INTRODUCTION TO
FORMAL CONCEPT ANALYSIS

Lecture 9



NEXT CLOSURE Algorithm

Developed 1984 by Bernhard Ganter.

Can be used
@ to compute the concept lattice, or

@ to compute the concept lattice together with the stem base, or

e for interactive knowledge exploration.

The algorithm computes the concept intents in the lectic order.



NEXT CLOSURE Algorithm: Lectic Order

Let M ={1,..., n}. We say that A © M is lectically smaller than

B M, if B+# A and the smallest element in which A and B differ
belongs to B:

A<B:edieBA: An{l,2,...;i—1}=Bn{l,2,...,i—1}




NEXT CLOSURE Algorithm: Theorem

Some definitions before we start:
A<;Bieie BAANAN{L,2,....i—1}=Bn{l,2,...,i—1}

A+i=(An{1,2,...,i—1}) u {i}

Theorem

The smallest concept intent larger than a given set A — M with respect to
the lectic order is

A®i:=(A+1)",

with i being the largest element of M with A <; A®1.




Algorithm All Closures
Input: A closure operator X — X" on a finite set M.
Output: All closed sets in lectic order.
Begin
First Closure;
repeat
Qutput A;
Next Closure;
until not success;
end.
Algorithm First Closure
Input: A closure operator X — X" on a finite set M.
Output: The closure A of the empty set.
Begin
A=
end.
Alpgorithm Next Closure
Input: A closure operator X — X" on a finite set M, and a subset
Ac M.
Output: A is replaced by the lectically next closed set.
Begin
for all i € M starting downwards with the largest element of
M do;
ifi e A then
A = AN}
else
B:=(Awv{ip)"
if B1A does not contain any element < ¢ then return B
return L
end.
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The simulation starts with the first intent, @", computing all
intents in the lectic order:

Last generated A i | B=(Au{i})" | smallest new | success?

intent element

] ¥ = first intent yes

o ] h {a,e,e h} @ no

b |s g g yes

{a} {a} |k M o 10

] I {a.c. f.g} a no

@ € {e} e yes

{e} {e} |k {a,c.e k) a no

fel |4 {e,g} g yes

{e.q} {e.g} |k M a no

{e} |f M o 1o

@ d {d.e, g} d ves

{d,e, g} {d,e.g} | h M @ no

{de} | f M @ no

o c {e.q} e yes

{c} {c} h {a,ce h} @ no

feb |9 {c. g} g yes

{e.g} {e.g} | B M o 10

fet | f| A{acfig) a no

@ |e| foe e |y

{e,e} {e,e} | R {a,c. ek} a no

fee}l |9 {e.e.g} g yes

{e.e.q} {e,eg} | R M @ no

{ee} | F M o no

{e} d M @ no

i b {b,e, g} b yes




Last generated A i | B=(AU{i})" | smallest new | success?
intent element
{b.e,g} {begh |h M a no

{be} |F M a no

{b} d| {bd.e g} d yes

{b,d.e.g} | {bdeg} |h M a no
{bde} |f M a no

{b} c| {bceg} e yes

{bee.gt | {beeg) | B M a no
{bc.e} | f M a no

{bct |d M a no

@ a {a} a yes

{a} {a} h| {a.ceh} c no

{a} g {a.g} g yes

{a,g} {a,g} | & M b no

{a} fl Ae.ef.gl e no

{a} € {a,¢} & ves

{a.e} {a.e} |h| {a.ceh} e no

{a.e} |4 {a.e g} g yes

{a,e.g} {a,e.g} |k M b no
{a.e} | f M b no

fav | d| {ade g} d ves

{a.d.e,g} | {a.deg}|h M b no
{a,de} | f M b no

{a} c {a.c} e yes

{a.c} {a.c} |h| {a,ceh} e no

{a.c} |g {a,c, g} g yes




Last generated A i | B={AU{i})" | smallest new | success?
intent element
{a,e.g} {a,c.g} |k M b no

{a,e} | f| Aacf.g} f yes
{a,e.f.g} | {a.cfig} | R M b ne
{a.c} e {a,c,e} e ves
{a.e.e} {a.c.e} | k| {aceh} h yes
{a,c,e b} {a.c.e} |g| {acegl g yes
{a.c.e.9} | {a,ce.g} | R M b no
{a.c;e} | f M b no
{a.c} |d M b no
{a.} | b M b yes




Implications

Def.: An implication X — Y
holds in a context, if every
object that has all attributes
from X also has all attributes
from Y.

