition 47
(p. 114) to prove that J is a closed relation. Hence, let (g, m) € I'\ J, which
because of I; = J;; implies that g € (5, and m € M, hold for suitable r # s.
Since J;5 is a bond from K, to K, ¢° is an intent of K. Therefore, there
must be an object i € ¢°* with (h,m) ¢ I. According to Proposition 84 we
have

gt CgtCht
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for every t € T. and consequently g7 C h’. This, together with the dual
argument, shows that the condition of Proposition 47 is satisfied: J is closed.
O

The Propositions 82 and 85 can be summarized as follows:

Theorem 32. For a subrelation J C I in the sum context (G, M,I) :=
Y et Ko the following statements are equivalent:

1. J is a closed relation and corresponds to a subdirect product of the B(Ky),
tefT.
2. J is a closed relation and Iy = Jyv (2= J NGy X My) holds for allt € T.

3. The Jg¢ := J NGy x My are bonds from K, to K; with Jy = I, and
Jrt Cdpsodg forallr,s,itel.

O

Note that the last point of the theorem does not contain the requirement
that J is closed. The latter follows (as in Proposition 85) as a consequence if
J is made up of bonds, as specified above. If the contexts [ are all reduced,
then (G, M, J) is reduced as well. This follows from Proposition 48 (p. 114).

In order to be able to use the subdirect product as a construction method,
we introduce the following notion:

Definition 70. If P is aset, V is a complete lattice and o : P — V is a map,
then we call (V, @) a (complete) P-latticeif V' is generated by {ap | p € P}.

When P := {1.2,...,n} we also speak of a (complete) n-lattice. If (P, <)
is an ordered set, then we call (V,«) a (complete) (P, <)-lattice if « is
furthermore order-preserving.

To a family (V;, ), t € T, of complete P-lattices we can naturally assign
a complete sublattice of the direct product X .7 Vi, namely the sublattice
which is generated by the elements

ap:=(ap|teT), peP

We call this lattice the P-product of the lattices (V;, a¢). As a symbol for
P .

P-products of two lattices we use x or X, respectively. o
Example 9. In Figure 5.3 a 4-product of three small chains is represented
as a sublattice of the direct product. The elements of the set P = {1,2,3,4}
are written below those lattice elements on which they are mapped by «.
In the diagram on the right, only the elements represented by small circles
belong to the 4-product; the additional lines have been drawn to indicate the
situation of the lattice within the direct product.

If the lattices involved are concept lattices, we use the following obvious
terms: (KK, «) is called P-context, if (B(K), «) is a P-lattice. In this case, «
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Figure 5.3 A simple example of a 4-product.

maps the elements of P onto concepts of K; for those images we most often
write (AP, BP) := ap. Then we call (B(K),a) “the concept lattice of the
P-context (I, ). for short.

Evidently, the P-product is a complete subdirect product, since the canon-
ical projection 7 maps the generating system {ap | p € P} of the P-product
onto {aup | p € P}, i.e., onto a generating system of V;. Therefore, m
must be surjective. Hence, according to Theorem 32, to the P-product of
P-concept lattices there corresponds in a natural way a closed relation J in
the sum context. This is described more precisely in the following theorem,
in which we shall again use the abbreviation Jg := J NG x My

Theorem 33. The closed relation J of the sum context Y, .o Wy which be-
longs to a P-product of P-concept lattices (B(I, ), o) is characterized by the
following properties:
1. fOT‘ all t S 7‘, J” = [1,
2. for all s,t € Tys # t, Jot is the smallest bond from ¥, to ¥, which
contains the sets
AP x BE, pe P,
AP and Bl being defined to be agp =: (AL, BP) and ap =: (AL, BY).
Proof.  From Definition 69 it immediately follows that the intersection of

bonds is a bond. Therefore, there is always a smallest bond from K, to K,
s # t which entirely contains the sets

AP x B, p€EP.

If we denote this bond by J,; and set Ji; := I, then obviously

J=J Ju

steT
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is precisely the relation which is characterized by the two conditions of the
theorem. We shall show first that J satisfies condition 3) of Theorem 32.

For this purpose we consider, for fixed r,s,t € T, p € P, an attribute
m € B. Because of A? x BI' C J,; we certainly have m* D AL. Likewise,
because of AL x B! C J,,, we can infer for each object that g € AY ¢° D B
and, since (A?, BI') is a concept of I, even ¢g*° C Af. Hence, we have
g% C AL C m*® and obtain, together with Proposition 84,

(gym)e AL x Bl = ¢ Cm’
= (g,m) € Jrs0dg.

Since this is correct for all ¢ € A2 and all m € BY, we have
:‘1[; X B;) g ']7‘8 (¢] Jst'

Proposition 84 furthermore states that J.; o J; is a bond. Since we have
assumed that J,; is the smallest bond containing all those sets, it follows
that

th g Jrs &) Jst-

Thus, the third condition of Theorem 32 is satisfied and consequently J is
the closed relation of a subdirect product of the B(K,).

It remains to be shown that J is the right closed relation, i.e., that it really
corresponds to the P-product specified. This is generated by the elements
{ap | p € P}; the corresponding concepts in the sum context are

(AP, B7),  Ar=|JAl Bri=JBl, tel

J contains all sets AP x B, and every closed relation containing those sets
belongs to a subdirect product and therefore has to satisfy the third condition
of Theorem 32. .J is the smallest closed relation for which this is true, and is
therefore, according to Proposition 45 (p. 113), the closed relation belonging
to the sublattice generated by (AP, BP). i

The context construction described in Theorem 33, which corresponds to the
P-product, is here given a name:

Definition 71. The P-fusion of a family (K;,«;), t € T of P-contexts is
the P-context
(G, M, J), ),

in the case that J C I is the subrelation in the sum context (G, M,I) :=
Y ter K¢ which is characterized by the conditions of Theorem 33 and in the
case that « is the map defined as follows: If for any ¢t € T' a;p =: (A}, BY),

then . .
ap = (U AL, U BY).

teT teT
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In the case of two P-context we use

P
(K, aq) + (K2, az)

as the symbol for the P-fusion. O
Then, of course we have:

Corollary 86. The concept lattice of a P-fusion of contexts is isomorphic
to the P-product of its concept lattices. a

Example 10. We calculate the 4-product of the two 4-lattices

In this case, the method used in the preceding example would lead to com-
plicated intermediate steps. Therefore, we determine the corresponding 4-
standard contexts and obtain:

Now we form the 4-fusion of these two contexts, as described in Theorem
33, l.e., we form the disjoint union of the two contexts and add the sets
{91, 92} x{n1, n2, ns, ns}, {91, g2} x {na}, {91, 93} x {n1, na, n3, 4}, {91, 93} x
{n1} for Jy 5 as well as the sets {hy} x {mq, ma}, {hy, ho, hs, ha} x {my, ma},
{ha} x{my,ms}, {h1, ha, h3, hs} x {my, ms} for J2; to the incidence. In the
present case this has already resulted in bonds. In general, the incidence must
be extended until bonds are obtained. As a result we obtain the following
4-context:
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a(l)

={{g1,92,h1 },{mi,m2,n1,n2,n3,n5})
= ({91, 92, h1, ha, hs, ha}, {m1, m2, n2})
a(3) —({91-93"12},{‘ml‘"ns,nl,nz.ng,m})
= ({g1,95,h1,h2, k3, hs }, {m1,m3,n1 })

The corresponding concept lattice is isomorphic to the 4-product we have
been looking for. It is presented in Figure 5.4.

Figure 5.4 The 4-lattice on the right is the concept lattice of the 4-fusion calculated
in Example 10 and is consequently isomorphic to the 4-product of the factors on
the left.

For the special case that the contexts K; have the same objects and at-
tributes, there is a natural choice for the set P. In the following definition
we presuppose merely for reasons of convenience that G and M are disjoint.

Definition 72. Contexts ; := (G, M, I;) with a fixed object set G and a
fixed attribute set M can be interpreted as P-contexts (K, a;) with P :=
G'UM and

ag = (g'¢") € B(K,) forged,
e B(K,) forme M.

am = (m m
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If ((G, M, 1), «)is the P-fusion of such a family of P-contexts, then (G, M, I)
is called the fusion of the contexts ;. O

5.2 Gluings

The geometric nature of the lattice diagrams suggests a simple construction,
namely that of putting together lattices to form larger lattices by gluing them
together along common substructures. Such a possibility has already been
introduced in Section 4.2, but as a decomposition principle.

Such methods do indeed play a role in the construction, but they turn
out to be complicated in the details and are not always easy to manage.
The same is true for the corresponding context operation, the union. Under
suitable additional conditions, however, we obtain a smooth and practicable
theory.

Proposition 87. Let (Go, () and (Mg, Mo) be concepts of (G, M, I). Then
(M), Mo) < (X,Y) or (X,Y) < (Go, Gh),
holds for every (X,Y) of (G, M, 1) if and only if
I CGx My U Gox M.

Proof.  “=": If (g,m) € I, then (M{§, My) < Mo
(¢",4") (i.e., m € M) or (¢",¢") < (Go,Gy) (ie., g € o
Go). “=": f I CG x Mg U Gox M and (X,Y) is i
a concept with X ¢ G, then X’ C My and therefore ]
(M, Mo) < (X, Y). O

If we are confronted with the situation described in the proposition, the
concept lattice is made up in a simple way of two lattices, namely of the ideal
((Go,Go)] and the filter [(M{§, Mo)), which overlap in the (possibly empty)
interval [(M{, Mo), (Go, (j)]. We speak of the Hall-Dilworth gluing (cf.
Definition 60 on page 141), in the special case (Go, Gg) = (M{, M) of the
vertical sum, which has already been mentioned on page 41. There we
also introduced the horizontal sum, where two lattices are “glued together
sideways” by identifying the two largest and the two smallest elements. In
Section 4.3 we showed that the substitution product generalizes both con-
structions.

Whereas the Hall-Dilworth gluing is the simplest case of an atlas-
construction in the sense of Section 4.2, another way of generalizing the
horizontal sum suggests itself, namely the horizontal gluing, where we allow
the lattices involved to overlap in more than the two border elements. The
general situation, namely the situation that a concept lattice is the union of
sublattices, is treated in the next (rather trivial) proposition:
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Proposition 88. For relations J; C (' x M, t € T, the following statements
are equivalent:

1. B(G, M, User Ji) = Urer B(G, M. ;).
2. The J; are closed relations of (G, M, UteT Ji) and

AxBC|JJ=3er AxBC .
teT

0O

The proof is simple, but the result is not very rewarding. In order to
obtain a condition which is easier to manage, we limit ourselves to two lattices
and assume that the overlapping is the union of an ideal and a filter, i.e., that
it has the form described in Proposition 87.

Definition 73. A complete lattice V' is an ideal-filter gluing of two sub-
lattices U/; and U if:

1. v=U,ul,
2. x <yin V implies {x, y} C U or {z,y} C Us.
3. Uy NnU; = (a] U [b) for suitable elements a,b € V.

An ideal-filter gluing can be recognized by the context:
Theorem 34. The following conditions are equivalent:

1. B(G,M,I) is an ideal-filter gluing of complete sublattices Uy and Us.
J1:=C(Uy) and Jy 1= C(Us) are the corresponding closed relations.
2. Jy and Jy are closed relations of (G, M, I) and
a) g' = g7 or ¢! = g’% holds for every object g and, dually, m! = m”1
or m! = m72 holds for every attribute m,
b) there is an extent Go and an intent My of (G, M, I) with J; NJy =
(Gox MUG x Mg)N 1.

Proof. 1) = 2a): Every object concept vg belongs to one of the sublattices,
but vg € U; is equivalent to g/ = ¢7+.

1) = 2b): By assumption U'; NU; = (a] U [b) for suitable concepts a =:
(Go, Gg) and b =: (A[é. ]‘Io) It is evident that JlﬂJg 2 (Go XI‘/[UGXM())QI,
what remains to be shown is the other inclusion. Assume that (g, m) € JiNJ,
and m ¢ Mo. Then there are concepts (X1, Y1) € U and (X3, Yy) € Uy with
(g,m) € X; x Y;. The infimum of these concepts is comparable with both of
them, i.e., one of the three concepts (X7, Y1), (X2, Y2) and (X, Y1)A(Xs, Ys)
is not in Uy N /3. The intent of this concept contains m, i.e., it cannot be
a subset of Mo. Hence. the concept is contained in the ideal ((Go, (})], and
we obtain X1 N .X; C G, which implies ¢ € Gy.
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Figure 5.5 Context of an ideal-filter-gluing. In the hatched area .J; and J2 coincide
with I; this is at the same time the closed relation belonging to the overlapping of
the lattices.

2} = 1): We have to show that all concepts and all comparabilities between
concepts of (G, M. I) originate from one of the sublattices U;. Let us assume
that there is a concept (X,Y) € B(G, M, I) that belongs neither to U; nor
to Uy, so that neither X XY C J; nor X xY C Jy. Then there must be pairs
(g.m),(h,n) € X XY with (g,m) € J1\ J; and (h,n) € J;3 \ Ji, and from
the presuppositions it follows that ¢, h ¢ Go and m,n ¢ My. Hence, (g, n)
cannot belong to Jy NJ2, but certainly (g,n) € I, since (g,n) € X xY. From
(g,m) € J1 \ Jo we infer ¢! = g/1/ i.e., (g,n) € Jy, and from (h,n) € Jo \ J;
we dually infer n = n’2 i.e., (g,n) € Jo, which is a contradiction.

If (X,Y) € B(G. M, Jy) and (U, V) € B(G, M, Jy) and (U,V) < (X,Y),
then U C X and V C Y, ie., U xY CJ;NJy. This implies U C Gy (i.e.,
(U, V) € B(G, M. Jy)) or Y C My (i.e., (X,Y) € B(G, M, J3)), in any case
{U,V), (X, ¥)} CU;fori=1ori=2. O

The characterization in Theorem 34 leads the way to the corresponding
context construction. We define

Definition 74. The union of two contexts Ky := (G, My, I}) and Ky :=
(G'g, M3, I3) 1s the context

ﬂ‘/l UK‘Z = ((r'l U G’z, A/Il U 1”27[1 UIZ).

We call K; UK, a gluing of the contexts K; and K; if the following conditions
are satisfied:

1. Go = (fl N (;2 is an extent of Eﬁl U Kz.
2. Mo := My N M, is an intent of ; UK,.
3. I() = ]lﬂfg:Ilm(';())(x‘yuo:lzﬂ(}oxfuo‘
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The context gluing is not the exact counterpart

of the lattice gluing. The preconditions are weaker. M
The condition that ¥; and I£, coincide on G X My,

does not at all enforce that the extents contained 0
in Go and the intents contained in My are also the K

same In both contexts. This is however necessarily Go

true in the case of an ideal-filter gluing. Therefore, it
is rather surprising that the following theorem holds %) Le
true. There is a snag in the theorem, which we have
to point out. It says that the concept lattice of the
gluing of two contexts K; and [y is the ideal-filter
gluing of two sublattices, but it does not say that
those sublattices are isomorphic to B(IK;) and B(K;). In fact, this is gener-
ally not the case.

Theorem 35. B(K) is the ideal-filter gluing of two complete sublattices Uy
and Uy with
Uy N Uy = ((Go, Go)] U [(Mg, M)
if and only if K is the gluing of two subconterts Ky := (G, My, ;) and
Kz = (Gz, ;Mé, [2) with
Go = Gl N (}2 and Mo = M;NM,.

Proof. One direction immediately follows from Theorem 34: If K :=
(G, M, I) satisfies condition 2 of Theorem 34, then with

Gi o= {gedlg =g},
My = {meM|m'=mh},
Gy = GoU(G\Gy),
My = MoU(M\ M)
and Iy = ING; x My,
I == INGyx M,

we evidently obtain contexts K; and [y wit K = Ky UK, and Go = G1 NG,
Mo=M NMyand Iy =I1NL=11NGyx Mg =1I,NGq x My. Since Gy
is an extent and My is an intent of K, K is a gluing of K; and K,.

For the opposite direction we have to show that K satisfies the second
condition of Theorem 34. For this purpose we set

Jl = Ilulm((;QXA[UC;XAwo)
Jo = LUIN(Gox MUG x My).
Then, we have to prove that J; and J, are closed relations. We show this for

J := Ji, with the help of Proposition 46 (p. 113): Let X C G be arbitrary.
If X ¢ Go, then X7 C M; and because of
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JNG x ;‘11 =1INGx 1\11

it follows that X7/ = X If X C Gp, then X7 = X and therefore
X772 C X7 = X1 C Gy, since Gy is an extent of K. Because of JNGox M =
IoNGox M and X1/ C G we have X = X je, X/ =X =Xx/I O

The closed relations corresponding to the sublattices have been specified
in the proof. They coincide with Iy resp. I3 up to a modification “below Gy”
and “above My". This modification does not apply if I; is dense in J; and
I5 is dense 1n Jy. This is the case if (y is an extent of K; as well as of Ky
and if furthermore every subset T' C (o satisfies

T is extent of K; <= T is extent of Ky

and the corresponding is true for My. Those conditions have the effect that
the ideals generated by the concept with the extent (/o are isomorphic in
B(K;) and B(K;) and that the same is true for the filters of the concepts
with the intents C My. The fact that ; and K; coincide in [y implies that
those isomorphisms can be generated by a single map.

In particular, we have: An ideal-filter gluing of two concept lattices is
isomorphic to the concept lattice of the gluing of the contexts involved.

In practice, the task that usually crops up is the slightly generalized one of
having to glue two lattices together which do not have elements in common,
but in which an isomorphism of the ideal-filter pair of one lattice onto a
corresponding pair of the other lattice is given. In order to implement this
construction for concept lattices, one first modifies the respective contexts
K; and K; in such a way that both the object concepts in the two ideals
and the attribute concepts in the two filters coincide. This can be achieved
through mutual enrichment, and in the case of doubly founded contexts even
through reduction. The objects and attributes of these concepts are given
the same name, if they are mapped onto each other by the isomorphism. For
the remainder one makes the two contexts disjoint. The concept lattice of
the gluing of the contexts modified in this way is then the ideal-filter gluing
of suitable isomorphic copies of their concept lattices, as desired.

Figure 5.6 Ideal-filter-gluing of two cubes
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Illa[bcdel
EHZ“’—_C] llﬂ 0 X X X X
0 X X 0 X X 1f x| x
1] x [ % U 3 x| x — 21| x X
21 x X 411 x X 31| x X
41| x X
Ky Ko
K UK,

Figure 5.7 The context gluing belonging to Figure 5.6.

As an example, Figure 5.6 shows an ideal-filter gluing of two Boolean
lattices. The corresponding context gluing is presented in Figure 5.7. We
recognize that K; UK, is furthermore a context sum and that consequently
the lattice generated by the gluing is a direct product. In general, for context
gluings we have:

(Fo + K1) U (Ko + Ky) =Ko + (Ky UK).

5.3 Local Doubling

A further construction principle consists in suitably doubling a part of a
lattice, for example an interval. We first describe the context construction
and then derive the corresponding lattice construction.

