Knowledge Discovery with FCA

Lecture 3: Order Theory in a Nutshell

Babeș-Bolyai University, Computer Science Department, Cluj-Napoca csacarea@cs.ubbcluj.ro



What is a relation?

- How can we formalize it?
- What types of relations do we know?

<ロト <回ト < 回ト < 回ト = 三日

What is a relation?

HasFriends IsRelatedTo Division GreaterThan Any Prolog predicate

æ

◆□ → ◆□ → ◆ □ → ◆ □ →

How can we formalize it?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─臣。

How can we formalize it?

Definition

Let A and B two sets. A subset $R \subseteq A \times B$ *is called binary relation between A and B*.

Ternary relations Quaternary relations *n*-ary relations

э

ヘロト 人間 トイヨト イヨト

What types of relations do we know?

(日)

What types of relations do we know?

Classification

(日)

What types of relations do we know?

- Classification Equivalence relations
- e Hierarchies, ordering

э

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

What types of relations do we know?

- Classification Equivalence relations
- Itierarchies, ordering Order relations
- Equality relation

Relations

How can we visualize relations?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣○

RELATIONS: PROPERTIES

Definition

Let A be a set, $R \subseteq A \times A$ *a binary relation on A. The relation R is called*

- *reflexive if for all* $a \in A$, $(a, a) \in R$,
- **2** symmetric if for all $a, b \in A$, if $(a, b) \in R$ then $(b, a) \in R$,
- **antisymmetric** if $(a, b) \in R$ and $(b, a) \in R$ then a = b
- **1** *transitive if for every* $(a, b), (b, c) \in R$ *we have* $(a, c) \in R$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

RELATION: PROPERTIES

How can we visualize these properties?

◆ロ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

RELATION: PROPERTIES

- How can we visualize these properties?
- Can you give some examples?
- Discussions in the group.

3

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト

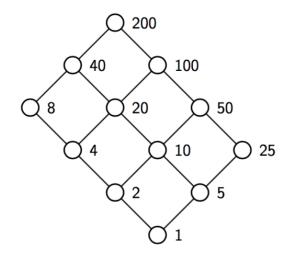
ORDER RELATIONS

Definition

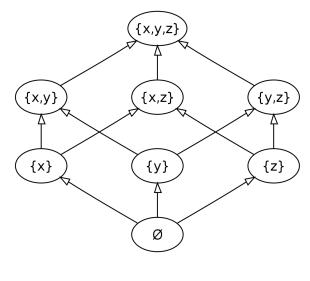
A relation $R \subseteq A \times A$ *is called order relation, if* R *is reflexive, transitive and antisymmetric.*

- Can you give examples of order relations?
- Is there any possibility to represent them graphical?

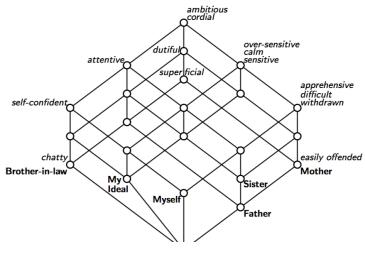
Order diagram



Order diagram



Order diagram



< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q (12/15

upper neighbour. Examples?

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ─ 圖 □

- upper neighbour. Examples?
- lower neighbour. Examples?

ъ

・ロト ・雪 ト ・ ヨト ・ ヨト

- upper neighbour. Examples?
- lower neighbour. Examples?
- least upper neighbour, supremum. Examples?

э

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト

- upper neighbour. Examples?
- lower neighbour. Examples?
- least upper neighbour, supremum. Examples?
- Iargest lower neighbour, infimum. Examples?

・ロット 小田 マイロマ

- upper neighbour. Examples?
- lower neighbour. Examples?
- least upper neighbour, supremum. Examples?
- Iargest lower neighbour, infimum. Examples?
- largest element 1. Examples?

・ロト ・雪 ト ・目 ト ・ 田 ト

- upper neighbour. Examples?
- lower neighbour. Examples?
- least upper neighbour, supremum. Examples?
- Iargest lower neighbour, infimum. Examples?
- Iargest element 1. Examples?
- Smallest element 0. Examples?

・ロット 小型 マイロット

- upper neighbour. Examples?
- lower neighbour. Examples?
- least upper neighbour, supremum. Examples?
- Iargest lower neighbour, infimum. Examples?
- Iargest element 1. Examples?
- **6** smallest element **0**. Examples?
- ø atom, coatom, irreducible. Examples?

・ロット 小田 マイロマ

EXAMPLES

\blacksquare (\mathbb{N} , \leq). The order diagram is

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト ・ 臣 ・

EXAMPLES

(ℕ, ≤). The order diagram is (ℕ, |). The order diagram is

(日) (間) (見) (日) (日)

EXAMPLES

- $\blacksquare (\mathbb{N}, \leq). \text{ The order diagram is}$
- \blacksquare (\mathbb{N} , |). The order diagram is
- Boolean lattice. The order diagram is

・ロト ・雪ト ・ヨト ・ヨト ・ヨ

LATTICE

Definition

Let (L, \leq) be an ordered set. Then L is called *lattice* if for every two elements $a, b \in L$ there exists the infimum and supremum of a and b, denoted by $\inf(a, b) = a \wedge b$ and $\sup(a, b) = a \vee b$, respectively. The *lattice* L is called complete if for every subset $A \subseteq L$, there exists the infimum and supremum of A.

Discussion about lattices, complete lattices, largest, smallest element, $\inf \emptyset$, $\sup \emptyset$.