Bicvcle Trail — ,
NPS Guided Tours

Hiking  Nuyir Woods
" Pinnacles

Horseback Riding
/

Channel .

Islands

Fishing

Fort Swimming

Cabrillo

Cross Country

Ski Trail
Kings Canyon
Sequoia

Death Valley

___Devils Postpile
Redwood

Boating

Golden Gate

Point Rayes
Lassen Volcanic

Santa Monica Mountains

Examples:
Yosemite Whiskeytown-Shasta-Trinity

@ {Swimming} — {Hiking}
@ {Boating} — {Swimming, Hiking, NPS Guided Tours, Fishing, Horseback Riding}
@ {Bicycle Trail, NPS Guided Tours} — {Swimming, Hiking, Horseback Riding}



Attribute Logic

overlap
disjoint common vertex

@
0o

parallel

common
segment

common edge
1]

We are dealing with implications over an possibly infinite set of objects!



Concept Intents and Implications

Def.: A subset 1" € M respects an implication A —» B,
if AL 1 or B < 1 holds.

(We then also say that 1" is a model of A — B.)
1" respects a set L of implications, if 1" respects every implication in L.

Lemma: An implication A — B holds in a context, iff B < A”
(& A" € B'). It is then respected by all concept intents.



Implications and Closure Systems
Lemma: If L is a set of implications in M, then
Mod(L) :={X € M | X respects L}

Is a closure system on M.
The respective closure operator X +— L(X) is constructed in the following
way: For a set X © M, let

X :=Xxu| J{B

A—-Bel Ac X},

We form the sets X~ X%% X5£L  until a set
ﬁ(X) . Xﬁ.‘.ﬁ

is obtained with £(X)* = £(X) (i.e., a fixpoint).! £(X) is then the
closure of X for the closure system Mod(L).

LIf M is infinite, this may require infinitely many iterations.



Implications and Closure Systems

Def.: An implication A — B follows (semantically) from a set L of
implications in M if each subset of M respecting £ also respects A — B.
A family of implications is called closed if every implication following from
L is already contained in L.

Lemma: A set £ of implications in M is closed, iff the following
conditions (Armstrong Rules) are satisfied for all W, XY, Z € M:

Q X - Xel
QIf X —>Yel then XUuZ—>Y e/l
QIf X »>YelandYuZ->WeLl then XUuZ->WelLl.

Remark: You should know these rules from the database lecture!



Pseudo-Intents and the Stem Base

Def.: A set £ of implications of a context (G, M, I) is called complete, if

every implication that holds in (G, M, I) follows from L.
A set L of implications is called non-redundant if no implication in £

follows from other implications in L.

Def.: P < M is called pseudo intent of (G, M, 1), if

o P+ P and
e if Q € P is a pseudo intent, then Q" € P.

Theorem: The set of implications
L:={P — P"| P is pseudo intent}

is non-redundant and complete. We call £ the stem base.