A context manipulation which has no influence at all on the structure of
the concept lattice is the “inverse reduction”, i.e., the addition of reducible
attributes or objects: To a context (G, M, I) we add for example a set N
of new attributes and supplement the relation I in such a manner that for
every n € N, the attribute extent n’ is a extent of (G, M, I). In this case,
(G, M,I) is a dense subcontext of the new context and, consequently, the
concept lattices are isomorphic. The same is true, if instead we add a set H
of new objects to (G, M, I) and make sure that every such object h € H is
reducible with respect to (7, i.e., that A’ is an intent of (G, M, I).

However, if we carry out both extensions simultaneously, the concept
lattice changes considerably. A first clue in this connection is contained in
the next few propositions.

Proposition 89. Let (G(UH, MUN, J) be a context with GNH = MNN = 0
and JOH x N = 0. The subcontext (G, M,I) with I :== J NG x H satisfies
the following conditions:

L. for every object h € H, h' is an intent of (G, M,I),
2. for every attribute n € N, n’ is an extent of (G, M, I)

of and only if (G, M,I) is compatible.
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This can be proved without effort by means of conditions al) and a2) of
Proposition 35 (p. 100). u

Hence, under the conditions of the proposition, the map Il 3 with
(A,B) = (ANG,BNM)
is a surjective complete homomorphism (Proposition 34, p. 100), which, as
the next proposition shows, has small pre-image sets:

Proposition 90. Let (C, D) be a concept of (G, M, I). Then there is at least
one and at most two concepts (A, B) of (GU H,M U N, J) with (C,D) =
(ANG, BN M), namely

(c,.c’y or (D?,D).

(C,C7) is a concept of (GU H, M UN,.J) if and only if
there is an attribute n € N with C' C n”
or there is no object h € H with D C h”.

Proof.  Because of J N H x N = O, one of the possibilities A C G or
B C M holds for every concept (A4, B) of (GU H, M U N, J), which, under
the condition that (C', D) = (AN G, BN M), implies

A=C (and thus B=(7) or B=D (and thus 4 = D’).

(C,C7) is not a concept, if C/ C M (i.e., C/ = CT = D), but D’ ¢ G (i.e.,
D’ # (). For D we argue correspondingly. O

The proposition states the possible pre-images for a concept (C,D) €
B(G, M, I) in a somewhat tricky formulation. Therefore, we repeat the de-
scription of the different cases in the form of a table:

CCn’for | DCh?for [ (C,C7)is | (D7, D) s equal ?
some n € N | some h € H | a concept | a concept
yes yes yes yes (C,C7)y < (D7, D)
yes no yes no
no yes no yes
no no yes yes (C,C7)y= (D7, D)

Thus it is only in the first case that (C, D) has two different pre-images
with respect to II¢; pr. Additionally, we note down:

Proposition 91. If (GUH, M UN,J) is a context with the properties spec-
ified in the preceding proposition, then:

(A, B) is a concept of (GUH,MUN,J) if and only if (ANG,BN M) is a
concept of (G, M, 1) and we are dealing with one of the following three cases

ILACGBCM, A=B', B=4A’
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2. ACGB=A ¢ M
3. BCM,A=B'¢G.

Proof. According to Proposition 89, for every concept (A, B) of (GUH, MU
N, J), the restriction (ANG, BN M) is a concept of (G, M, I), and, since we
have presupposed that J N H x N = @, it follows that A x BN H x N = 0,
i.e., AC G or B C N, and thus one of the cases 1)-3) must hold.

If, conversely, A is an extent of (G, M,I) and A7 ¢ M, then (A, A7) by
the preceding proposition is a concept of (GUH, MUN, J). If A7 = A’ then
B = A7 is an intent of (G, M, I), and, under the condition that BY # B! we
can argue dually. What remains is the trivial case A' = 4”7 and B! = B”.

O
In the case of a doubly founded context, it is M N
particularly easy to check whether the conditions G X
of Proposition 89 are satisfied. We can apply lx o
Proposition 36 (p. 101) and obtain a condition

which is easy to manage algorithmically.

Proposition 92. A doubly founded context (GUH, MUN, J) withGNH = 0
and M NN = O has the properties specified in Proposition 89 if and only if
the following conditions are satisfied:

1. JﬂHxN:()
2. hy/ m, h € H together imply m € N,
3.9 /*n, n €N together imply g € H.
O

We have made no restrictions concerning the choice of the sets H and N.
However, it turns out that we can make a very special choice without loss of
generality.

Definition 75. Assume that € C B(G, M, I) is a convex set of concepts and
w.l.o.g. that €N (GU M) = @. Then

K[e] := (GUC, M UC, ),
I¢ being defined as follows:
eNGXM:=1, IsNExC:=0
and, for ((, D)€€, g€ Gand me M,

gls (C\D) <= g€,
(C.DylIgm :<—= meD.
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M N M ¢
G| 1 G| I |€
H 0 ¢l 3 |0
(GUH.MUN,J) K[e]

Figure 5.8 In the case of the doubling construction H and N can be replaced by
the same convex set ¢.

Evidently, the context defined in this way satisfies the conditions from
Proposition 89, € assuming the role of H as well as of V.

Proposition 93. If we define € C B(G, M, I) by specifying for (C, D) €
B(G, M, I) that

(C,DYel€ <= Fpemgdnen CC n? and D C R,
then € is convexr and
B(GUH,MUN,J)=B(K[]).

Proof. Let Hy := {h € H | RYI7N N # Q}. Ny is defined dually. If
h € H\ Hy, then h’ = (h/1)7 i.e., h is reducible. (GUHy,MUNy,J) is
dense in (G U H, M U N,J) and therefore has the same concept lattice up
to an isomorphism. Therefore, we may presuppose H = Hg, N = Ng. This
simplifies the argumentation, since we have for every h € H some n € N
with A71 C n”, from which we may infer that the concept 57 (h) := (h'1, h’)
of (G, M,I) belongs to €. Likewise, we may assign the concept ps(n) :=
(n’,n?T) € € to every attribute n € N. In the context K[€] those concepts
are objects and attributes. For the object v;(h) we have

(e =h,
and for the attribute u;(n) we have
)

pr(n)fe =n’.

If (A, B) is a concept of (G, M,I) and h € H, then we have
BCh! < BC ~vr(h)e

and dually. Since furthermore for every concept (', D) € € by the definition
of € there exists some h € H and some n € N with pr(n) < (€', D) < y7(h),
we have

Jhen BCh?! <= Fee BC o,
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and the dual statement, which implies
ATNH£0 < A"NC#0 and B/ NN#0 < Bl*nc¢+0.
Now we define for (A, B) € B(GUH, M UN,J)

0 _J@a Al ifaca
Y(A*LB) '_{(BI‘[.B) lfng‘/[‘

and claim that we have thereby defined an isomorphism
¢:B(GUH MUN,J) - B(K[T]).

First of all, we note that ¢(A, B) by Proposition 91 is defined for every
concept (A, B) € B(GUH, M UN,J). By means of the equivalence proved
above and again by means of Proposition 91 we conclude that ¢(A, B) is in
fact always a concept of B(K[¢]) and even that every such concept occurs.
Hence, ¢ is a bijection. The fact that ¢ is also an order isomorphism is
elementary because of the simple shape of the concepts involved. O

Thanks to Proposition 92 we may concentrate on the context construction
K+ K[¢], because it covers the general case. The content of Proposition 90,
specialized to the context I[€], reads as follows:

Proposition 94. For every concept (', D) of € there is at least one and at
most two concepts (A, B) of K[€] with (ANG,BN M) = (C, D), namely

(c, ey or (D¢, D).

(C,C1e) and (D¢, D) are both concepts of K[€]. They are distinct if and
only if (C, D) € €.

Proof. What remains to be proved is only the last sentence. By Proposi-
tion 90 there are two concepts (A, B) with (ANG, BNM) = (€, D) if and only
if there are elements h,n € € with " C hle, D C nfe ie, h < (C,D) < n.
Since € is convex. this is equivalent to (C, D) € €. O

Definition 76. For a convex subset (' of a complete lattice V := (V, <) we

define the complete lattice V('] := (V[(], <) to be
VICT:=(V\C)U(C x {0,1})
and

ryeViCandx<yinV

orx € V\C,y=(yo.1),yo € C.a<yin V

ory € V\C,r=(ro,i)20€C,zg<yinV

or x = (xo, 1),y = (yo.j) € C'x {0,1},i < j and z¢ < yo.
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The assertion that a complete lattice is defined in this way requires a
proof. It follows from the next theorem.

Theorem 36. If € C B(K) is conver, then
B(IK)[€] = B(K[T]).

Proof. We show that the rule

(ANG,BNM), if(ANG,BNM) ¢¢,
o(A,B):=<{ (ANG,BNM),0), if (A BNM)eC,
((AnG.BN M), 1), if (ANG,B) e,

defines an isomorphism
o B[e)) - B)[C).

By Proposition 91, for every concept (4, B) of K[C], at least one of (ANG, B)
and (A, BN M) is always a concept of £ and, by Proposition 94, a concept
(C, D) of I has two pre-images under Il 5 if and only if (C, D) € €.

Therefore, ¢ is a bijective map. 1t remains to be shown that ¢ is also an
order isomorphism. We have

(A1, By) < (A2, By) = A1 CA
> A NGCANGor
AiNG=4,NG and A, C A;
= MAHNGCcANGor (AiNGBINM)ed
= (A1, B1) < p(Az, By).

O

In practice, we would if possible reduce the context K[€]. A look at the
arrow relations shows us how: If ¢ € € is an object of K[C], then by Propo-
sition 92 ¢/ 0 can only hold for one attribute 0 € €. We discover quickly
that precisely the minimal resp. maximal elements of € are irreducible. If we

define
Crnin := {c € €| ¢ is minimal in ¢}

and €, := {c € €| ¢ is maximal in €},
then for ¢, 0 € € we have

(0 & €€y, and ¢ <D,

¢ /0 <= D€ g and ¢ <.

If, therefore, we assume that € has enough minimal and maximal elements,
i.e., that
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¢= U{[C, D] ’ S Q:minsa € Q:max« ¢ S D},

then K[€] is doubly founded (provided that I is doubly founded), and the
context K[€] has (up to isomorphism) the same concept lattice as

K], := (G U Crins MU Crar, e N (G U Cpiin) X (M U Craz)).

Particularly simple is [€], in the case of the interval doubling, that is in
the case that € is an interval € = [(B’, B), (C, )] of B(K), because in this

case €, and &€,,4. are both one-element sets and we have
Kle), = (GU{(B',B)},MU{(C,C"},J)
with
JNGxM=1I, (B',B)Y:=B and (C.C") :=C.

We note this down as a proposition:
Proposition 95. A doubly founded context is of the form K[€] for an inter-
val € C B(K), if and only if there is an object h and an attribute n with

h,/'n, g/ n=>g=h, h/'m=>m=n.

Because in this case with H := {h} and N := {n} the conditions of Proposi-
tion 92 are evidently satisfied. a

Example 11. We consider the possible bracketings of a product zozy--- 2,
of n+1 variables xq, ..., z,. Since the names of the variables are of no conse-
quence, we replace them by dots. Thus, (..)((..).) stands for (zoz1)((z223)24),
etc. We can order these bracketings by agreeing that a term becomes larger
if subterms are replaced according to the rule

A(BC) — (AB)C.

Tamari [173] observed that this induces an order which turns the set of all
bracketings of n + 1 symbols into a lattice; this lattice is therefore called
the Tamari lattice T,,. Bennett and Birkhoff [13] have determined the
irreducibles of these lattices. This makes it possible to state a (reduced)
context for the Tamari lattice T,. With S := {1,2,...,n} and P,(S) :=
{{i,j} | i,j € S.i# j} this is the context

(B2 (5). By (5), 1),
the incidence [ for i < j and p < ¢ being defined by
{i.jH{p,q}: <= ot (p<i<qg< ).

Geyer [73] has stated a recursion rule for these contexts, which can be recog-
nized by means of the example n =5 in Figure 5.9.
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12 113 2 114 3 2 1

213 314 4 415 5 5 5
1 2/ x xX|x X xX|[x X X X
23| x|/ X o x o x|x X x X
L 3]/ x JIx X X|x X X X
34l x|Ix x|,V I x x x X
2 4 x|/ X VX X X X
14 /I x /lx x JIx x x X
45| x|x x{x x x|V /L
35 x|x x|/ x S
2 5| x|/ x /) x X S/
15/ x /lx x /ix x x AN

Figure 5.9 The reduced context belonging to the Tamari lattice Ts.

The context shows a salient structure of the arrow relations: The (square)
cross table can be arranged in such a way that all double arrows are on the
main diagonal, all upward arrows are above and all downward arrows are
below the main diagonal. In this particular case the “lowest” object h and the
corresponding attribute with regard to ,* n evidently satisfy the conditions
95. This means that the context is generated by interval doubling from the
subcontext obtained by omitting h and n.

However, this subcontext has again the same structure of the arrow re-
lations. Hence, the procedure can be repeated until there remains nothing.
This means that the Tamari lattice can be generated by iterated interval
doubling from the one-element lattice. Figure 5.10 shows the Tamari lattice
T4 including its “genesis™: At the edges, we have noted at which stage of the
iterated interval doubling they have been generated. In descending order,
congruences arise, which gradually factorize the lattice until a one-element
lattice is reached.

5.4 Tensorial Constructions

By means of the distributive law introduced in 4.4 it is possible to formulate
a lattice-theoretic characterization of the tensor product which does not fall
back upon the notion of a context. We shall only treat the case of tensor
products with two factors, the general case is not essentially different but one

needs time to grow accustomed to it.
Theorem 37. The tensor product Vi & Vy has the following properties:

©1) Vi © Vy is a complete lattice, and

51: VI = V10V, g Vo3 ViV,
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Figure 5.10 The Tamari lattice T4. The numbers at the edges indicate the recur-
sive structure of the lattice, which was generated by interval doubling.
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are complete lattice embeddings.
©2) The complete sublattices =1(V1) and ¢3(V3) are mutually distributive.
©3) If V is a complete lattice satisfying 1) and ©2), i.e., if there are em-
beddings
ar: V=V and ar: Vo oV

with the property that the complete sublattices a1(Vh) and az(Vz) are
mutually distributive, then there is a complete homomorphism

W V1 o) ‘/2 -V
with
] = poey, and g = poceg.
@4) The union (V1) Uea(V2) of the two sublattices generates Vi © V3.
By these properties the tensor product is characterized up to isomorphism.

Proof. The properties =11), ©2) and ©4) have already been proved. We can
easily see that the properties (71)-©4) are characteristic, since for every lat-
tice with these properties, from ©13) we immediately obtain an isomorphism
to the tensor product.

What remains to be shown is @3). Hence, let V' be a lattice with the
properties specified in (3). First, we work out the following sub-claim:
For every subset X C Vi x Vy we have

V () Ae@) = A\ (eu) Vea(n)).

(z1,02)€EX (y1.y2)€XY

For this purpose, we make use of the condition that the two image sets are
mutually distributive and obtain:

V (i) Ae(n) = AV ai@)v Vo aale)

(z1,22)EX RCX z,€R r2€X\R
= /\ (o ( V r1) V ay( V z3)).
RCX  zi€R e2€X\R
By means of the notations yff := V.,er %1 and ylt = Viex\r T2 We

simplify this to

V (aie)Aas(ez) = A (ar(uf) v aa(yg)).

(z1,02)€X RCX

Every element of X belongs to R or X \ R, therefore, either its first com-
ponent must be < yf or its second component < yf, in any case we have
(21, 22)V(yE, ylt) for all (21,25) € X, and consequently (yE ol € XV,
independent of R. This proves
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A 1 vas)) > A () Vaaly)).

RCX (Y1.y2)€XY

If, on the other hand, for (yi,y2) € XV we specifically choose R :=

{(z1,02) € X [ 21 < g1}, then X \ R C {(z1,22) € X | 23 < 1o} and

therefore ay(yf) V ay(yf) < a(y1) V az(yz), from which it follows that

A @ vasw) < A (eilm) Vasly)

RCX (y1.y2)€XY

and thus the sub-claim. Now we define amap ¢ : Vi 0V, - V by

pAB):= \ ale)Aes(e) = A\ aily) Vas(p).
(ri.r2)eA (y1,y2)€B

We have to show that ¢ is a complete homomorphism. Because of the
symmetry of the definition it suffices to prove the property “\/-preserving”.
For this purpose we use the sub-claim and obtain for an arbitrary subset
{(A4n.By) [te T} CVic W,

v,:(;lt.Bt) = V V (a1(xy) Aay(ay))

teT tel (ry,ra)€A;

=V (@) Aasn)
(e1.02)€U Aq

= /\ (a1(x1) Vaz(xy))
(y1.y2)€(U AV

= /\ (a1(x1) Vag(ry))
(y1.y2)€N B,

= p(\/(x'lt-Bt))s
ter

as desired.

Finally, we have to examine the connection between the maps a; and £4.
For this purpose we recall the definition of the ¢; (in particular of £1), from
which it follows that, for an arbitrary » € V4, the extent of €1(x) is given by
{(z1,22) € Vi x V3 | 21 < x or 2y = 0}. Thereby we obtain

pler(@) =\ (er(@) Aag(e2)) v\ (ar(a1) Aas(ay))

= o) Aaz(l) = ag(x).
O

The maps v and p mapping onto the object and attribute concepts, re-
spectively, are related to the ;. We have (1, r2) =
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({(g1,92) | 91 < x1 and ga < w2} UMY {(m1.ma) [ 21 <my oy <ma}),
and p(xq,22) =
({(g1.92) | 91 < 21 ot ga < 22}, GY U {(m1,mz) | 21 < my and 23 < my}),
and therefore

y(z1,22) = (X)) Aea(xg) and  p(ey, xg) = c1(x1) Vea(az).

It has proved worthwhile to introduce special symbols for these maps.

1
1
Figure 5.11 wo Q) = %z with the tensorial operations.
0
0

Definition 77. If V| and V; are complete lattices, then the tensorial op-
erations

A VixVy, = V,oV,, and @ :VixWV,—=>ViaV,

are defined by



210 5. C'onstructions of C'oncept Lattices

1Py = A(eorg) =) Aea(ra),
rL @y = plrg, ) = a1(xy) Ve (). &

Proposition 96. The tensorial operations satisfy the following arithmetic
rules:

£1®l:51(£1):l’1@0. 1@1‘2 E(.KQ):O@JL'Q,
r1@ra=r1QIAN0Q x2, 2 Q@r2=2;O1IVIQ s,

Az@r=(ADo(AD.  Vaesn=( eV ).

3ES sES SES SES sES sES
Voauds=00(\ 5., Aa@e=ua@(\ =),
SES SES SES SES
v-lf'i@»lv:(vl’i)@rzw /\ 1 Qr2= (/\l‘i)@-f/z‘,
s€S s€ES s€S S€S
Ai@ = V(A e)AC A\ 10),
SES RCS reR eeS\H
Vieios) = AV 2i@ovi V 0@).
ses RCS reR <e€\H

Proof. All these rules result immediately from the definitions, apart from the
last two, for which we have to consult Proposition 76: Because of 2| ® z, =
e1(x1)Aea(ra), 11 @ &2 = £1(x1) Ve (23) and the rules mentioned in the first
line, the equations are precisely the translation of the circumstance that the
sublattices £1(Vy) and £2(V,) are mutually distributive. O

Thiele [175] has impressively demonstrated how to obtain readable dia-
grams of tensor products of small lattices. First, the idea of the P-product
developed in Section 5.1 is transferred to the tensor product and it is agreed
that:

Definition 78. For a P-lattice (V}, a1) and a Q-lattice (V3, a3) with PNQ =
9,

(Vi,a1) © (Va,a2) := (V)
is the P U Q-sublattice of V| > V;, for which the map

a:PUQ—=VI OV,

is defined as follows:

N R Te (r) ifrepP,
a(r) '_{f:a;(l') itreQ. ¢
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By means of Theorem 37 we quickly convince ourselves of the fact that
this indeed defines a P U Q-lattice.

If Vi and V; are concept lattices, we can introduce the corresponding
context operation:

Definition 79. For a P-context (K, a1) and a @Q-context (K, a2) with PN
Q = O we define

(Kl s (11) X (;;2, 0’2) = (Kl X Kg,a)
to be the P U Q-context for which the map
GPUQ—)E(Kl XKQ)

is explained as in Definition 78. O

From these two definitions it immediately follows that
B((Ky o) x (Ky, az)) = (B(Ky), 1) @ (B(Ky), a2).

Thiele has shown that the product defined in this way is distributive over
the P-fusion, i.e., that it is possible to transfer Proposition 16 (p. 47) to this
case. This is the content of the following theorem.

Theorem 38. If (I£;,a1) and (Kz,a3) are both P-contexts and if (K3, a3)
is a Q-context with PN Q) = O, then

((Ey,an) F (s a2)) x (Ks, a5)

= (K1, 1) x (K3, a3)) PiQ ((Kg, az) x (K3, as)).

Proof. Both sides of the equation claimed describe closed relations of
¥ = (I +H{2) X Kz = K; x K3 +Ky x K3

(cf. Proposition 16). If we are able to show that the map « is also the same
in both cases, nothing remains to be proved, since in this case the sublattices
generated by

{ax |2 e PUQ}

and thus the corresponding closed relations must also be the same. This can
be checked easily; the main problem is that of a transparent notation. We
again use the abbreviations

(Af . BY) == ar forte{l,2,3}and x € PUQ.

P
Furthermore, we write (K2, a2) for the P-context (Ki,aq) + (K2, a2) and
agree on the abbreviation
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(41, By) + (A2, B2) := (A1 U Az, By U By).

Then we have
Q12p = QP+ azp.
For the embedding maps we use the symbols €1, €2, €12 and £3 in the obvious
way, in the case of ¢3, however, we have to differentiate: We write Eg, if we
are working in the product [; x 5. For reasons of readability we presuppose
that none of the contexts contains any full columns or full rows. Thus, the
trivials terms MY and GV disappear when we evaluate the maps ; by means
of the formula stated in Proposition 71.
For the left-hand side we obtain, if p € P,

ap = fpp0gp
= (AU AL B UBE)
= ((.411) U AIZ)) X (;3, (B[f U Bg) X jWg)
and for g € )

12
Qg = &3 Q3¢
1

3

3°(A3, BS)
= (((;1 U Gz) X Ag, (11'[1 U ]Wz) X Bg)

n

On the right-hand side we calculate for p € P
ap = Z101p+ Izqap
= (A} x G35, B} x M3) + (AL x G5, B x M3)
= ((A} U AL) x G, (BY UBY) x Ms)
and for ¢ € Q
aq = ziasq+<iasg
= (G x A}, M| x Bi) + (G2 x AL, M3 x B3)
= ((G1UGy) x AL, (My U M) x Bi).
O

Because of the nice applications offered by this theorem, we substantiate it
by several examples. The first one simply demonstrates the situation reflected
by the theorem.

Example 12. Consider the two 3-contexts (I£;,a;) and (K, a2), which are
given as follows
[Wz
X X 3
(rvz X

as well as the {4}-context (¥3,«3) with the following illustration:
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J‘I:};

Gs| 4

With P := {1,2.3} and Q := {4} we recognize in Figure 5.12 on the left the
context

(Fy.aq) -}IZ (K2, a2)) x (K3, 3)

and on the right

((F1, ) x (Favas)) 4 (2, a0) X (Es,as).

We also recognize that both contexts are equal.

M 1 1\[2 M 1 L’\[‘z M 1 A’Il A/IQ 17\[2
X X X XX X X X X X X X X[X X X
G| x [xx X X X% G| x X X X X X
X|x % X|X X X X[x x [x x
X X XX X [X X X[X X X X X XX X X[X X X
Giaix X X|x X X X|X Gl X X x x|x x |x XX
X x| x x| = X[X X X[X X X %X X
X X X XX X X[X X X X X XX X X|X X |X X
Gl X IX X XX X X|X X % Ga|x X X|x x x|x X
XX X X X X|X X X X X X X
X X XX X [X X X|X X X X X XX X X[X X |X X X
Gax x x|x X X X|X X X (2|Xx X X|x X x|x X X X
X XX X X|x X % X X X X X|X X X

Figure 5.12 According to Theorem 38 both contexts are equal.

Corollary 97. For two P-lattices (V1,a1), (Va,«2) and a Q-lattice (Vz, as)
(with PN Q = 0) we have

P
X

((Vi,a1) x (Va,a3)) © (V3,a3)

PUQ

= ((Vi,a) ©(Va,a3)) x (Va,a) @ (Vs, a3)).

0

This corollary also goes back to Thiele. He has used it skillfully in order
to draw diagrams of tensor products. As a first application we calculate the
tensor product of two four-element chains.

Example 13. In order to calculate the tensor product of two four-element
chains, we make use of the fact that such a chain can be written as a 2-product
of a two-element and a three-element chain:
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112
©
X
o—o0
[N

If we decompose both factors in this way, we obtain

2 04 {1.2} o>y {34} o4
o T e bia 'y I o 034 % I
1 3 1 3

Using Corollary 97 this can be multiplied out. The convention “tensor
product first, then the P-product” saves brackets. The above expression
yields

R

&

4 4 4 9 4 2 4
1,2 & 034 x 1,2 @ i X I ® 034 X i & I .
3 1 1 3

As can be easily seen by means of the contexts, the tensor product of two
three-element chains has six elements. With respect to the tensor product,
two-element chains behave like neutral elements. Using these observations,
we can convert the expression into a mere 4-product:

4 2
4 4 4 2,4
1,2 3.4 x %1,2 X 34 X I .
1,3

3 1

IR

IR

1R

1R
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IR

1,2 34 x

This product has already been calculated in Example 10 (p. 191). The result
is presented in Figure 5.4.

Example 14. A particularly nice application of this method is Thiele’s rep-
resentation of a free distributive lattice with four generators as a subdirect
product. The nested line diagram obtained thereby is presented in Figure
1.20 (p. 51).

In general, it is true that FCD(n) is isomorphic to the n-th tensor power
of the three-element lattice [196]. This means that FCD(4) can be obtained
as the tensor product of four three-element chains.

We make use of the fact that a tensor product of two three-element chains
can be rewritten as a 2-product:

Thereby we obtain

FCD(4) = EI E‘Z @ E‘i & £4
- il {12} 92 | I?, {34} 04
= X [} X
2 1 4 3
- il ., I 4 il N 4 2 I 4 2 . 4
= % X ( X ( X 4
9 1 9~ 1@ 1
1 3
~ L3 4 4 4 2 4 2 4
= X X X ) .
2,4 3 1 1 3
2 4

The tensor product of two four-element chains has already been calculated in
Example 13; the 4-product of the remaining factors was treated in Example
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9, see Figure 5.3. Hence the 4-product presented in Figure 5.13 is isomorphic
to the tensor product of four three-element chains, and thus also to the free
completely distributive lattice with four generators. This is how the diagram
in Figure 1.20 (p. 51) has been obtained.

Figure 5.13 The free distributive lattice FCD(4) as a 4-product.

5.5 Hints and References

5.1 Section 5.1 follows [199] and the predecessor of this article, [194].

With regard to the role of the bond product J,, o J;; compare also
Proposition 113 (p. 256).

P-products of lattices are a long-standing subject. of one of the authors of
this book, see [189] and [190]. Bartenschlager [10] and Thiele [175] in their
work make ample use of the P-product as a mathematical construction tool.

5.2 The results of this section are based on the doctoral thesis of S. Giirgens
[80]. we have, however, changed the notations. It also contains further-
reaching results. Giirgens states an algorithm which determines whether
K is the gluing of two contexts. Furthermore, she studies the simultaneous
gluing of several lattices or contexts, respectively. Her model were the gluings
of Boolean lattices in the theory of orthomodular lattices, cf. Greechie [77].

5.3 Local doubling was introduced by Day [32], first for intervals and then
more generally. [t played an important role in the framework of the ex-
amination of free lattices, see also Day [33], Nation [130] and Day, Nation &
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Tschantz [35]. Day even stated a concept-analytic version of the construction
of interval doubling. Our representation mainly follows Geyer [72].

The fact that the bracketings form a lattice was first published by Tamari
[173]. Later, Huang and Tamari [87] gave a simpler proof. The concept-
analytic investigation goes back to Geyer [73].

5.4 The direct product of contexts in particular has proved to be a natural
product for conceptual scales. Products of the elementary scales have been
examined and illustrated by many diagrams in Thiele [175]. This article,
which has already been cited several times, also contains the result that the
direct product of two closed relations is again closed. Hence, tensor products
of sublattices lead to sublattices of the tensor product.

Strahringer [164] describes products of convex-ordinal scales. [200] uses
the direct product for the general modeling of dependencies between many-
valued attributes. Stumime [169] uses it for distributive concept exploration.

The set of all order-preserving maps from an ordered set P into a com-
plete lattice V' also forms a complete lattice, when ordered point-wise. This
lattice is denoted by V'®. Occasionally, a formula is used which establishes
a connection between this lattice and the lattice 2% of all order-preserving
maps of P into the two-element lattice 2:

VPP oV,



6. Properties of Concept Lattices

Mathematical lattice theory classifies lattices according to their structural
properties. The most important such property, namely distributivity, has al-
ready been mentioned in Section 0.3 and has been used several times since
then. Now we shall examine it a little more closely. For this purpose, we
concentrate on doubly founded lattices, a choice that simplifies many things.
Furthermore, we shall examine other interesting properties, for example mod-
ularity and semimodularity, which play a particularly important role in geo-
metry. We shall show how semidistributivity and local distributivity can be
described by means of the arrow relations and what the consequences of
these properties are for the associated closure operators. The last section
deals with different notions of dimension of lattices, in particular with that
of order dimension.

6.1 Distributivity

Already in Definition 15 (p. 10) we have introduced variants of the distribu-
tive law: A complete lattice V is called distributive if the following two
(mutually equivalent) laws

(D,) rA(yVz) = (eAy)V(zAz)
(D,) rV(yAnz) = (@Vy A(zVe)

hold, and it is called completely distributive if the following generalization
to arbitrary infima and suprema is satisfied for all index sets S, T # @:

Dya) AVaa= V Azeer
seSteT @:S—T seS

This law is also equivalent to its dual (Dpy). One direction of the law
(Dy A), namely the inequality

A v Lot 2 \/ A Ls,o(s)
sESteT p:S—=T seS

holds in every complete lattice, since, for fixed ¢, /\565 Ts p(s) is always less
than or equal to the left-hand side.

B. Ganter et al., Formal Concept Analysis
© Springer-Verlag Berlin Heidelberg 1999
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We frequently use a stricter version of the law of complete distributivity,
which can however be derived from the one mentioned above. We allow the
set T to vary with s € S; for this purpose we replace T' by a family of sets

{T

s € S}.

The place of the maps ¢ : § — T' is taken by the elements

pe X T,
SES

of the direct product of these sets (which we abbreviate as X T). This
version of the law (D 5 V) then reads

AViea= Vo Ava

seSteT, ;pGXTsSGS

The inequality “>" again holds in every complete lattice.

Proofs for the equivalences we have claimed can be found in the books
cited on lattice theory, in particular Balbes & Dwinger [3]. The following
useful characterization of distributive lattices has been taken from Birkhoff’s
“Lattice Theory”:

Proposition 98. A lattice is distributive if and only ifa Az = a Ay and
aVr=aVy aways imply x = y. o

Examples of completely distributive complete lattices are the power-set
lattices, and more generally lattices of the order ideals of ordered sets, as
stated by the following well known theorem:

Theorem 39. (Theorem of Birkhoff) If D is a completely distributive
complete lattice in which the set J(D) of \[-irreducible elements is supre-
mum-dense, then

r = (r]NJ(D)

describes an isomorphism of D onto the closure system of all order ideals of
(J(D),<). Conversely, for every ordered set (P, <) the closure system of all
order ideals is a completely distributive lattice D, in which

J(D) = {(] | « € P}
is supremum-dense.

Proof. For x € D, (z]NJ(D) is obviously an order ideal of (J(D),<). If A
is an order ideal of (J(D),<) and a := \/ A, then A C (a¢] N J(D) and even
A = (a]NJ(D), as the following consideration shows: For 2 € D we have

refa &= r<a = 2<\[A4 = 2=an\/A
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By means of the distributive law we obtain

re€ (a] = I:I/\VA:V{J’/\y|y€A}.

If additionally x is \/-irreducible, then z = \/{z Ay | y € A} can only occur
if 2 = z Ay holds for some y € A, i.e., if 2 <y holds for some y € A. Since
A is an order ideal in J(D), this yields x € A.

Hence if J(D) is supremum-dense in D,

r = (x]NJ(D)
describes a bijection, which, because of
r<y <= (@nJ(D)C (ynJ(D),

is even a lattice isomorphism.

The intersection and the union of an arbitrary number of order ideals
of an ordered set (P, <) are again order ideals. Therefore, the lattice of all
order ideals is a complete sublattice of the power-set lattice of P and thus
is completely distributive. Every order ideal A is the union and hence the
supremum of principal ideals:

4= U (al,

a€cA
and, because (a]. = (a]\ {a}, every principal ideal is \/-irreducible. O

Theorem 40. A concept lattice B(G, M, I) is completely distributive if and
only if for every non-incident object-attribute pair

(g,m) &1

there exist an object h € G and an attribute n € M with (g,n) ¢ I, (h,m) & 1
and h € k" for all k € G\ {n}".

Proof. The following statement holds for every concept lattice:

AV AeB> Vo A Boo):

seSteT. e X1, Y€
¥ s

Assume that the left-hand side is strictly greater than the right-hand side.
Then there exist

ge (N By and me [ ([ o)

s€S5 tel PGXTS sES

with (g, m) ¢ I. Now if there are



222 6. Properties of Cloncept Lattices

he G and ne M with (g.n) € I.(hom) g T and he k" forall k € G\ n/,

then n € (,cp Bs,e cannot hold for s € 5, because of g € ((,¢p Bs,e)

Therefore, there is a ¢ € X, 5T, with n & B s (s) for all s € S. From
h € k" and k € G\ n' it follows that h € A s, for all s € S. Since, however,
m € (N,es As,p(s))'s this results in a Contradlctlon with (h,m) &€ I. Hence,
the equation follows from the conditions specified. In order to be able to use
complete distributivity to prove the inverse direction, we first argue that

=NV e em))

v neM\g'

holds for every object ¢ € GG, provided the maps ¢ under the A-operator are
chosen as follows:
pe X (G\n).
neM\yg'

Thus ¢ runs over all maps that assign to each attribute n which is not incident
with g an object p(n) which is not incident with n. Hence, a possible choice
is ¢(n) := g for all n, whereby we obtain the direction “>” of the statement.
For the other direction we note that n ¢ ¢(n)’. Hence, n can still less be
contained in the intent of the supremum VneM\g'(Sp(n)H-50("‘)/)’ Le., this
intent is a subset of ¢’.

We have to show that -provided that the concept lattice is completely
distributive- it is possible, for arbitrary ¢ € G and m € M with (g, m) & I,
to find some h € (G and some n € M which satisfy the conditions specified
in the theorem.

With the help of the preliminary considerations and by applying the dis-
tributive law we obtain

=NV e = N KK,

© neM\yg' neM\g' keG\n'

Thus, there is some n € M \ ¢’ with m ¢ (ﬂkEG\n’ k") and consequently

some h € [Yeeqy,s K with (h,m) € I. The elements elements h and n we
obtain satisfy the conditions specified. a

It is easy to give complete lattices which are distributive but not com-
pletely distributive. However, these examples cannot be doubly founded, as
the following theorem shows:

Theorem 41. For a doubly founded concept lattice V' := B(G, M, I), the
following conditions are equivalent:

1. 'V is distributive.

2. 'V s completely distributive.

3. From g /*m and g /'n it follows that pm = pn.

4. From g ./*m and h // m it follows that vg = ~vh.
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. 'V is isomorphic to a complete subdirect product of two-element lattices.

. 'V is isomorphic to a complete sublattice of a power-set lattice.

. V' is isomorphic to the complete lattice of all order filters of an ordered
set.

~3 O O

If (G, M, 1) is reduced, the following conditions are equivalent to those stated
so far:

8. Every proper premise is a singleton set.
9. g /*m implies g /*m, g/ m implies g /*m,
g/ m and g /*n imply m =n and g /*m and h S m imply g = h.

Proof. Weshowthat 1 23 ©4=29=5=26=22=8=T7T=1.
1= 3: Fromg,"m and g /'n we infer that y¢ is \/-irreducible and that
¥g A pm < vg. and yg A pn < yg.. Hence, um V pn # g, because by the
distributive law we obtain yg A (umVun) = (yg Apm) V (yg Aun) < vg. V9.
= v¢. < 7vg. Since we had presupposed pm and pn to be maximal % ~yg, we
obtain gm = pmV un = un, q.e.d.
3=4: Assume that ¢ /*m, h /" m and vg # vh. Then b’ € ¢', i.e., there
exists an attribute n with hin, g#n. Then there is an attribute n with ¢ /' n
and n' C 7', however, because of 3, ym = vn, from which we infer that
n’ C m/. This is however contradictory to h € n’, h ¢ m'.

Correspondingly we show 4 = 3.
3,4=9: Ifg "nand g is irreducible, then there exists an m with g /'m,
i.e.,, by 3, m = n and thus g /"n. This shows, together with the dual argu-
ment, that a reduced context satisfying 3 and 4 allows only double arrows.
The further assertion, namely that the double arrow relation represents a
bijection between ¢ and M, now follows immediately from 3 and 4, respec-
tively.
9 = 5:  According to Proposition 62 (p. 135), the subdirectly irreducible
factors of V' exactly correspond to the concept lattices of the one-generated
subcontexts of (v, M. I) (we may presuppose (G, M, I) to be reduced). By 9,
however, all one-generated subcontexts are of the same, trivial form: they are
composed of an object and an attribute which are not related to each other
by I. Hence, every subdirect factor of B(G, M, I) is a two-element lattice.
5 = 6:  The mapping (z¢)ier — {t € T | 2, = 1} is an isomorphism of
the T-fold power of the two-element lattice onto the complete lattice of all
subsets of T.
6 = 2:  The fact that the power-set lattices are completely distributive is
known from elementary set theory (and is moreover easy to prove); hence,
we have 2.
2 =8 If (G,M,I) is a reduced context with a completely distributive
concept lattice, then

B = U b

beB
holds for every set B C M, since
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meB" & um> /\{;Ln|71 € B}
& pm = pum V/\{/m|n € B}

& oum= /\{pm V pnln € B}

& pum = umV un for some n € B
(since pm is A-irreducible)

& m e n” for some n € B.

This is obviously equivalent to condition 8.