Pseudo-Intents and the Stem Base

Example: membership of developing countries in supranational groups
(Source: Lexikon Dritte Welt. Rowohlt-Verlag, Reinbek 1993)



IS

REAE 20 S

S e e 3. ;

CPi=(= Za=icl= g LEEkR 212 R,
Afghanistan | X |x | Ecuador x| % b & j“ﬁ%‘é ;—.j?ﬁ.%{i
Algeria x| X Egypt x|x| |x Libya x [ x x Senegal wIx] Tx] [x
Angola x| x| [El Salvador x *| | |Madagascar x|x|x[x| x| [Seychelles x| x X
Antigua and Barbuda||x x Equatorial Guinea|| > |x |x X|Malawi v 1 [ x| [Sierra Leone i xlx| |x
Argentina x Ethiopia x[x|x|x| |x[\falaysia xIx Singapore | x
Bahamas X x Fiji X *IMaledives x| x[x Solomon Islands X X
Bahrain XX Gabon XX X|*|Mali x|x|x|x| [x| |Somalia x| x|x|x| [x
Bangladesh %[ x| x | Gambia X |X[%|%| |X|Mauretania x |xIx|x| |x| [SriLanka x|x| |x
Barbados x| % x Ghana x|x]|x|x] |*|Mauritius % x| St Kitts
Belize x| x x Grenada x|x X |Mexico x St Lucia w | % -
Benin X[ xx|x| [x Guatemala x X Mongolia X St Vincent& Grenad. [[x X
Bhutan x| x|x Guinea x|x|x|x| |*Norocco | Sudan el lxlx] Ix
Bolivia x| X Guinea-Bissau x|x|x]x| |*[Mozambique %1%l x| x| [Surinam x| x x
Botswana ¥ | %% * Guyana x|x| [x] |X|Myanmar x| x| Swaziland x| X
Brazil x Haiti x| |x|x| |*|Namibia » x| [Syria x| %
Brunei Honduras ® ® Nauru Taiwan
Burkina Faso || | Hong Kong Nepal x| x| x| Tanzania x| x|x|x| [x
Burundi x| x (x| |x India x|x| |x Nicaragua | % Thailand o
Cambodia x|x| |x Indonesia x| x %| |Niger x|x|x|x| [x| |Togo x| x]x x
Cameroon x[x| x| |x Iran x| x| [Nigeria % |x x|x| [Tonga x x
Cape Verde XX [X[xX| [X Iraq XX %] |Oman %% Trinidad and Tobago |[x|x X
Central African Rep. |[>|x|x|x| |x Ivory Coast x|x| |x| |x%|Pakistan x| [ Tunisia ™
Chad x| x(x[x| [x Jamaica x| x|Panama x |x Tuvalu x x
Chile X Jordan x|% Papua New Guinea ||x x| [Uganda x| x[x|x| |x
China Kenya x|x| [%| |*|Paraguay x United Arab Emirates||>|x X
Colombia x| Kiribati X X|Peru *|x Uruguay X
Comaoros X|x|x b Korea-North x|x|x Philippines x Vanuatu x| x|x x
Congo x| x x Korea-South x Qatar x |x x Venezuela x| x x
Costa Rica x Kuwait x|x x| |Réunion Vietnam x| x|x
Cuba x| x Laos x| x| x|x Rwanda x|x|x|x| [x| |Yemen | [ x| %
Djibouti x| (% b Lebanon x| % Samoa x| |x|x| |x| |Zaire x| x|x *
Dominica X| X % Lesotho x[x|x|x| |x]|Sa0 Tomé e Principe|| x |x|x x| |Zambia x| x|x X
Dominican Rep. X x Liberia x| % x|Saudi Arabia x|x x Zimbabwe x| x x
The ablreviations stand for: LLDC == Least Developed Countries, MSAC =
Most Seriously Affected Countries, OPEC := Organization of Petrol Exporting o o — = =

Countries, ACP := African, Caribbean and Pacific Conntries,




Argentinia, Brazil, Chile, Costa Rica,
Korea-South, Mexico, Paraguay, Philip-
pines, Thailand, Uruguay

El Salvador, Guatemala, Honduras

Bahrain, Bolivia,
Colombia, Cuba,
Jordan, Lebanon,
Malaysia, Moroc-
co, Nicaragua,