8 = 7:  The set M of (irreducible) attributes is ordered by m < n:& n' C
m'. From 8 it follows that the intents are precisely the order filters of M
with respect to this order.

7= 1: Union and intersection of order filters again yield order filters, i.e.,

the distributivity follows from that of the set operations. O

Every subdirect product! of (completely) distributive lattices is (com-
pletely) distributive.

6.2 Semimodularity and Modularity

The lattice of the subspaces of a vector space, or more generally the lattice of
the submodules of a module, has a particular structural property: it satisfies
the modular law. The lattices of normal subgroups of groups are also modular.
A weaker property, semimodularity can be defined in different ways. Some
of these definitions make use of the neighbourhood relation x < y (compare
Definition 3) and therefore refer meaningfully only to lattices with certain
finiteness requirements.

Definition 80. A lattice V is called semimodular if
rAy<y=>z<zVy

holds for each two elements z,y. It is modular if it satisfies the following
law for all x, y and z:

r<z=xV(YyNz)=(2Vy) Az,

and graded if there is a rank function r(z) assigning a natural number to
each element of V' with

r(0)=0and r <y = r(y)=rx)+1.
We say that V satisfies the weak condition of semimodularity if
rAy<r,y = z2,y<zVy,
and the strong condition of semimodularity if the following is true:

! compare the footnote on page 130



6.2 Semimodularity and Modularity 225

If £,y and z are elements with ¢ < z, yVe =yVzand yAx = yAz,
then there exists an element d < y with yAz < dand (zVd)Az = 2.

o

There is a characterization of modular lattices which is quite analogous
to that of the distributive lattices in Proposition 98. The proof can again be
found in Birkhoff’s book.

Proposition 99. 4 lattice is modular if and only if <y, aANx =aAy and
aVz=aVy aways imply r = y.

A modular lattice which is not distributive contains elements x,y, z with
rVy=aeVz=yVzandrAy=zANz=yAz, but z #y. a

The hierarchy of these lattice properties has been thoroughly examined
and is described in detail elsewhere. Here we note only the simplest state-
ments:

Proposition 100. Every distributive lattice is modular. The modular law
implies the strong condition of semimodularity (and its dual), and from this
follows semimodularity.

Proof. The first statement results from a comparison of Propositions 98 and
99. The strong condition of semimodularity holds in every modular lattice
already because its premise is never satisfied: If x, vy, z are elements with
r<yand yVr =yVzas wellasyAr = yA z, the modular law yields

rV(yAz)=(zVy) Az

However, the left-hand side of this equation equals z, the right-hand side
equals z, which is contradictory to » < =.

The fact that the strong condition of semimodularity implies semimod-
ularity can be seen as follows: Let y,z be elements with y A z < y, but
r £ yV x. Then there must be an element z with < 2 < yV z, and
yAz <y forces y Az = y A z. Condition 2 now yields an element d with
y Az <d <y, from which, because of y A z < y, we can immediately infer
d = y. This implies, however, that x Vd = y V 2, i.e., d cannot satisfy the
required condition (x Vd) Az = z. 0

In a reduced context ¢,/ m is equivalent to (yg). = yg A pm. If the con-
cept lattice is semimodular, this implies ygVum = (um)*, i.e., ¢ /*m. Hence,
such a context cannot contain “proper downward arrows”. In the modular
case all arrows must even be double arrows. However, these conditions are
by no means sufficient for semimodularity, to say nothing of modularity. The
following theorem provides a characterization of these properties in the lan-
guage of contexts. Preparatory to it, we need an abbreviation: If ¢ is an
object in a context (G, M, 1), let

ge = {2z € G | vz < g}
If vg is \/-irreducible, then g, is precisely the extent of (yg)..



226 6. Properties of Cloncept Lattices

Theorem 42. For a doubly founded concept lattice V' := B(G, M, I), the
following conditions are equivalent:

1. 'V is semimodular.
2. 'V satisfies the strong condition of semimodularity.
3. The following exchange condition holds in (G, M,I):

ge CAhe(AU{g}) and h g A" = g € (AU{R})".

4. From g/ m, g/ n, hIm and h¥n it follows that there is an attribute p
with h#p, gIp and m' Nn’ C p'.

If V is finite, the following conditions are equivalent to those stated so far:

5. 'V satisfies the weak condition of semimodularity.
6. V is graded and has a rank function with

r(e) +r(y) > r(eAy) +r(eVy).

Note: Contrary to the formulation of the theorem, the proof only uses one
of the conditions of foundedness. If we add the other one, we can slightly
improve the result. For instance, in condition (4) h#p can in this case be
replaced by h 7p. This makes it possible to show that factor lattices of
doubly founded semimodular lattices are again semimodular.

Proof. 1=2: Lety,rand z be elements with z < z and yVz = yV z and
yAx =yAz First we show that there is an element d with y A 2 < d < y.
Because of the foundedness there exists an element s minimal with respect
tos <y, s £ yAx. sis necessarily \/-irreducible, and s, < y A x, i.e.,
sA(yArx) = s. <s. If now weset d:= sV (yAz), weobtain yAz < d
from the first condition of the proposition. A repeated application of the
condition yields » < xVd. rVd < : would imply = > 2Vd>d> s and,
because of y > s, also yAz=yAx > s, V\hl(h would be contradictory to
the definition of s. Hence =z A (# Vd) = z. 2 = 1 has already been proved in
Proposition 100.

3 = 1:  Let x,y be concepts with x Ay < y and « = (A4, B), and let
furthermore = be a concept between x and zVy: = < z < 2V y. The
foundedness yields an element s which is minimal with respect to s < y,
s £ x, s then is \/-irreducible and thus an object concept, i.e., s = vh for
some h € (. Because of s, < x we have h, C A, furthermore we have
rVy=uzVs. If we now choose an object ¢ which is contained in the extent
of the concept = but which does not form part of A, we obtain

gg (AUR,)", ge(AU{h})

from which by (3) it follows that A € (A U {g})”. This extent is however
contained in that of z, which results in a contradiction with yh £ z.

1 = 3¢ Trivially, condition (3) is satisfied if ¢ is reducible. Therefore,
we can restrict ourselves to the case (vg)« < 7¢. The preconditions of (3)
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describe three concepts, namely (A", A), (AU {h})",(AU{h})") and ((AU
{g})", (AU {g})) with A” C (AU{h})" C(AU{g})". Since g, C A is true,
vg A (A", A’) = 4¢,, and thus, because of semimodularity,

(AU{gh)", (AU{g})")

is an upper neighbour of (A", 4’), which forces

(AU{gh”, (AU{gh)) = (AU{h})", (AU {h})).

1 =4: Let g, h,m,n be as specified. If we choose x minimal with respect
to z < yh, 2 £ pn, then x is an object concept, satisfying the same pre-
conditions as yh. Furthermore, for every attribute p with « £ up we have
h4p. Hence, we may assume without loss of generality that =z = ~vh, i.e.,
in particular that +yh is \/-irreducible and that vh, < um A un. Because of
(1), vh V (g A pn) is an upper neighbour of um A pn which is < pm. Also
because of (1) n:= vg V (pm A pn) is an upper neighbour of um Vv pn, but
because of yg £ wm it is different from yhV (um A un). Hence, there must be
a distinguishing attribute p which is contained in the intent of the concept p
but which h does not have. This attribute satisfies the conditions specified.
4= 1: First, we convince ourselves that it suffices to prove condition (1)
for object concepts y: If y is arbitrary and x Ay < y is a lower neighbour of y,
we find an object concept y¢g < y which is minimal with respect to v¢g £ zAy,
which implies that vg, = y¢ A (z A y) = vg A z is a lower neighbour of ~g.
If we now may apply (1), we obtain £ <t Vyg =z VygV (zAy) =z Vy,
since t Ay <ygV(rAy) <y, le,ygV(rAy) =y

Now we assume that there are an object g and an @ such that 2 Avg = vg,
is a lower neighbour of vg but z Vg is not an upper neighbour of z, i.e., that
r < z < xV~yg for some z. Then there exist an object h in the extent of z
which is not contained in the extent of x, an attribute n which is contained in
the intent of = but not in the intent of = and an attribute m which is contained
in the intent of z but does not apply to g. Thereby the prerequisites of (4)
are all satisfied and we may conclude that there has to be an attribute p
which has m’ Nn' in its extent, i.e., which satisfies x < pp, with gIp and h#p.
However, from g/p it follows that up > =V yg > =z and from h#p it follows
that up # =, a contradiction!
I = 5 is trivial.
5= 6: Let n be the length of a maximal chain in V.. We define a function
ron V by r(1) :=n and, for x # 1,

r(x) :=max{r(y) |z <y} — L.

If » were not a rank function, then there would have to be elements r < y
with r(z) + 1 # r(y), and, of all such examples, we could choose one with
maximal y, furthermore, by the definition of r, there would be a further upper
neighbour z of & with (z) = »(2)+1. By the condition of semimodularity yVz
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would be an upper neighbour of y and of z, by the condition of maximality;
then we would have r(y) = r(y vV z) — 1 = r(2), a contradiction!

In order to prove the rank inequality claimed, we again derive a contra-
diction from the assumption of a counter-example: Let a,b, x,y be elements
with a = x Ay and b = 2 V y which do not satisfy the inequality. Let these
elements be chosen such that a is maximal among all counter-examples and
that b is minimal among all counter-examples with the smallest element a. If
now y is an upper neighbour of x A y, then we choose an upper neighbour z
of z A y lying below . Since y cannot lie below 2 (otherwise the inequality
would be satisfied), z # y, and ¥ := y V z is an upper neighbour of y with
Ay =z and x V7 =2 Vy. For the elements x and 3 the rank inequality
holds by assumption and thus also for x and y. If y is not an upper neigh-
bour of z, we can find an upper neighbour y of # A y which lies below y. The
application of the rank inequality to the elements z and y and to y and x V y
yields the statement. a B
6 = 1 is again trivial. 0

In the atomistic case we have g = O for all ¢ € . Thus, the exchange
condition simplifies to yield the known form

he(Au{g}). hgd” = ge(Au{n}).

6.3 Semidistributivity and Local Distributivity

Definition 81. A complete lattice V' is called

— semidistributive, if the following laws hold for all z,y,z € V:

(SDy) rVy=zVzerz=>zVy=zV(yAz)=zVz
(SD,) rAy=zAz=>zcANy=zA(yVz)=zAz.

If V satisfies (SDy ), V is called join-semidistributive, dually, a complete
lattice satisfying (SDa) is called meet-semidistributive.

— locally distributive or join-distributive, if V' is semimodular and every
modular sublattice is distributive. Lattices satisfying the dual condition
are called meet-distributive.

A representation of a lattice element a as a supremum a = \/ X is called
irredundant if « # \/(X \ {z}) holds for every z € X. Obviously, the
elements of X must be pairwise incomparable. Here, we will mainly deal
with irredundant \/-representations in chain-finite lattices. This constitutes
a simplification in many respects, because in this kind of lattice from each
\/-representation we can choose a finite and then also an irredundant \/-
representation.

Special attention is given to the \/-representations through \/-irreducible
elements. If ¢ has exactly one such representation, we say that a has a unique
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irredundant \/-representation. The addition “through irreducibles™ is
often omitted; it is however implied.

An irredundant \/-representation a = \/ X is called canonical if, for every
irredundant representation a = \/Y and for every x € X, there exists some
y €Y with # <y. If an element of a finite lattice has a canonical representa-
tion, the latter necessarily consists of \/-irreducible elements. Note, however,
that the refinement property is required with respect to all irredundant rep-
resentations. As is well known, in a doubly founded lattice every element
a is the supremum of \/-irreducible elements: a = \/{x € J(V) | z < a}.
e € J(V) is an extremal point of a if e is indispensable, i.e., if

u#\/{er )\ {e} |2 <al.

The extremal points are part of every \/-representation of a through irre-
ducibles. A base point of a is a \/-irreducible element b < a with

b \{reJ(V)|z<abgLa}

In a concept lattice the extremal points of a concept (A, A’) are precisely
the object concepts vg with ¢ € A but

g (A\{hlg =}

Therefore, such an object is called an extremal point of the extent A.
Correspondingly, ¢ is a base point of the extent A if ¢ € A but

g & (AN{h|g 2N} o

Theorem 43. For a doubly founded concept lattice V. = B(G, M, I), the
following statements are equivalent:

1. 'V satisfies (SDy ).
2. Forallg,h € G and all m € M we have:

g/ m and h /' 'm imply ¢' = h'.
If V is finite, or, more generally, if V satisfies the additional condition
(*) if v < a. then there exists a lower neighbour u of a witht < u < a,
then the following conditions are equivalent to the above-stated ones:

3. Every element of V' has a canonical \[-representation.
4. Fuery extent is the closure of its base points.

The condition (SDy ) can be characterized dually.
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Proof. 1 & 2: We assume without loss of generality that (G, M, I) is the
context of a concept lattice satisfying (SDy ). From g ,/*m and h /*m we infer
that

umV yg = um™ = pmV vh

and then with the help of semidistributivity
pum* = pmV (yg A+vh).

Now ~g, as well as yh, is less than or equal to um. The above equation can
only be true if neither vg A vh < 4g, nor < vh,. This forces vg = vh.

Now we conversely assume that (G, M, I) satisfies the above-stated condi-
tion for the arrow relations and show that B(G, M, I) is join-semidistributive.
Let furthermore r,y and z be elements of B(G, M, I) with

zVy=zVz>zV(yAz).
Then there exists an element ¢ maximal with respect to
t>xV(yAz), tzVy.

t is A-irreducible, i.e., t = pm for some m € M, and pm™ > =V y. Now,

y £ pm, since
yVum>yvVrV(yAz)=zVy,

and we obtain
yVum=pm*.

Hence there is a concept s which is minimal with respect to s <y, s € pm. s
is \/-irreducible; consequently it is an object concept s = vg for some g € G
and vg, < pm, i.e., g/ m.

Likewise, we can find some h € (¢ with h/*m and vh < z. The pre-
supposition forces v¢ = ~vh, from which in turn it follows that vg < z, i.e.,
vg <yAz<erV(yAz) <pm. Contradiction!

1 = 4 for lattices satisfying the additional condition: Let a be a concept.
For every lower neighbour u of a there exists, because of the foundedness,
an element u < a which is minimal with respect to u £ u. This element is
uniquely determined by u, since if ¢ is an arbitrary element satisfying r < a,
t £ u, we have

uVu=a=uVy

and by application of (SDy) we obtain
uV(uAr) =a,

which, because of the minimality of i, immediately yields it < r. Hence for
t < a we have
1€y <<= u<r.
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u is \/-irreducible, and consequently there exists an object g with u = vg.
We show that g is a base point of a: If A is the extent of a and h € A is
arbitrary then we have

R Cy < yh>vg <= vh>u < yh L u

Hence, in this case, A\ {h | ¢’ D h’} is entirely contained in the extent of u,
from which follows the desired base point property:

g ¢ (AN{h|g' D N'})"

Now assume that
;::V{ﬁ|u<a}.

We claim that 1 = a. If this were not the case, because of the additional
condition there would exist a lower neighbour u of a with ¢ < u < a, and
u £ 1 would yield a contradiction.

4= 3: [If every extent is the closure of its base points, i.e., for every lattice
element a we have that

a= V{b | b is base point of a},

then this representation is canonical. It is furthermore irredundant and, if
a=\/Y is an arbitrary irredundant representation and b is a base point of a,
then from b < \/Y and the fact that J(V') is \/-dense it follows immediately
that there has to be some € ¥ with b <.
3= 1: We consider an element v and a canonical \/-representation v =
V X. From

D=0,V =10,V}

it follows that n > ¢ for all t € X with ¢ £ v, and 3 > ¢ for all r € X with
t £ b,. Together this forces

0 =10,V (nA3). 0

Examples of lattices satisfying the conditions of Theorem 39 can easily
be obtained by means of the technique of local doubling (5.3). If V is a
doubly founded semidistributive lattice and € C V is a convex subset with
a smallest element, then V[€] is also semidistributive, as can be seen by the
arrow relations. The Tamari lattice (cf. Figures 5.9, 5.10, p. 206) satisfies
(SDy )} and (SD,).

Theorem 44. For a doubly founded concept lattice V' := B(G, M, I) the
following statements are equivalent:

1. If g and h are irreducible objects then g /*m and h /m imply ¢’ = ',
2.V has a neighbourhood-preserving \-embedding into a power-set lattice.
3. Fuvery extent is the closure of its extremal points.
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4. For every concept extent A and for all g.h € G\ A with g’ # h' we have:
g € (AU {h}) implies h ¢ (AU{g})” (Anti-exchange Axiom).

If V' is chain-finite, then the following condition is equivalent to those we
have mentioned so far:

5. 'V is meet-distributive.
6. Every element has a unique irredundant \/-representation.

Proof. 1 = 4: If 4 is an extent and g € A, we find an attribute m with
A Cm' and g /'m. From hlIm it would follow that g ¢ (A U {h})"; hence
h#m would hold and we would find an attribute n with h /n and m’ C n’.
m' = n’ would imply ¢’ = b’ already because of (1), hence g € n’; this would
mean, however, that AU {g} C n’ and consequently h & (AU {g})".

4 = 2: We pass on to the concept lattice of the clarified context and
show that the closure system of the extents is embedded in the power-set of
G in such a way that it preserves neighbourhoods. Let Aj, A; be extents
with 4; C Ay, and let (41, A|) be a lower neighbour of (42, A}). If now
g,h € Ay \ Ay, then, because of the neighbourhood (A; U {¢})” = 42 =
(Ay U {h})", which, by the Anti-exchange Axiom, yields g = h.

2 = 3: We begin this part of the proof with three preliminary considera-
tions:

Every lattice having a neighbourhood-preserving A-embedding

21V = PX)

into a power-set lattice is dually semimodular, since from a < a V b it follows
that ¢(a) and ¢(a V b) only differ in one element. This transfers to ¢(a A b)
and ¢(b), which means that they also must be neighbours, which implies
alNb<b.

Secondly we show that a doubly founded lattice satisfying (2) also satisfies
the additional condition (*) in Theorem 43. If « < b, then because V is
doubly founded, there exists some A-irreducible element ¢t € V' with

a<t, bgt, b<it
and with ¢ < t* because of the dual semimodularity it follows that
a<bAt=<b.

Hence every element of V' is either \/-irreducible or is the supremum of its
lower neighbours.

For the third preliminary consideration we take an arbitrary element x €
X. Among all elements of V' whose image contains z, there is a smallest one,
namely

vy = /\{'v EV]zep)}
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vy is \/-irreducible (or the smallest element of V'), since there can only be
one lower neighbour u of v because the image

plu) = plvs) \ {z}

of the latter is uniquely determined. If w is an arbitrary \/-irreducible element
with € p(w), * & p(ws), then w = w, Vv, L.e., w = 1,.

Now we consider an arbitrary element a of V. If the extent @ were not
the closure of its extremal points, then there would be a lower neighbour
u < a, the extent of which would contain all extremal points of a. ¢(a) and
@(u) only differ by one element, let us say x of X. If w is a \/-irreducible
element with w V u = «, then u A w is a lower neighbour of w, i.e., w,, and
we have z = p(w) \ ¢(w.), from which it follows that w = v,. Hence v, is
an extremal point of a that does not lie below u. Contradiction!

3 = 1: If mis an irreducible attribute and A is the extent of um*, then
by (3) there is an extremal point h of A with h & m’. A~ := A\ {2 |
h' = 2’} then is an extent containing m’. Now consider an arbitrary object
g € A\ m'. We have (m' U {g})” = A, and therefore A~ cannot contain
m' U {g}. Consequently, g € {x | K’ = 2}, i.e., ¢ = h'. Hence pm and pm*
differ only by one single object concept.

3 = 6: If an extent is the closure of its extremal points, this is its only
irredundant \/-representation.

3 < 6 for chain-finite lattices: In a chain-finite lattice every \/-represen-
tation contains an irredundant one, i.e., the uniqueness implies that every
extent A has a smallest subset F with E” = A. This must however consist
of extremal points, since otherwise there would be some ¢ € E with e €
(A\ {e})”, and A\ {e} would be a generating set of A not containing E.

2 = 5: We have already shown above that from (2) follow dual semi-
modularity and the additional condition from Theorem 43. It remains to be
shown that every modular sublattice is distributive. If this were not the case,
by Proposition 99 there would be elements z,y, z with e Vy=2zVy=yV 2z,
tAy=2xANz=yAz but x #y. Choose a lower neighbour u of z V y with
z < u. p(xVy)\ ¢(u) consists of exactly one element, let us say g. Since
() € p(u) and p(y) € ¢(u), g € o(x) Ne(y) = ¢(x Ay), from which,
because of x Ay < z follows the contradiction g € ¢(z) C p(u).

5 = 1 for chain-finite lattices: Because of dual semimodularity g /m
implies g, m. Hence we can presuppose g ,/*m, h /' m and we have to show
¥g = vh. The element g V vh is < pm®, but not < pm. Therefore if
vg # vh we can find three different lower neighbours ag, by, co of the element
vg V vh with a9 > ~g. bg > ~vh, by # vg and ¢y < pm, and furthermore
a descending chain @9 > a; > ... > a, = ¢ of neighbouring elements.
Because of meet-distributivity the meets by := ag A by and ¢1 := ag A ¢ are
distinct from each other. Furthermore, they both cannot be equal to aj,
since otherwise it would follow that y¢ < um or vg < bg. If we continue this
argument, we get that in each case the elements a;, b; and ¢; are different lower
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neighbours of @,y for i € {1...., n}, and similarly that a, A b, # a, A c,.
Therefore a, = (a,, Ab,)V (a, Ac,) cannot be \/-irreducible; this however is
a contradiction because a, = ~vg. O

Figure 6.1 Generalizations of the Distributive Law.

The first condition of Theorem 44 obviously implies the second condition
of Theorem 43. Hence finite meet-distributive lattices also satisfy (SDy ).

In a context in which there are no “proper upward arrows” (which means
that g /'m always implies g ,,/*m), the converse is also true. This holds in
particular for atomistic contexts, in which from (g, m) € I it already follows
that g,/ m.

Figure 6.1 shows the implications between the above mentioned lattice
properties (for doubly founded complete lattices). Two of the attributes still
lack an explanation: According to A. Day, a lattice is semiconvex if it
satisfies the following condition:

rAy=rAz, xVy=rV: = zx<az.
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B stands for the property of being a bounded homomorphic image of a free
lattice. This property has a simple characterization in the language of con-
texts: it is equivalent to the fact that the objects and attributes of the (re-
duced) context can be ordered in such a way that every /" is on the diagonal,
every /* below the diagonal and every " above the diagonal.

The convex-ordinal scales C(p <) (see Section 1.4), at least if (P, <) is
finite, are doubly founded. The extents are the convex subsets of (P, <),
the extremal points are the maximal and minimal elements of such subsets.
Hence Condition (3) of Theorem 44 is satisfied and therefore finite convex-
ordinal scales are meet-distributive.

Figure 6.2 The additively saturated subsets of {1,...,7}.

The Anti-exchange Axiom holds in the closure system of the convex sets of
an arbitrary metric space. But it also holds in other connections, for example,
if we can assign a weight wt(g) to every object g, such that wt(g) = wt(h)
only if ¢’ = A" and such that

gg A" ge (AU{h}) = wt(g) > wt(h).

The last condition can be interpreted as saying that the weight of g must be at
least as big as that of h if ¢ is generated by means of 2. A simple example in
this connection is presented in Figure 6.2. If ¢ C I1is an arbitrary set, then a
subset 7' C i will be called additively saturated if from a,b € T,a+b € G
it already follows that a+b € T. The additively saturated subsets of ¢ form a
closure system which with wi(g) := g obviously satisfies the above-mentioned
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condition. Hence the corresponding lattice is meet-distributive. Figure 6.2
shows an example with := {1,2,...,7}.

6.4 Dimension

Definition 82. An ordered set (P, <) has order dimension
dim(P,. <) =n

if and only if it can be embedded in a direct product of n chains? and n is
the smallest number for which this is possible. &

We will show that the order dimension can also be well described in the
language of Formal Concept Analysis. For this purpose we start with some
simple observations, on which we will base our statements and which at the
same time are formulated in such a way that they can also be used for possible
variations of the notion of order dimension. An example of such a variation
is that of the k-dimension: The k-dimension dimy (P, <) of an ordered set
(P, <) is the smallest number of chains of cardinality k in whose product it can
be order-embedded. What is usually examined are embeddings of arbitrary
ordered sets. We shall concentrate on embeddings of concept lattices. This
is not a serious restriction, however: The Dedekind Completion Theorem
(Theorem 4, p. 48) shows that (P, <) can be embedded in a complete lattice
if and only if B(P, P, <) can also be embedded in this lattice. Therefore, we
have the following theorem:

Theorem 45.

dim( P, <) dimB(P, P, <)
dimg (P, <) = dimg B(P, P, <)

As a direct corollary of Proposition 33 (p. 99) we obtain:

Proposition 101. There is an order embedding of B(G, M, I) in a product

Xier Vi, if and only if there are pairs of maps (a:, 3;).t € T with the
following properties:

L.ay:G—=V,, 3 : M=V,
2. (gom) €l =g < gm foraltel,
3. (g,m) 1= a9 £ Bim for some t €T.

2 Meaning an order embedding according to Definition 6 (p. 3).



6.4 Dimension 237

We can express this fact differently by replacing the maps a; and 3; by
relations J; with (g.m) € J; : <= a9 < Brm:
Proposition 102. There is an order-embedding of B(G/, M, I) in a product

Xier Vi if and only if there exist contexts (G, M, J;) and order-embeddings
of B(G, M, J;) inV; fort €T such that

1= O
tel
In the case of a doubly founded context, Proposition 102 can be further

improved by weakening the condition I = ),¢p Ji: The statement remains
correct if instead we only presuppose that

IC ﬂ Ji and {(g.m) | g/ morg /m}nN ﬂ Jy = 0.
teT teT
This follows from Proposition 49 (p. 115).
Definition 83. A Ferrers relation is a relation F' C &G x M with
(g,m)€eF, (hhn)eF, (¢gn)¢F = (h,m)eF

The Ferrers dimension fdim((, M, I) of a context (G, M, I) is the smallest
number of Ferrers relations F; C G x M,t € T with I = (", Fr. %

If we imagine ((¢, M, F) as a cross table, it is easy to visualize the Ferrers
X

condition: The definition excludes the subcontext

, which does not occur

X
if and only if the table can be brought into a stair-shaped form by rearranging

the rows and columns. This is also the basis of the following proposition:

Proposition 103. F C (xM is a Ferrers relation if and only if B(G, M, F)
is a chain.

Proof. Let F be a Ferrers relation and let (Aq, By), (A2, B2) be two concepts
of B(G, M, F). If (A1, B1) £ (A2, Bs), then there are an object g € A
and an attribute n € By with (g,n) ¢ F. For every m € B; we have
(9,m) € F and for every h € Ay we have (h,n) € F. Hence from the
Ferrers condition it follows that (h,m) € F for all h € Ay, m € By and thus
(Ag, By) < (A, By). This means that any two concepts of B(G, M, F') are
comparable and B(G, M, F) thus is a chain. The reverse direction is even
easier. o

The determination of the Ferrers dimension is a task which is generally
difficult to solve (since it is A"P-complete). Nevertheless, in the case of small
contexts it can be carried out by hand. In this connection it is convenient
to make use of the fact that the complement of a Ferrers relation is again a
Ferrers relation. Hence the Ferrers dimension of (G, M, I) is also equal to the
smallest number of Ferrers relations F; covering the empty cells of the cross
table, i.e., with G x M\ I = |J;c Fr. It is, however, not always possible to
choose this covering to be disjoint.
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Theorem 46. The Ferrers dimension of (G, M, I) is equal to the order di-
mension of the concept lattice B(G, M, I):

dimB(G, M, 1) = tdim(G, M, I).
The order dimension of an ordered set (P, <) is equal to the Ferrers dimension

of (P, P,<):
dim(P, <) = fdim(P, P, <).

Proof. 'This follows immediately from the Propositions 102 and 103, because,
obviously, a complete lattice can be embedded in a chain if and only if it is

a chain itself. 0O
x| x| 1[x|1[1]1 (3,0,0,0) (3,0,3,3)
T x [ x [d x| 11 (2,1,0,1) (3,3,0,3)
2 13 | x| x|[2]x]1 (1,2,1,0) (2,2,1,3)
21313 x| x]3]|x (0,2,3,0) (3,2,3,0)
x| 31314 x|x]|1 (1,0,2,1) (2,1,3,2)
2 X 2 2 92 X | % (0,3,0,0) (1,3,2,2)
X |3 | x|4]|4]4]x (0,0,1,3) (0,3,3,3)

Figure 6.3 Point-line context of the projective plane PG(2,2), with Ferrers rela-
tions. The Ferrers dimension, and thus the order dimension of the plane, is 4; a
covering of the 28 empty boxes with less than four Ferrers relations is impossible,
since each Ferrers relation in this example can have eight elements at most. On the
right 1s an embedding of PG(2,2) into a product of four chains; the first column
gives the images of the points, the second those of the lines.

Theorem 46 can be strengthened in several respects. We can include the
lengths of the chains involved and we can examine whether it would not suffice
to cover the arrow relations. Both are possible and the two possibilities can
even be combined. For this purpose, we first define the length of a Ferrers
relation:

Definition 84. The length of a Ferrers relation F' C G x M is the length of
the concept lattice B(G, M, F). By fdimg(G, M, I) let us denote the smallest
number of Ferrers relations £, C &' x M, t € T, of length < k with I =
MNier Fi- A Ferrers relation is k-step, if k = [{g" | g € G'}|. O

If we imagine a k-step Ferrers relation represented as a table and arranged
in the form of stairs, then these stairs really have k steps. The number of steps
is equal to the length if full rows and full columns are counted separately.
The following trivial observation is quite helpful:

Proposition 104. The complement G x M\ F of a k-step Ferrers relation
F CG x M is a Ferrers relation of length k.

fdimg (G, M, 1) is equal to the smallest number of at most (k — 1)-step
Ferrers relations whose union is G x M\ I. O



6.4 Dimension 239

Now Theorem 46 can be transferred without a new proof:
Theorem 47.

dimy B(G, M, I) = fdimg (G, M, I)

dimy (P, <) = fdimg (P, P, <). 0
Xxix|1|x|1]1]1
2 x| xi2x|1]1
313 | x| x|3]x|3
31314 x|x|5]x
x{4]4]4|x]|x]4
2 |1 x 12122 x|x
X |5 | x]15|5|5}|x

Figure 6.4 The 3-dimension of P(:(2,2) is 5. In arithmetic terms a covering with
four Ferrers relations of the length 3 would be conceivable, however, such a covering
does not exist. The 2-dimension is 7.

Of particular interest is the 2-dimension, i.e., the smallest number of
squares by which the complement of I can be covered. The direct prod-
ucts of two-element chains are precisely the power-set lattices. Hence the
2-dimension of a complete lattice is also the smallest possible size of a set
representation in the sense of Definition 35 (p. 74). We show a connection
with another form of representation:

Definition 85. A set representation of a context (G, M,I) on a set T is
a pair of maps o : G — PB(T), 3: M — B(T) assigning a subset of T to each
object and to each attribute, in such a way that:

glm << agnpm+#0Q.
We speak of a complementary set representation if the condition
glm <= agNBm=0
is satisfied. %

In Section 1.4 we had defined the contexts for free distributive lattices by
means of set representations.

Proposition 105. The following statements are equivalent:
1. (G, M,I) has a complementary set representation in T.
2. B(G, M, I) has a set representation in T.

3. dime B(G, M, I) < |T1.
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Proof.

1 = 3: If (e, 3) is a complementary set representation in T, then the relations

b {91t €ag}lx{m|tepm}
{(g.m) |t € agn pm}

C GxM\I

I

Il

are l-step Ferrers relations (or empty) with {J;¢p Ft = G x M \ I, and
by Theorem 47 it follows that dimy B(G, M, I) < |T.

3 = 2: The products of 2-element chains are precisely the power-set lat-
tices and, therefore, dimy B(G, M, I) < n is equivalent to the fact that
B(G,M,I) can be order-embedded in the power-set lattice of an n-
element set.

2 = 1: If p is an order embedding in a power-set lattice SB(7"), then by ag :=
pvg, Bm := T\ pum we obtain a complementary set representation of
(G, M, I), since

glm <= ~vg <pum <= oy9 Cppum <= eyg N (T \ pum) = Q.
0

We know already from the observations following Proposition 102 that
in order to determine the Ferrers dimension of a doubly founded context
B(G, M, I), it suffices to cover those pairs (g, m) of the complement of I for
which g,/ m or g /*m holds. In fact, we can even restrict ourselves to the
double arrows, since they play the role for the Ferrers dimension which the
eritical pairs known from order theory play for the order dimension.

Theorem 48. A doubly founded context (G, M,I) has Ferrers dimension
< n if and only if there are n Ferrers relations Fy C G x M \ I whose union
contains all pairs (g, m) with g /*m.

If. in this connection, all Fy are at most (k — 1)-step, then

fdimg (G, M, I) <n

also holds.

Proof. First we describe the possibility of suitably extending a given Ferrers
relation F. The basic idea is that the Ferrers condition is not affected if we
double some row or column of the context. Formally, this can be described
as follows: For a Ferrers relation F' C G x M and objects g, h € G,

FU{(g,m)|(h,m) € F}

is also a Ferrers relation. Moreover, if F'NI = O, then from ¢’ C &' it follows
that FU{(g,m) | (h,m) € F} is also disjoint to I. The number of steps does
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not increase. The corresponding is true when we copy column n into column
m (m,n € M), i.e., when we pass from F to

FU{(g,m) | (g.n) € F}.

If, therefore, we define for a Ferrers relation F' C G x M \ [

F := FU U {(g.m) | (hym) € F}
g'Ch’

andthus F = FU U {(g,m) | (g,n) € F},
m'Cn'

we obtain again a Ferrers relation F' C (¢ x M \ I. If F is at most k-step,
then F is at most k-step.

Now, assume that for ¢ € T' Ferrers relations Iy C G x M \ I are given
which together cover all double arrows. We claim that the relations F,t € T
then completely cover (¢ x M\ I:

If (g,m) & I, then because of doubly foundedness, there is an attribute n
with g /n and m’ C n’, and furthermore an object h with h,/*n and ¢’ C h'.
If (h,n) € F,, then (¢g,n) € F; and (g, m) € F,. O

From Definition 85 it follows immediately that a set representation of
(G, M, 1) is a complementary set representation of the complementary con-
text (G, M,G x M\ I), and vice versa. The determination of the set di-
mension of ¥, i.e., the smallest possible cardinality of a set representation,
is therefore equivalent to the determination of the 2-dimension of K° (and dif-
ficult, since it is also A"P-complete). According to the above-stated results,
the task consists in filling up the relation I with as few as possible 1-step
Ferrers relations, i.e., with as few as possible “rectangular” subrelations. For
such squares (A, B) with A x B C [ we had earlier introduced the term
preconcept of the context (GG, M, I). Hence the set dimension is equal to the
smallest number of preconcepts (more precisely: sets A x B, where (A, B)
1s a preconcept) whose union fills up I. Since, however, every preconcept
can be extended to a concept, the set dimension is also equal to the smallest
number of concepts whose union is I. We give an example:

Example 15. We want to find out whether the digits of the seven-segment
display

D I2 3456 1889

can be represented as the unions of less than seven parts.

For this purpose we consider the context in Figure 6.5, whose objects
are those digits and whose attributes are the segments of the display; the
incidence is explained in the obvious way. The intents naturally correspond
to partial figures of the display; a set of concepts fills out I if and only if every
object intent can be represented as the union of (concept) intents from this
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Figure 6.5 The seven-segment display and the context of the digits. The crosses
surrounded by circles mark a blocking set.

set. Thus, the task of getting along with as few partial figures as possible is
equivalent to the determination of the set dimension. In fact, six intents are
sufficient, namely

T_L_‘)

The fact that a smaller number cannot suffice is evidenced by the “blocking
set” of incidences marked in Figure 6.5: No two of these crosses can belong
to a common preconcept.

Embeddings in direct products of chains are also of interest for the draw-
ing of lattice diagrams. In this context, \/-embeddings, i.e., injective, \/-
preserving maps, have proved helpful, and we are faced with the question of
the existence of such embeddings. The theoretical background of this ques-
tion is elaborated in Chapter 7 in a different context. We give the following
result without proof, because it can be obtained as a special case of the
Propositions 119 (p. 260) and 121 (p. 263).

Theorem 49. There exists a \[-embedding of a finite lattice V' in the di-
rect product of n chains of the lengths ly,..., 1, if and only if M(V') can
be covered by n chains of cardinality my,...,m,, where m; < I; holds for
ie{l,....n}. ]

As an immediate consequence, we can determine two parameters for this
problem of embedding: If we define the \/-dimension to be the small-
est number of chains in whose product the lattice can be embedded \/-
preservingly and the \/-rank to be the least length of such a product, the
theorem gives us satisfactory information on those numbers, at least for finite



6.5 Hints and References 243

lattices. For this purpose we use a well known result of Dilworth ([29], p. 3),
which says that the smallest number of chains by which a finite ordered set
can be covered is equal to the width of this ordered set.

Corollary 106. In the case of a finite lattice V', the \[-dimension is equal
to the width of M (V') and the \/-rank is equal to the cardinality of M(V'). O

6.5 Hints and References

The lattice properties treated in this chapter, namely distributivity, its gener-
alizations, and modularity, as well as questions of dimension, are basic topics
of the mathematical theories of lattices and order. We did not intend to offer
a concept-analytic representation of the general state of the research; rather,
we want to show that these subjects can be included without difficulty in
our language and can thus be used. Naturally, our summary lays no claim to
completeness. We refer to the text books on order and lattice theory which
were mentioned in the beginning and to current discussion in the respective
scientific journals, e.g. ORDER. A detailed comparison of many properties of
finite lattices has been elaborated by Reeg and Weif§ [139]. Algorithms and
complexity estimations can be found in the doctoral thesis [157] of Skorsky.

6.1 A detailed examination of the distributivity of concept lattices is at-
tributable to Erné. His study [47] contains many results which go beyond
the contents of this chapter. Furthermore, he was the first to work out that
the different variants of the distributive law coincide in the doubly founded
case. A connection is established between Theorem 40 and topological state-
ments. This theorem was taken from [197] and goes back to ideas of Raney
[138]. Finite distributive concept lattices are described in [196]. That dis-
tributivity can be described by means of the arrow relations has been known
for quite a long time in the version of Theorem 41(9). The elegant concise
version in Theorem 41(3,4) also goes back to Erné.