Oman, Panama,

Peru, Singapore,
Syria, Tunesia

Cambodia,
Egypt, India,
Pakistan, Sri
Lanka

Algeria, Ecua-

dor, Indonesia, || Afgha-

Iran, Iraq, Ku- [|nistan,

wait, Libya, Qa- || Bang- Bhutan,
tar, Saudi-Ara- ||ladesh, Korea-
bia, Un. Arab ||Lacs, North,
Emirates, Vene- || Nepal Maledives,
zuela Yemen Vietnam

Cameroon, Guyana, Ivory Coast, Kenya,
Mozambique, Senegal

Benin, Burkina Faso, Burundi, Cape Verde, Central
African Republic, Ethiopia, Gambia, Ghana, Guinea,
Guinea-Bissau, Lesotho, Madagascar, Mali, Maure-
tania, Niger, Rwanda, Sierra Leone, Somalia, Sudan,
Tanzania, Chad, Uganda

Brunei, China, Hong Kong, Nauru,
Réunion, St Kitts, Taiwan

Kiribati
Tuvalu

Antigua and
Barbuda,
Bahamas,
Dominican
Rep.. Fiji, Na-
— mibia, Papua
l:lmtx, New Guinea,
Samoa Solomon
Islands, St
Vincent  and
the Grenad.,
'l'nnzn

Botswana, Djibouti, € =
torial Guinea, Malawi, Sao Tomé
e Principe, Togo, Vanuatu, Zaire,
Zambia

Angola, Barbados, Belize, Congo, Do-
minica, Grenada, Jamaica, Liberia, Mauri-
tius, Seychelles, St Lucia, Surinam, Swazi-
land, Trinidad and Tobago, Zimbabwe

U]



Pseudo-Intents and the Stem Base

stem base of the developing countries context:

{OPEC} — {Group of 77, Non-Alligned}
{MSAC} — {Group of 77}
{Non-Alligned} — {Group of 77}
{Group of 77, Non-Alligned, MSAC, OPEC} — {LLDC, AKP}
{Group of 77, Non-Alligned, LLDC, OPEC} — {MSAC, AKP}



Computing the Stem Base With NEXT CLOSURE

The algorithm NEXT CLOSURE to compute all concept intents and the
stem base:

Q The set L of all implications is initialized to £ = .
@ The lectically first concept intent or pseudo-intent is (.

© If A is an intent or a pseudo-intent, the lectically next
intent /pseudo-intent is computed by checking all i € M\ A in
descending order, until A <; L(A + 7) holds.
Then L£(A + i) is the next intent or pseudo-intent.

Q If LIA+1i) = (L(A+1))" holds, then L(A + i) is a concept intent,
otherwise it is a pseudo-intent and the implication
L(A+1i) > (L(A+1))" is added to L.

Q If L(A+1i) = M, finish. Else, set A «— L(A + i) and continue with
Step 3.



ATTRIBUTE EXPLORATION

A Brief Introduction



Attribute Implications
(aka propositional Horn clauses)

For A,B C M, the implication A — B holds in K, if
every object having all attributes from A also has

all attributes from B.

Formally: A C {g} implies B C {g} forallg € G

Examples: K |z | E
{wet} — {fluid} } R
Earth X
{fluid, dry} — {warm} Water
{dry, wet} — {cold} () Air x x | x

Fire X % %

X lcold

X



How to ,,Datamine® Implications?

We want to extract the ,,implicational” knowledge
from a formal context.

Very naive approach: enumerate all (22!/M])
implications and check against context.

Takes way too long.

Generated implication set is extremely redundant.

Examples: K |2 ~| 5| &2
{fluid, dry} — {fluid} — = j > f
{wet} — {fluid} vs.

{wet, cold} — {fluid} vater | x x x
Alr X X | x

Fire X b4 X



How to ,,Datamine® Implications?

Observations:
For any aftribute set A, the implication A — A" holds in K
If A— B holds in K then B C A"

Hence the implications of the form A — A" provide
enough information about all implications of the context.