6.2 There is a book by Stern [162] on semimodular lattices. The charac-
terization of semimodularity by means of the arrow relations was derived by
Skorsky from a result of Faigle and Herrmann [51].

6.3 The literature on the generalizations of the distributive laws is so exten-
sive that we have to refer to the relevant text books, in particular to Crawley
& Dilworth [29]. Semidistributivity is of great importance in connection
with the examination of free lattices, as Jénsson and Kiefer [90] have demon-
strated; see also Nation [130]. Day [33] already uses the characterization by
means of the double arrow relations. There are generalizations of semidis-
tributivity which can also be described by means of the arrow relations; see
Day, Nation & Tschantz [35] as well as Geyer [70].

Locally distributive lattices have been introduced by Dilworth [40] and ap-
pear in different connections as natural structures. A concentrated overview
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over the development of this term is given by Monjardet [127]. The different
parts of Theorem 44 have been compiled from publications by Green and
Markowsky [78], Jamison [88] and Edelman [46].

The comparison of lattice properties in Figure 6.1 again goes back to
Skorsky; see also R. Schmidt [153]. Skorsky also has worked on neighbour-
hood-preserving embeddings into distributive lattices [156], since this is in-
teresting for the automatic generation of diagrams. Wild [185] had solved
the problem for power-set lattices.

6.4 The fact that the order dimension of (P, <) is equal to that of the
Dedekind-MacNeille-completion has been known for quite a long time, com-
pare [5], [151]. Baldy & Mitas [4] have generalized this.

The terms Ferrers relation and -dimension go back to Riguet [145] and
Cogis [27], [28], The works of the latter already contain parts of the content of
Theorem 46. Bouchet [23] proves the theorem for ordered sets, the generalized
version can be found in [204]. With regard to the Ferrers dimension see
also Doignon, Ducamp & Falmagne [41] and Koppen [102]. Applications
can be found in Reuter [141], [142], Ganter, Nevermann, Reuter and Stahl
[61]. Closely related to the Ferrers relations are the interval orders. These

are ordered sets (P, <) in which I1 cannot be embedded. Formally, the
condition reads:

u<v, <y, udy = x<uv.

By means of Definition 83 we recognize that this is precisely equivalent to
the fact that < is a Ferrers relation. Hence examinations of the “interval
dimension” are closely related to those of the Ferrers dimension. It is possible
to generalize this considerably by considering the order of the intervals of an
arbitrary ordered set. This was done by Mitas [126].

The example of the seven-segment display goes back to Stahl and Wille
[159]. With respect to set representations see also Markowsky [124].



7. Context Comparison and Conceptual
Measurability

Maps between concept lattices that can be used for structure comparison are
above all the complete homomorphisms. In Section 3.2 we have worked out
the connection between compatible subcontexts and complete congruences,
i.e., the kernels of complete homomorphisms. A further approach consists in
coupling the lattice homomorphisms with context homomorphisms. In this
connection, it seems reasonable to use pairs of maps, i.e., to map the objects
and the attributes separately. Those pairs can be treated like maps. We do
so without further ado and write, for instance,

(. 8) 1 (G M. 1) — (H, N, J),

if we mean a pair of maps a : (¢ — H. 3: M — N, using the usual notations
for maps by analogy. This does not present any problems, since in the case
that GNM =0 = HNN we can replace such a pair of maps (a, 3) by the
map

aUB:GUM = HUN.

First we treat automorphisms of contexts in order to describe lattice au-
tomorphisms with their help. In this context, the algorithmic questions are
of interest. We show that it is possible to generate the automorphisms of
a context with the same algorithm that we have already used in the second
chapter in order to generate the concepts.

If we are looking for a duality that maps the complete homomorphisms
between concept lattices and suitable morphisms between the corresponding
contexts onto each other, then very simple examples show that this cannot
be realized without restrictions. The reason is that very different contexts
can have isomorphic concept lattices. We already know that the structure of
the concept lattice does not change if we clarify or reduce the context.

There are different possibilities to get by with. One of them consists in
using set-valued maps. Another approach considers the concept lattices only
up to isomorphism and describes the homomorphisms by morphisms between
suitable contexts. This will be explained in the second section.

When scaling a many-valued context as defined in the first chapter, we
have the possibility of choosing the scales. In order to be able to use this
instrument more purposefully, we need methods of comparing scales. Is it
possible to scale an attribute coarser or finer? And what are the consequences

B. Ganter et al., Formal Concepr Analysis
© Springer-Verlag Berlin Heidelberg 1999
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to the concept lattice? In order to answer these questions, we shall introduce
the suitable morphisms, namely the scale measures.

The following is a task which occurs frequently: Data are given in the
form of a one-valued context, but in reality we suspect the data to be of
a many-valued nature. We can try to reverse the procedure of scaling and
ask whether the conceptual structure of the given one-valued context can be
explained entirely or partly by the introduction of many-valued attributes
with a given scaling. This can also be approached with the help of the scale
measures. It leads to the development of the approach of a concept-analytic
measurement theory.

7.1 Automorphisms of Contexts

Definition 86. An isomorphism between contexts K; := (G, M, I) and
Ky := (H,N,J) is a pair («a, 3) of bijective mapsoa : G = H, 3: M - N
with

gIm < «(g)Jdp(m).

In the case [; = [K; we call this an automorphism; the group of automor-
phisms of a context I is denoted by Aut(IK). <

Isomorphic contexts have isomorphic concept lattices, since every context
isomorphism (e, ) through

(4. B) = (a(A), 8(B))  for (4, B) € B(K,)

induces a lattice isomorphism of B(K;) onto B(K;). If both contexts are
reduced, then every lattice isomorphism is induced by one (and only one)
context isomorphism. More generally: If the contexts are clarified, a lattice
isomorphism ¢ is induced by a context isomorphism if and only if ¢ surjec-
tively maps object concepts onto object concepts and attribute concepts onto
attribute concepts.

An observation by W. Xia shows that in turn we can interpret the iso-

morphisms themselves as concepts of a suitable context. For this purpose we
define:

Definition 87. For contexts [, := (G, M,I) and K := (H, N, .J) we have
Ky x Kp := (G'x H,M x N,~)
with
(g, h) ~(m,n) <= (9Im < hJn). &

Theorem 50. If K is clarified and if « C G x H, 3 C M x N are bijec-
tive maps between G and H or M and N, respectively, then the following
conditions are equivalent:
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1. (a,3) is a conlext isomorphism of V3 onto Ky

2. (a, B) € B(K; x Ky).
Proof. For AC G x H, BC M x N it holds that
A~ ={(m,n) | gIm <= hJnfor all (g,h) € A}
as well as
B~ ={(g,h) | gIm <= hdJn for all (m,n) € B}.

Hence, a pair («, 3) of bijective maps is an isomorphism of [K; onto K; if and
only if & C 3~ or, equivalently, if 3 C a™. This, however, also implies that
a =3~ and g = a~, since, if (g, h) € 3~, then

hJpdm <= glm <= agJpm

for all m € M, from which we infer that h’ = (ag)’. If K; is clarified, this
implies h = ag and we obtain o = 3. O

Furthermore, we learn from the theorem that, in the case of clarified
contexts, an isomorphism («, 3) is determined already by each of its two
components.

The theorem permits a useful tightening. Frequently, we know already
that a certain object g of £; cannot be mapped onto h € K, by an isomor-
phism, for instance, because ¢ does not have the same number of attributes
as h. Hence, the object (g, h) of K; X K, cannot belong to an isomorphism
and is superfluous in this respect. Indeed, such object or attribute pairs can
be omitted without changing the content of the theorem. This is formulated
in the following theorem, for which we define that

G = U{a | (a, ) is an isomorphism of K; onto [, },

M := U{d | (v, 3) is an isomorphism of K; onto K3 }.

Corollary 107. Let X and Y be sets with G CXCGxH and M CYC
M x N. Let ¥y again be clarified. Then for bzyectwe maps o : G — H,
B: M — N the following conditions are equivalent:

1. (e, 3) is an isomorphism of Ky onto Ky
2 (e, B) € B(X, Y, ~NX xY).

Proof.  Every isomorphism is a concept of B(K; x Ky) whose extent and
intent are entirely contained in the subcontext, i.e., a concept of the sub-
context. If, conversely, (o, 3) is a concept of the subcontext, then certainly
a C 3~. In the proof of the preceding theorem we have already shown that,
in the case of bijective maps, this implies that (o, 3) is an isomorphism. O
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We can combine this theorem (as well as its corollary) with the algorithms
from Section 2.1 and thereby obtain for instance a method for the generation
of all automorphisms of a (finite) context K := (G, M, I). However, we shall
want to avoid working in the context K x K, since this context is consid-
erably larger than . Indeed, the necessary calculations can be reduced to

an

calculations in .. This is prepared by the following definition:

Definition 88. A box relation on a (finite) set S is a subset R C S x S of
the form
R:Al X Blu,42 X BQUUfL X Br.

with Ap,...,. 4, being pairwise disjoint non-empty subsets of S and
Bi,...,B, as well. A box relation is called regular if |A4;| = |B;| for all
i € {1,...,r} and if, furthermore, |JA4; = S = |JB;. A box relation is a
partial permutation if [4;| =1 =|B;|for i € {1,..., r}. &

The box relations on S form a closure system. Their role for the auto-

morphisms is illustrated by the following proposition:

Proposition 108. All extents of ¥ x . are box relations on G and all intents
are box relations on M.

If (@, B) is an automorphism of . and (A, B) is a concept of & x K with
(A, B) < (a, ). then A is a partial permutation and B is regular.

Proof. Because of
(g.h) =g x W' U(M\g') x (N\ ),

every object intent of [ x K is a box relation, and thus so is every intersection
of object intents, i.e., every concept intent. The corresponding is true for
extents.

(A, B) < (a, ) is equivalent to 4 C o« and 3 C B. If « and 3 are
permutations, then trivially 4 is a partial permutation. The fact that B
must be regular can be seen from the following (trivial) proposition. O

Proposition 109. If a box relation contains a regular box relation, it is reg-
ular itself. O

For practical work it is useful to represent a box relation R by means of
two maps p; : S — Ilg, pg : S — Ny with

(s,t) € R <= pi(s) = pa(t) > 0.

With this representation it is for example easy to find the intersection of box
relations or to carry out the simpler context operations. If, for example,

R::'hXBlLJAgXBQU...UA,.XB,«

is an intent of ¥ X K and (g, k) € G x (7, then
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g =U{4i | Bi C '}
W =U{Bi|4i Cg'}

We now want to state an algorithm generating all automorphisms of a
clarified context . In principle, we can use the results of Section 2.1 for
this purpose: there we have introduced an algorithm for the generation of all
concepts of a context, and by Theorem 50 the automorphisms are particu-
lar concepts. Hence, we could obtain the automorphisms by generating the
concepts of £ x I and rejecting those which are not automorphisms. How-
ever, this would generally require an absurd amount of work, we would have
to check huge numbers of concepts in order to find some automorphisms.
Therefore, we shall try to use Theorem 6 (p. 68) and search for a sub-family
F of the set of all extents of . x I which satisfies the prerequisites of the
theorem and supplies all automorphisms, but few other extents.

However, this is also unrealistic. Considerations concerning complexity
show that we cannot expect that there is an algorithm which can easily find
the automorphisms for any context K. The set F we use therefore contains in
addition to the automorphisms further extents, in the worst case even many
of them.

In order to apply Theorem 6 (p. 68), we have to order the object set
linearly. For this purpose we choose an arbitrary linear order on GG and set

(9.h) € ¥ < {

g1 <g2 or

91, 11) < (g2, h2) : &= {91 =gz and hy < hy.

If @« C (¢ x (G is a partial permutation and ¢ € G is an object, then we
say that o Is undefined for ¢ if there is no h € G with (¢g,h) € a. We
call « flush left if the following holds true: If « is undefined for g, then
a=an{(g92) | (91,92) <(g.9)}

Proposition 110. The set F of all extents of concepts (a, 3) € B(K x K)
for which it holds that

- « is a flush left partial permutation,
- 3 is a regular box relation,

satisfies the prerequisites of Theorem 6 (p. 68).

Proof.  Let (a,3) be such a concept and let (i,j) € G x G be arbitrary.
Then

ag:= (aN{(g,h) | (g, h) < (i,5)})"

is the extent of a subconcept (aq, 3o) of (a, ), in particular, we have ag C «
and 8 C fy. Trivially a is a partial permutation and, by Proposition 109,
Bp is regular. Hence, we only have to prove that «q is flush left. Let g be
undefined for ag. If g > 4, there is nothing to prove, hence, let ¢ < i. Then,
however, a is undefined for g, from which the assertion follows. 0
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The set of concepts described in the proposition contains all automor-
phisms. They are precisely those elements («, 3) of F for which « is a (com-
plete) permutation. Hence, the algorithm consists of scanning the set F in
the manner described in Theorem 6 (p. 68) and of counting those elements
a which are not undefined for any object as hits.

A further application of Theorem 6 allows us to calculate a concept lattice
“modulo automorphisms”. This means: If I' < Aut(G, M, I) is a group of
context automorphisms, then B(G, M, I) divides into orbits under I'. We
select exactly one concept from each such orbit, namely the one with the
lectically largest extent. Such an extent is called orbit-maximal. We want
to avoid calculating first all extents and then determining the orbit-maximal
ones among them. The following theorem shows that the algorithm from
Section 2.1 can be suitably modified such that it only generates the desired
extents.

Theorem 51. The smallest orbit-mazximal concept extent lectically greater
than a set A C G is
At =A@,

i being the largest element of (¢ for which A <; A& i and, at the same time,
a(APi) < A& foral(a,B) el

Proof. What we have to show is that the system of orbit-maximal extents
satisfies the prerequisites of Theorem 6 (p. 68). We prove that, more gener-
ally, the following holds true: If B is an extent and A = (BN{l,...,i—1})",
then

A<a(d)= B<a(B)

holds for every automorphism («, 3) of (G, M, I).
A < a(A) means A <; a(A) for some j € G. If i < j, this would mean
that
An{l,....i—1}=a(A)N{l,...,i—1},

which, because of
A=An{l,....i—1})",

would imply that 4 C a(A) and thus 4 = «(A4), contradictory to A < a(A4).
Hence, j < ¢ must hold. But then we have

Bn{l,....j—=1}=An{l,....j -1} =a(4)N{1,..., j—1} Ca(B)
and j € a(B) \ B, from which it follows that B < «(B). 0

In the case of lattices with many automorphisms a diagram of the orbits
is often easier to read than a diagram representing all elements of the lattice.
As an example, we show in Figure 7.1 the lattice of the 59 subgroups of the
alternating group As. Represented are the nine orbits of the automorphism
group I', which is isomorphic to S5. We have stated one representative of
each subgroup orbit. The orbits are ordered according to the following rule:
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Figure 7.1 The lattice of subgroups of the alternating group As “modulo auto-
morphisms”. The representatives of the subgroup orbits are: Sy := {id}, 7> :=
{1d, (01)(23)}, Zs := {id,(012),(021)}, Vi := {id,(01)(23),(03)(12),(02)(13)},
Zs = {(01234)), Ds := ((01)(23),(014)), Ds := {(01)(23),(01234)), A4 :=
((01)(23), (012)). A5 := ((012), (01234)).

The orbit a’ is less than or equal to the orbit b, if and only if there is an
automorphism v € I' with the property that ~va is a subgroup of 5. This
does not necessarily imply that « is also a subgroup of b. In Figure 7.1 for
example, D3 does not contain the group Zs but the group (24)Z5(24), which
is obtained from Z5 through conjugation. This is the reason why the element
(24) is entered at the corresponding edge of the line diagram.

Such diagrams “modulo automorphisms™ are used in group theory, but
can be used more generally. M. Zickwolff (from whose publications [218],
[219] the example has been taken) has worked out which information has
to be entered into the diagram of the orbits of a (finite) lattice V' with
automorphism group I', so that we can reconstruct V from it. For this
purpose, we first choose an arbitrary system of representatives R of the orbits
(for example the set of the orbit maximal elements in Theorem 51). For every
representative a« € R we note down the stabilizer I', and enter it into the orbit
diagram at the corresponding element. It is often sufficient, as in Figure 7.1,
to enter the representative a and to calculate the stabilizer I', when needed.
For each two elements a.b € R we determine the set

{n €' |~va <b}

of those automorphisms which map a onto a lower neighbour of b. This set
divides into (disjoint) double cosets of the form

Lyall,.
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Therefore, it is sufficient to note down a system of representatives B(a, b) for
each of these classes. Provided that it is non-empty, 3(a,b) is also entered
into the orbit diagram, namely at the edge between a and b. The complication
may arise that 3(a,b) # O, but that a’ is not a lower neighbour of 6" (in
the orbit diagram). In this case we add an edge from «a to b to the diagram.
For reasons of simplicity we agree that an unlabelled edge from a to b shall
symbolize 3(a.b) = {id}. Figure 7.2 shows a further simple example: on
the left, a lattice whose automorphism group is apparently isomorphic to
the cyclic group Z3 and on the right, the orbit diagram with the necessary
information.

Figure 7.2 The diagram of orbits (on the right) has an additional edge.

7.2 Morphisms and Bonds

Definition 89. If [, := ((+, M, I) and [, := (H,N,J) are contexts, we call
amapa:G —> H

- extensionally continuous, if for every extent [/ of K, the pre-image
a~1(U) is an extent of ;.

- extensionally closed. if the image a(I7) of an extent U/ of K; is always
an extent of ;.

The extensionally continuous maps are also called scale measures; they will
be examined in detail in the next section. Dually, we will explain in which
cases a map is J : M — N intensionally continuous and intensionally
closed, respectively. A pair of maps (a, B) 1 K3 — ¥y is called
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- incidence preserving if
glm = a(g)JB(m)

forallg e G,me M,

- Incidence reflecting if
glm < a(g)J B(m)

forallg € G,mée M,

- continuous if « is extensionally continuous and 7 is intensionally contin-
uous,

- concept preserving if, for every concept (4,B) € B(I;), the pair
(B(B)',a(A)’) is a concept of I, and

- concept faithful if it is at the same time concept preserving and contin-
uous.

%

Even if («, 3) is incidence-preserving and -reflecting, the two maps need
not be injective. However, in this case from a(g) = a(h) follows that ¢’ = h’
and dually; i.e., this kind of map is “injective up to clarification”.

From Proposition 33 (p. 99) it follows that to the incidence-preserving
maps correspond certain order-preserving maps between the concept lat-
tices. Concept-preserving maps are necessarily incidence-preserving, the map
stated in the definition being order-preserving. These maps, however, need
not be lattice homomorphisms. It is different in the case of the concept
faithful maps:

Theorem 52. If (o, 3) : ¥y — K3 is a concept faithful map, then
(4, B) = (3(4); a(A4)")

is a complete homomorphism from B(I1) to B(Ky).

A complete homomorphism is induced by a concept faithful map if and
only if it maps object concepts onto object concepts and attribute concepts
onto attribute concepts. g

Erné has proved this theorem with the aim of representing lattice ho-
momorphisms through concept faithful maps; the restriction made in the
theorem disappears if we consider the lattices only up to an isomorphism:
According to the Basic Theorem, every lattice V' is isomorphic to B(V, V, <)
and for this context every concept is an object and an attribute concept,
and consequently, every complete homomorphism between such concept lat-
tices is induced by a concept faithful map. Erné furthermore gives a simple
characterization of the concept faithful maps, which we add:
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Proposition 111. An incidence-preserving map
(a.3): (G.M.I)— (H,N,J)

is concept faithful if and only if the following condition is satisfied for all
heH,neN:

(hyn)y&J = Fgmer a ' (nyCm' and 37HK) Cg'. O

The notions of morphism for contexts which we have treated so far have
the disadvantage that they do not represent all lattice homomorphisms, as
long as the context may not be changed as described above. Various attempts
have been made to overcome this difficulty through the introduction of set-
valued maps. We choose a different way, which however makes it easy to
achieve these results. The question for a context description for the \/-
morphisms leads us back to the notion of a bond from a context (G, M, I) to
a context (H, N, J), which we have already examined in connection with the
subdirect. products. By this we understand (Definition 69, p. 185) a relation
R C G x N with the property that the set g® of elements being in a relation
with an object ¢ € (& always forms an intent of (H,N,J) and that dually
for every n € N the set nf forms an extent of (G, M, I). In order to make
it easier to take up previously obtained results, we modify this definition by
dualizing the target context:

Definition 90. A dual bond from (G, M, I)to (H, N, J) is a bond between
(G, M,I) and the context dual to (H, N, J), i.e., a relation R C G x H for
which it holds that:

— for every object ¢ € (¢, gff is an extent of (H, N, J) and
— for every object h € H, hfl is an extent of (G, M, I).

&

The notion of the dual bond is symmetric: if R is a dual bond from K;
to Ky, then R~ is a dual bond from K to K.

Theorem 53. [For every dual bond R C G’ x H,
pr(X,NT) = (XX (YT = (VR v )

defines a Galois connection (pr,vr) between B(G, M,I) and B(H,N,J).
Conversely, for every Galots connection (p, ),

Ry =19, h) [ vg < vyh} = {(g,h) | vh < pyg}
15 a dual bond, and we have

S‘/)1:{(,"&') =% l‘E,R(,ﬂ-U") = w as well as R(§°R~U’R) = k.
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[
n

Proof. Because of X C Y® <= Y C X% Proposition 4 (p. 11) can
be used to prove that (¢g,tr) is a Galois connection. Besides, the same
proposition shows that the two sets specified in order to define R, y) are
equal. Therefore, for every g € G, the set gf.v) is equal to the extent of
©vg and correspondingly, for h € H, hfi.) is the extent of ¥»yh. Therefore,
R, ) is a dual bond.

For every dual bond R we have ¢f = ¢g//F_since for every extent U of
(Gy M, I) and thus for every set of the form U = RE h € H, holds

gel < ¢"CU.

This also holds for R, ;) and therefore we infer that

PR, w19 = PR, (9" 9")
— (g//R(ww)‘...)
— (gR(w,w)‘...)

= ({h1(g.h) € Ripyppts-)

= ik [g.h) € Rpu)}

= \{vh [vh < g}

= ¢vyg (since y(H v —dense),

and thus that, for an arbitrary concept (X, .X'),

PN X) = ¢\

geEX

= /\ VY9 (according to Proposition 7 (p. 12))
r/E)&

= N\ er,.,9

JeEX

= Yru. V9

geX
= PR (XX

O

Hence, the dual bonds correspond to the Galois connections between the
concept lattices, and the latter, according to Proposition 7 (p. 12), correspond
to certain morphisms. If we reverse the dualization, i.e., if we go back to a
bond, the condition from the proposition becomes easier to use: In this case
we obtain a residuated pair of maps, as described in Proposition 9 (p. 14).
The two maps mutually determine each other, one of them is a \/-morphism,
the other is a A-morphism. This is summarized in the following corollary:
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Corollary 112. For every bond R C G x N between contexts (G, M, 1) and
(H,N,J)
or(A, B) == (A% AF)

defines a \/-morphism pg : B(G, M, 1) — B(H., N, J), and

vr(4, B) := (BR, Bf)

defines a N\-morphism vg @ B(H,N,J) — B(G, M, I). Conversely, from
every \/-morphism ¢ : B(G, M, 1) — B(H, N, J) results a bond Ry, by virtue
of

Ry :={(g.n) | prg < pn}

and from every \-morphism v : B(H, N, J) — B(G, M, I) results a bond RY
by virtue of
RY :={(g9.n) | vg < un}.
We have R, = RY if and only if ¥ is residual to . ]
In Proposition 83 (p. 185) we introduced a product of bonds. It is possible
to show (and we shall do so in the following proposition) that this product

corresponds to the concatenation of A-morphisms. For this purpose, we again
use the notations which we used the Propositions 83 and 84.

Proposition 113. If J,; is a bond from ¥, to s and if Js; is a bond from
K, to I, then

U)oy = V., 0y,
holds for the corresponding \-morphisms.
Proof. We have
R*r= 0t = {(g,m) | vg < g, 0 g, (nm)}

and
g, (pm) = (m?*, m**),

g (mfom®f) = (m*, m),

and therefore
(g,m) € RY7r=°Y1st == gem®™ <= (g,m) € Jps 0.Jy. O

Complete homomorphisms are those maps which are \/-morphisms as well
as /\-morphisms. Therefore, the above corollary also yields a characterization
of the complete homomorphisms:

Corollary 114. For every complete homomorphism
e B(G, M, I)— B(H,N,J),

R:=R,={(g.n) | p79 <pn} CGx N
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defines a bond from (G, M, 1) to (H. N, J) and
S:= R ={(hym)|vh<eoum} CHx M
defines a bond from (H, N, J) to (G, M,I), and
:lRJ — BS BS'] — A4R

for all (A, B) € B(G, M, I).
If, conversely, R C G x N and S C H x M are bonds satisfying this
condition, then
¢(A. B) == (B*, AF)

defines a complete homomorphism from B(G, M, I) to B(H, N, J). O
Hence, Corollary 114 shows that complete M N
homomorphisms between concept lattices can

be satisfactorily described by means of suitable
pairs of bonds between the contexts. Now we I R:= R,

have different possibilities of turning these bonds
into set-valued maps. For example, we can as-
sign maps

a: G P(N), pB:M— PB(H)

to each homomorphism
p:B(G. M, I)—B(H,N,J)
through

ag = ¢ ={n|pyg <pun}
Bm = m® ={h|yh < pum}.

The homomorphisim ¢ can be reconstructed from (a, 3) through

o4, B) = ( ﬂ 8m, ﬂ ag).

meB geA

It is not difficult to characterize the pairs of maps which result in this way
from complete homomorphisms by means of the conditions stated in Corollary
114.

The symmetrical situation in Corollary 114 permits further variations.
We can also describe the bonds through maps in the other direction, i.e.,
a:H — P(M), 3: N = PB(G), and so on. We shall give only one further
example of this kind:
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Proposition 115. For cvery complete homomorphism
e B(G M, 1) > B(H,N,J)
the definition
gEah: <= vh<eoyg, me€EPn:<= pum< un
yields a pair of maps
a:H—=PG), p:N->P(M)

with
o(A,B)=({h€ H|ah C A},{n € N | fn C B}).

If, conversely, o : H — P(G) and 3: N — P(M) are maps with the property
that, for every concept (A, B) € B(G, M, 1),

({he H|ah C A}, {n€ N |3n C B})
is a concept of (H,N..J), then the map
(A,B)— ({h€ H|ah C A},{n€ N | pn C B})
is a complete homomorphism of B(G, M, 1) to B(H,N,J). a

7.3 Scale Measures

Definition 91. Let I := (G, M, I) be a context and let S := (Gg, Mg, Is) be
a scale. A map o : G — Gg is called an S-measure if the pre-image o~ (U)
of every extent of S is an extent of K. An S-measure o is called full if every
extent of € is at the same time the pre-image of an extent of S. O

In order to visualize this definition, we imagine a new context K, whose
objects are the objects of X and whose attributes are the attributes of S. Into
the g-row of this context, we enter the o(g)-row of the scale. This means that
formally we define I, := (G, Mg, I,) by

glom < o(g)lsm.

Now, the definition says that o is an S-measure if and only if every extent
of K, is also an extent of K; o is full if and only if K and K, have the same
extents. Since the context I, is defined on the same object set as K, we can
imagine the two contexts joined together to form the apposition

KK, ,

whose extent\ are the same as those of [, provided that o is a measure. In
this way a S-measure is understood as the possibility of extending the given
context by attributes from the scale S without changing the extents. o is full
if the new attributes render the old ones dispensable.
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Proposition 116. For a map o : (¢ — (g the following conditions are equiv-
alent:

1. o is an S-measure.
2. For all subsets A C (i it holds that o(A") C o(A)".
3. For all subsets A, B C (¢ it holds that A — B = o(A) = o(B)

(In accordance with Section 2.3, A — B is used as an abbreviation of
BCA").

o is full if and only if the inverse implication also holds in (3).

Proof. (1) = (2): Every scale measure satisfies condition (2), since, for
every A C G, 071 (0(A)") is an extent containing A and thus also A”.
(2)=3): A= B < BCA" = dB) Cod") Ca(A) = a(A) —
a(B).
(3) = (1): If U is an extent of S and ¢ is an arbitrary object from (o=1(U)),
i.e., with o= 1(U/) — g, this yields U — og, i.e. 0g € U and consequently
g € 0=Y(U), hence this set must be an extent, of K.

o is full if and only if for A C (7 it always holds that A” = o= !(c(A)");
this is however equivalent to

ge A" < o(g) € o(A)",

i.e., to
A—yg = o(A) = oy. O

We do not really have to check the definition of the S-measure for all
extents. It suffices that the pre-images of the column extents of S are extents
of KK (since the pre-image of an intersection of sets is the intersection of the
pre-images). Likewise, an S-measure is already full if every column extent of
K is the pre-image of an extent of S. If we call a subset 7' of the attribute set
of a context K dense in the case that the set {gm | m € T} is infimum-dense
in B(K), then we can continue as follows: A scale measure is full, if and only
if the set

{m e M | m' is the pre-image of an extent}

is dense.

A surjective S-measure is not automatically full. Indeed, every scale mea-
sure o can be replaced by a surjective one if we switch to a subscale (by a
subscale of a scale 5 we understand a subcontext (T, Mg, Is N (T x Ms))
with T' C (ig). This is the content of the following proposition:

Proposition 117. For cvery subscale (T, Mg, IsN (T x Mg)) of S, the iden-
tical map s a full S-measure. For a context (G,M,I), o : G — Gg is an
S-measure if and only if o is a (0(G), Mg, Is N (0(G) x Mg))-measure.

Proof. The extents of the subscale are precisely the sets of the form UNeo(G),
with U7 being an extent of S. m]
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From a scale measure o we obtain two maps between the concept lattices
of the corresponding contexts I and S, i.e., one in each direction. This is
described by the following two propositions. From the circumstance that the
set mapping o~ ! is intersection-preserving we immediately infer:

Proposition 118. If o is an S-measure of K,

(A, A") = (071 (A), 071 (A))
defines a \-preserving map of B(S) to B(K). If o is surjective, this map is
ngjective. a

(We denote this map also by o=1.)
In other words: If ¢ is an S-measure, we can rediscover a copy of the
subscale (o(G), Ms, Is N (o(G) x Ms)) in the system of the extents of K.
We shall now show that it is possible to assign to every S-measure of K a
\/-preserving map of B(K) to B(S) in a unique manner.

Proposition 119. For every S-measure o of K,
5(A,A) = (o(4)", o(4))
defines a \/-morphism
5 B(K) - B(S).

& maps the object concepts of K onto object concepts of S. If S is a scale
in which g # h always implies ¢’ # h' (for all g, h € Gg), then, conversely,
every \/-preserving map of B(K) to B(S) with this property results from an
S-measure in the manner specified. o and 6 uniquely determine each other.
o is full if and only if o is injective.

Proof. Let 1 be the map residual to o~! and let X be an extent of K. We
have

'l/f"(Xs X/) /\{(Y”. Y')
ALY Y') [o(X) CY"}
= (N 1oy L)

= (o(X)o(X)) = (X, X))

X Co™'(¥")}

Il

Il

Hence, ¢ is residual to 0=! and thus \/-preserving.

Next we show that ¢ maps object concepts onto object concepts: Let
r € G be an object and let g := o(x) be the image of z in Gs. o~ !(g")
is an extent of [ containing x and thus also z”’, hence, o(2”") C ¢”, which
implies o(z”)" C ¢"”. However, since g € a(z”), equality must hold, i.e.,
a(z") =g¢", and thus a(2",2') = (¢". ¢).
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It remains to be shown that every \/-preserving map that maps object
concepts to object concepts goes back to a measure. Hence, let v be such a
map. We define o : ¢ — (5 through

olry=g = v@".2")=("9).
(Here the assumption ¢’ = h' = g = h is used.) Then, we have
G(X. X)) = a~<\/{<r".r’> | (x € X})
VAiw", ') | € X}
Vo V]reX}
((U{om“ [z e X))
= (o(X)".o(X)).

Hence, every map of this kind is induced by a measure. The remaining
statements follow from Proposition 9 (p. 14). O

I

I

Definition 92. If 5; and £, are scales with the same scale values, i.e., with
G's, = Gg,, we call 5 finer than 5, if every extent of 5, is also an extent of
S1. S, then is coarser than 5. S| and 5, are called (scale-)equivalent if
there is a full bijective So-measure of 5. <&

If o is a bijective full measure, so is c~!. Hence, the equivalence of
scales is symmetrical. Since the concatenation of (full) scale measures again
yields a (full) scale measure, the equivalence of scales is in fact an equivalence
relation. If 5 is simultaneously finer and coarser than S, the two scales are
equivalent.

The possibility of scaling variably fine is very useful for data analysis.
The fact that ¢ is a finer scale than 5, means that S; (up to equivalence)
can be written as an appO\ltlon of 59 with another context. For example, 5
is equivalent to &5 | 5 . In the case of plain scaling, this is inherited by the
derived one-valued context: finer scaling yields a finer derived context. If we
use finer scales, the derived context simply has “some more columns”, i.e., it
can be written as an apposition of two contexts, one of which is the derived
context with respect to the coarser scaling. From Section 2.2 we know that
the concept lattice of an apposition can be adequately represented by a nested
line diagram, the concept lattice of the coarser scale then represents a rough
structure which is further differentiated by the attributes added through the
finer scale.

An example: Questionnaires are often formulated in such a way that they
present opinions to which the participants can express approval or rejection,
offering an alternative with intermediate values, more or less in the following
form:

agree O 0O O O O O 0O donotagree
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In Section 1.4 we have suggested the interordinal scale for the ;
scaling of such attributes, however, it is usual first to scale .|
coarser, for example with the threshold scale (displayed on
the right), which only uses two elements of the interordinal
scale. In this way we obtain an approximate impression of the
results. However, this coarsening is quite correct: According
to Proposition 119, the concept lattice obtained in this way is
an image (under a \/-morphism) of the concept lattice which
is the result of interordinal scaling.

5
6 X
7 X

The scales I1,,, 0,, and M, _, are also (equivalent to) coarsenings of the
interordinal scale I,,. The finest scale with n values is the contranominal scale
Ne¢.

In order to describe the role of the scale measures in the case of plain
scaling, we first convince ourselves that the semiproduct

X 5= Xa,|Jm,v
jed JjeJ jeJ
with
(9;)jeaVik,m): <= gplpym
of scales introduced in 1.4 is also a product in the sense of category theory,

namely in the category of the scales with the scale measures as morphisms.
For this purpose we check that the projections

g - X (¥j — Gk
Jjed
with m((95)ies) == gk

are surjective Sg-measures of X;c; 5;. Furthermore, we have to show that
the product map is a scale. The property claimed follows from the fact that
the product in the category of sets is the Cartesian product.

Definition 93. If K is a context and if for every j € J the map o; is an
S;-measure of [, then the product measure

o: K —)XJ'EJ SJ
is defined by
a(g) == (0;(9))jeu- ¢

Proposition 120. The product measure o is a Xjey Sj-measure with myo0 =
Tk .

Proof. The extents of the semiproduct are precisely the products XJ-EJ U;
of extents of the individual scales. The pre-image of such an extent with
respect to o is given by
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o (X Uy) = (o1 (0).

j€d jeJ

Hence, the pre-images under ¢ are precisely such subsets that are intersec-
tions of pre-images under the measures ;. Each set of this kind is an extent
of I, hence ¢ is a scale measure. ]

We can slightly refine the argument in this proof: Every extent is the
intersection of attribute extents. Hence, the pre-images of extents of the
product scale under o are precisely the intersections of pre-images of the
attribute extents of 5;, j € J. This leads to the following observation:

Proposition 121. The product measure is full if and only if the set of con-
cepts of the form

(o

1, I SN FIVIN I
T (mi) (o7 (m )),j € J,me M;

is infimum-dense in B(K). 0

If all attributes of K are irreducible, the following holds true: The product
measure is full if and only if every attribute extent of K is the pre-image of
an attribute extent under one of the scale measures oj, i.e., if for every
attribute m of K there exists some j € J and some attribute m; € M; with

1y 1
m' =o; 1(m).’).
Finally, we can use the notion of the product measure to give an alterna-

tive definition of the derived context with respect to plain scaling:

Proposition 122. Let (G, M, W,I) be a complete many-valued context and
let S,,, m € M, be scales for the attributes of M. Furthermore, let K be the
derived context with respect to plain scaling. Then, for every many-valued
attribute m € M, the map

g = m(g)

ts an Sm-measure of K, and K is isomorphic to the subscale of the semi-
product of the S, which is the image of the product measure of those scales.

The proof results immediately from the definitions. ]

7.4 Measurability Theorems

Proposition 122 has shown that full scale measures into semiproducts of scales
can be understood as a kind of inversion of plain scaling. Now, we can try to
recognize derived contexts, i.e., to decide in the case of a given one-valued con-
text whether it could have been derived from a many-valued context through
scaling with given scales. Hence, the question is which contexts can be fully
measured in a semiproduct of nominal scales, ordinal scales etc. and, if so,



264 7. Context Comparison and (‘onceptual Measurability

which size the necessary semiproduct must have. Proposition 120 is very use-
ful in this context, since it can be used to split up the problem. Therefore, we
first examine how we can recognize whether a given context allows a measure
in one of the standard scales. If this is the case, some of the attributes of
the context can be combined to form a many-valued attribute (with given
scaling) and a repeated implementation of this procedure according to Propo-
sition 120 finally yields a full measure into the semiproduct.

Since every scale measure is surjective onto a subscale, it is useful to know
the subscales of the standard scales. In many cases they belong to the same
family of scales.

Proposition 123. The following families of scales have the property that
every subscale of a scale belonging to the family is equivalent to a scale of the
same family:

a) nominal scales, e) contranominal scales,
b) one-dimensional ordinal scales, f) contraordinal scales,
¢) one-dimensional interordinal scales, g) convex-ordinal scales.

d) multiordinal scales,

We shall omit the proof. O
Theorem 54. The context ¥ := (G, M, I) allows a surjective S-measure for
a) S=1N,, if and only if there is a partition of the object set (¢ into n extents.

b) S = Oy, if and only if there is a chain Uy C Uy C ... C Uy, of n non-empty
extents.