Still rather naive approach: enumerate all (2!M)
attribute sets A and generate implication A — A"

Still takes way too long

Generated implication set is still extremely redundant



Implication Bases

Given a formal context K, a set of implications & is
called implication base of K, if ...

every implication A — B from & holds in KK,

every implication A — B holding in K can be derived
from <, and

none of the implications from & can be derived from
the other implications contained in <8

Question: which A — A" to choose to make up an
implication base?



The Stem Base

Question: which A — A" to choose to make up an
implication base?

Answer: take all the pseudo-intents of K.

Attribute set P is called pseudo-intent, if
P is not an intent (i.e. P # P"), but

if P contains another pseudo-intent Q, then it also
contains Q"

Definition recursive (but OK at Ie‘os’r for finite M)

Set {P — P"| P pseudo-intent} is called stem base



How to Compute the Stem Base

We order attributes in a row:
e.g. a,b,c,def

Based on that order, attribute sets are encoded as bit-vectors of
length | M|

e.g. {a,¢d} becomes [1,0,1,1,0,0]
Implications are pairs of bit-vectors

e.g. {a} — {qa,e,f} becomes ([1,0,0,0,0,0],[1,0,0,0,1,1])
Implications can be ,,applied” to attribute sets

({a} — {a,e,f}) applied to {q,c,d} yields {a,c,d,ef}
([-l fOfOFOfOIO]J’ [-I fOJ’OfOf] f-l ]) [-l fOf.l J'-l fOJ’O] — [] J’Of-l f-l f-l f-l ]

Implication sets can be applied to attribute sets:
{{b,d}—{c},{a}—{d}} applied to {a,b} yields {a,b,c,d}
write 3(A) for the result of applying implication set &3 to attribute set A
A+i defined as: take A, set ith bit fo 1 and all subsequent bits to O
e.g. [0,1,0,0,1,1]+3 =[0,1,1,0,0,0]



How to Compute the Stem Base

Input formal context K

Create list <& of implications, initially empty

Let A =[0,0,...,0] (bit representation of empty set)

Repeat
Add A — A" to Sincase A # A"
Starting from i = |M|+1, decrement i until
i=0 or

The ith bit of A is O and

applying & to A+i produces 1s only at ‘posi’rions greater than i

If i=0 output & and exit
Let A = S(A+i)

A:
A+i-
S(A+i):

0,0,1)
0,0,1
0,0,1

0,0,0

...
0/1,1,0
]
110,1,1]




Interactive Knowledge Acquisition
via Attribute Exploration

Sometimes, K is not entirely known from the
beginning, but implicitly present as an expert’s
knowledge

Attribute exploration determines the stembase of K
by asking expert for missing information

kA bbb EA R R RS

x| x| | [x

x|

x| [x|x|x[>
| %

W*




Interactive Knowledge Acquisition
via Attribute Exploration

Sometimes, K is not entirely known from the
beginning, but implicitly present as an expert's
knowledge

Attribute exploration determines the stembase of K
by asking expert for missing information
M known and fixed
H C G objects that are known in advance
(as well as their attributes)
ldea: use stembase algorithm on incomplete context
which is updated on the fly



Stem Base Algorithm Revisited

Input formal context K=(H,M,J) where J=(HXM)NI

Create list & of implications, initially empty
Let A =[0,0,...,0] (bit representation of empty set)

Repeat
Add A — A" to S incase A = A"
Starting fromi = |M|+1, decrement. !
i=0 or

Has to be altered, because
implication valid in K might be
invalid in K since refuted by
If i=0 output & and exit an object no’r‘ yet recorded.

Let A = IS(A+i) Then augmenting K by this
object allows to refine the

The ith bit of A is O and
applying 8 to A+i produces 1s only af

hypothesis.



Making It Interactive...

Instead of just adding A — A" to <, do the following control
Loop:
While A # A"
Ask expert whether A — A" is valid in K

If yes, add A — A" to & and exit while-loop,
otherwise ask for counterexample and add it to K

What is a counterexample for A — A'?

An object having all attributes from A but missing some from A"
How to add a counterexample g to K=(H,M,J)2

HI"IE'W — H U {g}
J ., =3 U{(g,m) | mis attribute of g in K}

Essentially: just add a line to the cross table



Making It Interactive...