¢) S=1,, if and only if there is a chain of n non-empty extents of K whose
complements are also extents.

d) S = Mn,,..n. if and only if there are k chains, each made up of n;
non-empty extents, whose largest elements form a partition of (i.

e} S=N¢, if and only if there is a partition of G into n extents whose unions
are also extents.

f) S = O%, if and only if there is a set P of extents with the following
properties:
~ The set P, ordered by set inclusion C, is isomorphic to P.
— FEvery union of extents from P is an extent.
— For every object g € (& there is a largest extent Uy € P which does not

contain g¢.

-P={U, g €G}.

g) S=Cp, if and only if there is a set P of extents which satisfy the condi-

tions under f) and for which additionally the following statement is true:

— The complements of extents from P and the unions of such complements
are also extents.
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Proof. From Proposition 118 we know that [£ allows a surjective S-measure
if and only if there is a family Us of extents of K and a map ¢ : G — Gg
such that the (attribute) extents of 5 are precisely the images of Us under o.
In other words: In the system of the extents of [, those attribute extents of
a scale must occur which are isomorphic to S after clarification.

This makes a), b), ¢) and d) obvious. In order to show e), we first convince
ourselves of the fact that the complementary nominal scale has the property
specified: For every scale value g € (g, {g} is an extent, but also Gg \ {g}.
Hence, the pre-image sets of the scale values under a surjective S-measure
form a partition with the property specified in the Proposition. However, the
converse is also true: Given such a partition, a map of G onto G'g mapping
the classes of the partition onto the values of the scale is an S5-measure.

For f) we argue similarly: According to the definition, the extents of a
contraordinal scale are precisely the order ideals of P, the attribute extents
are precisely the complements of principal filters. Hence, the system of at-
tribute extents of 5 := 04! satisfies the conditions specified in f), and so do
the pre-images under an S-measure. If, conversely, a system of such extents
of a context is given, and if ¢ is the order isomorphism of this system onto
P, then we obtain an 5-measure through o(g) := ¢(U,) for all g € G. Under
these premises, the pre-image of the attribute extent {x € P | 2 # p} is equal
to

o ) =gl eUy) # py =191 Uy 2 Us},

for any scale attribute p € P, provided that p is an object of K with ¢(Up) =
p. Since Uy is the largest among the selected extents which does not contain
g, Uy 2 Uy is equivalent to g € Up, 1.e., we get

0'_1(1)/) = {9 | Uy ) Up} =U;.

The pre-image of every column extent is an extent: o is a measure.

g): The convex-ordinal scale is the apposition of two contraordinal scales,
therefore a Cp-measure is in particular a @‘;,d—measure and has to satisfy
the conditions under f). The convex-ordinal scale even satisfies the condition
additionally required under g), which in this particular case demands that the
unions of principal filters are convex sets. Hence this condition is necessary.
[t remains to be shown that it is also sufficient.

Hence, let P be a system of extents of K which satisfies the conditions
under f), and let o be the O%-measure constructed in the proof of f). We
shall prove that under the additional condition the same map o is also an
Op-measure (from which the statement follows).

For this purpose we define a set system Q :={V, | g € G} through

Vo= {G\U|U€eP.geU},

and show that Q satisfies the conditions specified under f), namely for the
order dual to P. The additional condition in g) guarantees that every V,
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and all unions of such sets are extents. According to the definition, we have
furthermore

V,CVy, << {UeP|gelU}C{UeP|hel}
«— {UeP|ggU}D{UeP|hg¢gU}
= (UeP|UCU}D{UeP|UCU)
= Uy, DU,

Hence, Q is order-isomorphic to P¢ by means of the isomorphism v Vy = oUj,.
In the proof of f) we have shown that in this case the map g — ¥V, is an
@@ﬂ—measure from which, because of og = U, = ¢V, and @‘i;dd = 0%,
everything else follows. O

Now we can turn our attention to the question we asked in the beginning:
Let § be a family of scales, for example the family of nominal scales or
that of ordinal scales. We want to characterize those derived contexts which
result from many-valued contexts through plain scaling with scales from §.
According to Proposition 121, these are precisely the contexts which are
equivalent to a subscale of the semiproduct of scales from §. We coin a
shorter name for this:

Definition 94. Let K be a context and let § be a family of scales. We say
that K is fully S-measurable if [ can be fully measured into a semiproduct
of scales from S.

If, in particular, & is the family of the nominal scales, we say fully
nominally measurable instead of “fully S-measurable”. A fully {IN,}-
measurable context is called fully n-valued nominally measurable, in
the special case that n = 2 it is also called fully dichotomially measur-
able. <

Proposition 124. For every family & of scales, one of the following alter-
natives holds:

1. Every context is fully S-measurable.
2. Fuery fully S-measurable context is fully nominally measurable.

Proof.  First, we show that every context K is fully ordinally measurable,
even fully {5 }-measurable. This follows immediately from Proposition 120:
If we define for every attribute m of K an O;-measure o,, through

Lif gIm
omlg) = { 2if gfm
-1

then, because of o' (1) = m’, the product measure is full.

In this argument we have only made use of the fact that in O there are two
objects g, h with ¢’ C A’ and ¢’ # I/, i.e., that the context is not atomistic
in the sense of the definition on Page 47. Hence, the first alternative only
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does not occur in the case that all scales in § are atomistic. Therefore, it only
remains to be shown that every atomistic scale is fully nominally measurable
itself. This follows from Proposition 125 below. O

Concept lattices of atomistic contexts are atomistic, and every atomistic
complete lattice is isomorphic to the concept lattice of an atomistic con-
text. The context property “atomistic” means precisely that the extents of
the object concepts form a partition of the object set. It is inherited by
semiproducts and by the pre-images under full scale measures: A context
which can be fully measured into a semiproduct of atomistic scales has to
be atomistic itself. A reduced context is atomistic if and only if from g#m,
g~ m always follows.

Definition 95. An extent [/ of a context K = (G, M, I) is called n-valent if
G\U is the disjoint union of n— 1, but not of fewer extents. If I is atomistic,
every extent has a valence. In this case we define the valence of a set of extents
as the supremum of the valences involved. The attribute-valence Vy (K)
of an atomistic context is the valence of the set of attribute extents, provided
that K is reduced. In the general case we say that an atomistic context K
has attribute-valence Vs (IK) < n if and only if there is an infimum-dense set
of concepts of I whose extents all have a valence < n. <&

Proposition 125. A context is fully n-valued nominally measurable if and
only if it has attribute-valence < n. Every atomistic context is fully nominally
measurable.

Proof.  Every I1,-measure of £ induces a partition of the object set into
no more than n extents, i.e., all those extents have a valence < n. Hence,
according to Proposition 120 we find, for every full measure into a semiprod-
uct of I',,-scales, an infimum-dense set of concepts whose extents all have a
valence < n. If, on the other hand. ¥ has such a set of concepts, it is possi-
ble, by means of the same proposition, to construct a product measure with
the desired properties: An I{,-measure can be assigned to every partition of
the object set in at most < n classes by mapping the classes of the extent
partition onto different objects of the nominal scale.

An atomistic context (G, M, I) has an attribute-valence < |G|, i.e., it is
certainly fully I1|¢;-measurable. ]

There has been little investigation as to which “measurability classes”
there are within the class of the atomistic scales. A first clue can be obtained
if we also define a valence for objects ¢ € G: ¢ has valence n, if there are n—1
objects g1,g2,....9n—1 (but no more) with the property that g,¢1,...,9n_1
generate the same concept pairwise: {g,¢01}" = {g,92}" ... = {91,92}" ...
= {n-2:9n-1}" # ¢"’. Vs(K) denotes the supremum of the valences of
objects of .



268 7. Context Clomparison and Conceptual Measurability

Proposition 126. If S consists of atomistic scales and if n is a natural
number, the following statement is true: I, is fully S-measurable if and only
if S contains a scale 5 of the object-valence Vi (S) > n.

Proof.  Every \/-preserving map of B(I,), n > 2, into a lattice which
is not injective maps two atoms onto comparable elements. Therefore, by
Proposition 119, every non-trivial measure of I¥,,, n > 2, into an atomistic
context is injective and thus full. If Il; is measured fully into a semiproduct
of atomistic scales, then at least one of the factors must separate the two
objects, and we have: If I, is fully S-measurable, then there is a scale
S € &, such that 17, is fully S-measurable. Again by Proposition 119, then
there must be a \/-embedding of B(11,) in B(S) in the case of which object
concepts are mapped to object concepts, i.e., S has an object-valence > n.
Conversely, in a scale which has an object-valence > n, we also find an
object of the valence n and thus a measure mapping I, injectively and fully
onto S. O

From the last two propositions we draw a simple conclusion for a special
case:

Proposition 127. If S consists of atomistic scales with an attribute-valence
< n and if § contains a scale of the object-valence n (n € 1), then the
following holds true: A context K is fully S-measurable if it is fully n-valued
nominally measurable. O

This already suffices to provide us with an overview over the measurability
classes with respect to the atomistic standard scales. We have for all n > 2

‘(v'(Nn) = VM (Nn) =n,

‘G(Un) = ‘v‘[(ﬂn) =2,
Ve (F15) = Vag (195) = 2.
From this follows:

Proposition 128. For a context K the following statements are equivalent:

1. ¥ is fully dichotomially measurable.
2. K is fully interordinally measurable.
3. K is fully contranominally measurable.

O

The proposition also makes it possible to characterize the concept lattices
of many-valued contexts which are scaled plainly by means of elementary
scales. For this purpose, we need another definition: We say that an element
x of an atomistic complete lattice V has valence < n if there is an n-element
subset 1" of V' which contains » and which has the property that each atom
of V is less than or equal to precisely one element of 7. If, in the special
case n = 2, the set T = {x,y} has the property specified, then we call y a
pseudo-complement of r.
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Theorem 55. Fvery complete lattice is isomorphic to the concept lattice of
an ordinally scaled many-valued context.
A complete lattice is isomorphic to the concept lattice of a nominally scaled
complete many-valued context, if and only if it is atomistic.
A complete lattice is isomorphic to the concept lattice of a nominally scaled
complete n-valued context if and only if it is atomistic and contains an
infimum-dense set of elements of a valence < n.

For the special case n = 2, we obtain:
A complete lattice is isomorphic to the concept lattice of a nominally scaled
complete 2-valued context if and only if it is atomistic and contains an
infimum-dense set of elements with a pseudo-complement. This at the same
time characterizes the concept lattices of interordinally scaled many-valued
conterts as well as the concept lattices of complementary nominally scaled
many-valued contexts. a

7.5 Hints and References

7.1 Not only isomorphisms but also other classes of maps can be represented
as concepts, this has been worked out by W. Xia [216]. Theorem 51 has been
taken from [59], compare also Ganter and Reuter [62].

With regard to the group-theoretical background of Figure 7.1, extensive
information can be found in Kerber ([95], in particular Chapter 3).

7.2 Definition 89 follows - with slight modifications - the article [50] by Erné,
from which we have also taken Theorem 52 and Proposition 111 and which
contains a lot of additional information concerning this subject. The question
to which extent lattice morphisms can be represented by context maps so that
a duality is created has also been examined by G. Hartung [84].

7.3 Conceptual scales and conceptual measuring have first been discussed in
[63]. Many results of this section can be found in different formulations in
books such as that of Blyth and Janowitz [16]. Otherwise, this section and
the following one make use of results taken from [65].

7.4 We again refer to [65]. Parts of Theorem 55 are contained in [191].
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algebraic, 33
anti-exchange axiom, 232
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apposition, 40

arrow relations, 27
arrow-closed, 101

atlas, 137

— with overlapping neighbour maps,

141
atomistic
- lattice, 7
atomistic context, 47
atoms, 7
attribute, 17
attribute concept, 22
attribute exploration. 85
attribute extent, 22
attribute logic, 79
attribute values, 36
attribute-valence, 267

automorphism, 246

base point

- of a lattice, 229
— of an extent, 229
Basic Theorem, 20
Begriffsverband, 58
binary relation, 1
biordinal lattice, 44
biordinal scales, 43

block of a tolerance relation, 119

block relation, 121
bond, 185

~ dual, 254

boundary concepts, 23
box relation, 248

- regular, 248

canonical \/-representation, 229
canonical projection, 106, 130

cardinal sum, 4
chain, 3, 44

chain finite, 34
clarified, 24

closed relation, 112
closed set of implications, 81
closure, 8

closure operator, 8

closure system, 8
co-algebraic, 33

coarser scale, 261

coatoms, 7

column reduced, 24
comparable, 3

compatible subcontext, 99
complementary, 54
complementary context, 40

complementary set representation, 239

complete, 81

complete congruence relation, 104

complete homomorphism, 7
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complete many-valued attribute, 36
complete sublattice, 7
complete tolerance relation, 119
completely distributive, 10
concept, 18

concept exploration, 95
concept faithful morphism, 253
concept preserving, 253
conceptual scaling. 37
condition C, 114

congruence, 105

congruence classes, 104
context, 17

- n-valued, 36

~ clarified, 24

- complementary, 40

- contrary, 41

— dual, 40

- many-valued, 36

- standard, 27

context morphism, 252
continuous, 253

contracted implications, 82
contranominal scale, 48
contraordinal scale, 49
contrary context, 41

convex set, 10

convex-ordinal scale, 52

cross table, 17

Dedekind-MacNeille completion, 48
dense, 259

dense subcontext, 99
dependency, 91
derivation operators, 18
derived context, 38
DI-kernel, 118
dichotomic scale, 43
dichotomize, 60
dimension

- \/-dimension, 243

~ k-dimension, 236

— order dimension, 236
direct product

— of P-contexts, 210

— of contexts, 46, 163
— of lattices, 129
direct sum, 46

disjoint union, 40
dismantling, 118
distributive, 10

doubly founded, 32

doubly irreducible, 118
dual, 4

dual bond, 254

Duality Principle

— for concept lattices, 22
- for formal contexts, 22
~ for lattices, 6

— for ordered sets, 4
dually adjoint, 11

dually 1somorphic, 4
Duquenne-Guigues-Basis, 83

equivalent scales, 261
exchange condition, 226
extensionally closed, 252
extensionally continuous, 252
extensity, 8

extent, 18

extremal point, 229

face lattice, 10

factor lattice, 104, 121

factors, 130

Ferrers dimension, 237

Ferrers relation, 237

— k-step, 238

filter, 50

finer scale, 261

follows (semantically), 81

free distributive lattice, 50

full measure, 258

fully n-valued nominally measurable,
266

fully dichotomially measurable, 266

fully nominally measurable, 266

functionally dependent, 91

fusion, 193

fuzzy concept, 59

Galois connection, 11
general interordinal scale, 52
general ordinal scale, 48
geometrical diagram, 70
geometrical method, 70
glued, 140

gluing, 195

graded, 224

Hall-Dilworth gluing, 193
Hasse diagram, 2

holds, 80

homomorphic image, 100
horizontal sum, 41
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ideal-filter gluing, 194
idempotency, 8

implication between attributes, 79
incidence preserving, 253
incidence reflecting, 253

incidence relation, 17
incomparable, 3

incomplete knowledge, 94
infimum, 5

infimum-dense, 6
infimum-founded, 33
infimum-irreducible, 6
infimum-preserving map, 7
intensionally closed, 252
intensionally continuous, 252
intent, 18

interordinal lattice, 44
interordinal scale

- general, 52

— one-dimensional, 42
interordinal scales, 42

interval, 3

interval doubling, 204

interval orders, 244

inverse relation, 1

inversion, 55

irredundant \/-representation, 228
isomorphic contexts, 27
isomorphism between contexts, 246

join, 5
join-distributive, 228
join-semidistributive, 228

lattice, 5

- of equivalence relations, 10, 53
- of permutations, 55

lattice isomorphism, 7

length, 3

— of a Ferrers relation, 238

line diagram, 2, 23

locally distributive, 228

lower bound, 5

lower neighbour, 2

many-valued attribute, 36
many-valued context, 36

measurable into a family of scales, 266
measure, 258

meet, 5

meet-distributive, 228
meet-semidistributive, 228

modular, 10, 224

Index

monotony, 8

morphisms

— of contexts, 252
mutually distributive, 170

nested line diagram, 75
nominal lattice, 44
nominal scale, 42
non-redundant, 83

object, 17

object concept, 22
object intent, 22
one-valued context, 36
orbit-maximal, 250
ORDER, 243

order, 1

order dimension, 236
order filter, 49

order ideal, 49

order relation, 1
order-embedding, 3
order-isomorphism, 3
order-preserving map, 3
ordered set, 2

ordinal lattice, 44
ordinal scale

- general, 48

- one-dimensional, 42
ordinally dependent, 91
ortholattice, 54
orthomodular, 55
overlapping neighbourhoods, 140

partial implications, 94
partial order, 2

partial permutation, 248
plain scaling, 37
polarity, 54

polarity lattice, 54
polyhedron, 10
positioning rule, 74
preconcept, 59, 241
premise, 80

principal filter, 3
principal ideal, 3
product, 3, see direct product
product measure, 262
proper premise, 81
pseudo-complement, 268
pseudo-intent, 83

rank function, 224
reduced, 27
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reduced labelling, 23
reducing, 24

relation, 1

residual map, 14
residuated map, 14
respects, 80

rigging of a substitution sum, 152
row reduced, 24

rule exploration, 95

rule of lines, 73

rule of parallelograms, 73

sails of a substitution sum, 152
saturated, 108

scale, 37

- biordinal, 43

— coarser, 261

— contranominal, 48

— contraordinal, 49

- convex-ordinal, 52

— dichotomic, 43

— elementary, 38

- finer, 261

— general interordinal, 52
- general ordinal, 48

~ Interordinal, 42

— nominal, 42

- ordinal, 42

scale attributes, 37

scale measure, 258

scale values, 37

scaling, 37

self-dual, 10
semiconcept, 59
semiconvex, 234
semidistributive, 228
semimodular, 224
semiproduct, 46

set. dimension, 241

set representation, 74, 239
skeleton, 140

skeleton tolerance, 140
standard context, 27
stem base, 83

strong condition of semimodularity, 224
subconcept, 19
subcontext, 97

subdirect decomposition
- of a context, 173

— of a lattice, 130

subdirect product, 130, 172
subdirectly irreducible, 133
subgroup lattice, 9
sublattice, 113
subposition, 40

subscale, 259

subspace lattice, 9
substitution product, 153
substitution sum, 150

— proper, 150
substitutionally indecomposable, 156
subtensorial

— decomposition, 172

- product, 171

sum

- of P-contexts, see P-fusion , 191
- of a Q-atlas, 137, 144

— of contexts, 46, 184
superconcept, 19
supremum, 9
supremum-dense, 6
supremum-founded, 33
supremum-irreducible, 6

Tamari lattice, 204

tensor product, 167
tensorial operations, 209
threshold scale, 262
tolerance, 93

tolerance relation, 119
topological space, 9

treillis de Galois, 58
triadic concept analysis, 58

union of contexts, 195
unit element, 5
unprecise data, 93
upper bound, 5
upper neighbour, 2

valence

- of a lattice element, 268
- of an object, 267
vertical sum, 41

weak condition of semimodularity, 224
weakly distributive, 177
width, 3

zero element, 5