Instead of just adding A — A" to &, do the following
control loop:
While A # A,

Ask expert whether A — A" is valid in K

If yes, add A — A" to & and exit while-loop,
otherwise ask for counterexample g and add it to K

Remarks:

Attribute set of g has to comply with the implications
already confirmed

Changing K changes the operator (.)"

It is not obvious (but has to be proven) that this indeed
works, i.e. the enumeration done beforehand is not
corrupted by updating the context



Stem Base Algorithm Revisited

Input formal context K

Create list & of implications, initially empty
Let A =[0,0,...,0] (bit representation of empty set)

Repeat
While A % A',
Ask expert whether A — A" is valid in K

If yes, add A — A" to & and exit while-loop,
otherwise ask for counterexample g and add it fo K

Starting from i = |M|+1, decrement i until

i=0 or

The ith bit of Ais O and

applying & to A+i produces 1s only at positions greater than i
If i=0 output & and exit
Let A = <5(A+i)



A Tiny Example: the Four Elements

Earth

Water

-
2

- — = *]

A: [0, 0, O, O, O]
A":[0,0,0,0, 1]

{} — {cold}?

(are all elements cold?)

K |3
=

Earth

Water | x

wdarm

X | X lcold



A Tiny Example: the Four Elements

K | 2| z| 5| 5| 2
= T 2 2

Earth X X

Water | x X X
A X X X

Fire X | X X A: [O, O, O: Or O]
A": [O‘,r O, O; O: ]]

* {} — {cold}? —
v (are all elements cold?) Water | x X
| Air x X

no: air is not cold!

N
fluid

X |dry
wet

wdarm

X | X |cold



A Tiny Example: the Four Elements

K | 2] 2| s 5| 2
= T 2 z

Earth X X

Water | x X X
A * X X

N
fluid

X ldry
wet

Earth

v Water | x W
| Air X x

warm

X | X lcold



A Tiny Example: the Four Elements

K |32 z| s 8|2
= T 2 2

Earth X X

Water | x x X
A b4 X X

Fire X X X A: [O, O, O: O: ]]
A"2 [O, O, O, O: ]]

o~
fluid

X ldry
wet

Earth

@ Water
| Air v s

X
X

warm

X | X lcold



A Tiny Example: the Four Elements

K |2 2| 8| 58 =2
= T % =

Earth x X

Water  x X b4
A X X X

Fire X | X X A: [O, O, O: ]r O]
A": [], O, .I; ]:O]

® {warm} — {wet, fluid}? .
v Water | x X
' Air X X

7~
fluid

X ldry
wet

wdarm

X | X lcold



A Tiny Example: the Four Elements

E
Ki23/%23%3
Earth X X
Water | x x X
A b4 X X

Fire X X X A: [O’ O, O, .I, O]
A": [.I; O; ]: ]IO]

® {warm} — {wet,fluid}? ..
v Water
| Air X X

no: fire is warm but not wet! |[Fire | x| x

o~
fluid

X ldry
wet

X
X

wdarm

X | X lcold



A Tiny Example: the Four Elements

E
LSEIEIRIRIE:
Earth X X
Water | x x X
A X X X

Fire X X X A: [O, O; O.r ]I O]
A": [.I, O, O; .II O]

Kz zz¢
® {warm} — {fluid}? - »

Woater | x X

Air X X

Fire X X

warm

X | X |cold



A Tiny Example: the Four Elements

[0,0,0,1,0]—[1,0,0,1,0]

K 2 > = x| 3T

2 5| 2 2|79
Earth X X
Water | x x X
A X X X

Fire X | X X A: [O, O; OI .I.f O]
A": [], O, O; ]: O]

® {warm} — {flvid}? cart
v Water | x X
' Air X X | X

YeS! Fire X | X X

fluid
wet
warm

X |dry

X | X |cold



A Tiny Example: the Four Elements

[0,0,0,1,0]—[1,0,0,1,0]
K13 zl3 g 3 [0,0,1,0,0]—[1,0,1,0,0]

Earth » X
Water  x X X
A x X X

Fire X | X X A: [O, O; .I: Ol O]
A": [], O, .I; O.r O]

P {wet} — {fluid}? —
@ Water | x X
' Air X X | X

yeS! Fire X | % X

fluid
wet
warm

X |dry

X | X Jcold



A Tiny Example: the Four Elements

[0,0,0,1,0]—[1,0,0,1,0]

K |3 zls 52 (0,0,1,0,0]—[1,0,1,0,0]
Earth 'Y X

Water  x x X

Air b4 X X

Fire X | X X A: [O, ]; O: O! O]

£
B 235795
Earth X
Water | x X
Air X X | X

Fire X X X



A Tiny Example: the Four Elements

[0,0,0,1,0]—[1,0,0,1,0]

K | o = E o

2| 5| ¥ §| s [0,0,1,0,0]—[1,0,1,0,0]
Earth 'Y X

Water x x X

Air X X X%

Fire X X X A: [O, .Iy O: O! ]]

o ~| E
Klzz8:
Earth X
Water | x X
Air X X | X

Fire X X %



A Tiny Example: the Four Elements

[0,0,0,1,0]—[1,0,0,1,0]

K T 2 3 £ =

2| 5| 8 g s [0,0,1,0,0]—[1,0,1,0,0]
Earth X X

Water  x x *

Air X X ¥

Fire X | X X A: [] 7 O; O.r O.r O]
A": [] ’ O, O; O: O]
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A Tiny Example: the Four Elements
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A Tiny Example: the Four Elements
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A Tiny Example: the Four Elements
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A Tiny Example: the Four Elements
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A Tiny Example: the Four Elements
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A Tiny Example: the Four Elements
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A Tiny Example: the Four Elements
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Extensions of Classical Attribute Exploration

Allow for a-priori implications

Notion of relative stem base (Stumme 1996)
Allow for arbitrary propositional background
knowledge

Notion of frame context (Ganter 1999)

Allow for partial description of objects
Notion of partial context (Burmeister, Holzer 2005)

Allow for complete exploration of non-propositional
logics

Horn logic with bounded variables: rule exploration

(Zickwolff 1991)

DLs with bounded role depth: relational exploration
(Rudolph 2004)



Attribute Exploration

Attribute exploration allows us to compute the stem base interactively,
without knowing the context beforehand (or knowing only parts of the
context).

We modify the NEXT CLOSURE algorithm for computing the stem base.

The context can be modified while the list £ of implications is computed
by taking into account new objects. If these objects respect all implications
that have been computed so far, then the computation can be continued
with the results obtained so far. This is the result of the following Lemma:

Lemma: Let K be a context and let P, P». .. .. P,, be the first n

pseudo-intents of K with respect to the lectic order. If K is extended by
an object g the object intent ¢’ of which respects the implications

P, — P! ie{l,....n}, then P, P5, ..., P, are also the lectically first n

pseudo-intents of the extended context.



Attribute Exploration

Therefore, if we have found a new pseudo-intent P, we can stop the
algorithm and ask, whether the implication P — P” should be added to L.

The user can answer this question in the affirmative or add a
counter-example, which must not contradict the implications he has
confirmed so far. In the extreme case, the procedure can be started with a
context the object set of which is empty. In this case, the user will have to
enter all counter-examples, thereby creating a concept system with a given
“attribute logic’ .

Instead of describing this program in detail, we shall demonstrate its
functioning by means of an example: We compute the concept lattice for

G =N

M = {even, odd, prime, square, cubic, not prime, not square, not cubic}



Attribute Exploration: Example
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Attribute Exploration: Example

©Q suggested implication:
not prime, not square, not cubic — even?

The answer is “no”, since 15 is an odd number that is neither prime
nor square nor cubic.

@ suggested implication:
cubic — not prime?

That is true.

© suggested implication (all attributes are contained):
cubic, not prime, not cubic — even, odd, prime, square, not square’

The remark tells the user/expert that all attributes are contained to
indicate that the premise could be inconsistent.



Attribute Exploration: Example

Q@ suggested implication:
square — not prime”’

That is true.

@ suggested implication (all attributes are contained):
square, not prime, not square — even, odd, prime, cubic, not cubic?

The implication is accepted because of the attributes in the premise
that are negating each other.

©Q suggested implication:
prime — not square, not cubic?

This implication also is a property of the natural numbers.



Attribute Exploration: Example

@ suggested implication (all attributes are contained):
prime, not prime, not square, not cubic — even, odd, square, cubic?

Here also all attributes appear and the implication is acccepted
because of the attributes in the premise that are negating each other.

@ suggested implication (all attributes are contained):
even, odd — prime, square, cubic, not prime, not square, not cubic?

This implication is automatically accepted.



Attribute Exploration: Example

Attribute exploration stops here. Seven implications were accepted and
one counterexample added to the context. The object set

{1,2,3,4,5,6,7,8,9,15, 27,64}
but also the object set
{1.2.3,4,6,8,9,15, 27,64}

of the reduced context has the property, that for every non-valid
implication there exists at least one counterexample.



Attribute Exploration: Example

The accepted implications, i.e., the stem base, which holds for all natural
numbers, looks this way:

. (4) : cubic — not prime
. {4) : square — not prime
. {4) : prime — not square, not cubic

. {0) : cubic, not cubic — |
. {0) : square, not square — |
. {0) : prime, not prime  — |
. (0) : even, odd — |

~N O OB W



Attribute Exploration: Example

)8

The corres

=

concept lat

(V)
0
<z
(T
)
4+
(T
ol =
4+

n

implication

for all

-

read off hol

Q0

natural num



Particles under a microscope




Checking completeness

Pairs of squares

overlap

common vertex

u Y

disjoint parallel

common
segment

common edge

L]




Checking completeness
But did we consider all possible cases?

How can we decide if our selection of examples is complete?



Checking completeness
But did we consider all possible cases?

How can we decide if our selection of examples is complete?

A possible strategy is to prove that every implication that holds for
these examples, holds in general.
@ Compute the canonical base of the context of examples, and
@ prove that these implications hold in general,

@ or find counterexamples and extend the example set.



Checking completeness

But did we consider all possible cases?

How can we decide if our selection of examples is complete?

A possible strategy is to prove that every implication that holds for
these examples, holds in general.
@ Compute the canonical base of the context of examples, and
@ prove that these implications hold in general,
@ or find counterexamples and extend the example set.

This can nicely be organised in an algorithm, called attribute
exploration.



Checking completeness

Canonical base of the example set

@ common edge — parallel, common vertex, common segment
@ common segment — parallel
@ parallel, common vertex, common segment — common edge

@ overlap, common vertex — parallel, common segment,
common edge

@ overlap, parallel, common segment — common edge, common
vertex

@ overlap, parallel, common vertex — common segment,
common edge

@ disjoint, common vertex — |

@ disjoint, parallel, common segment — L

@ disjoint, overlap — L



Checking completeness

Two of the implications do not hold in general

common edge — parallel, common vertex, common segment
common segment — parallel
parallel, common vertex, common segment — common edge

overlap, common vertex — parallel, common segment,
common edge

overlap, parallel, common segment — common edge, common
vertex

overlap, parallel, common vertex — common segment,
common edge

disjoint, common vertex — |
disjoint, parallel, common segment — L

disjoint, overlap — L



Checking completeness

Conterexamples for the two implications

@ overlap, common vertex — parallel, common segment,
common edge

@ Counterexample: >



Checking completeness

Conterexamples for the two implications

@ overlap, common vertex — parallel, common segment,
common edge

@ Counterexample: >

@ overlap, parallel, common segment — common edge, common
vertex

@ Counterexample: [



Checking completeness

A better choice of examples

comnﬁon
edge




