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Triadic FCA (3FCA)

* Target: triadic data sets either having a natural 3D structure or
mapped on 3D in order to find relevant knowledge structures.

* Mine after relevant knowledge
* Cluster relevant information into triconcepts
e Represent triconcepts in a form which is suitable for decision making

* Analyse the structure of the triconcepts set in order to find more
relevant knowledge structures.




Trilattice example (4)
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Source: Factor Analysis of triadic data - C.V.Glodeanu




Disadvantages of the trilattice representation

* no automated tool to generate it
 difficult to read and to navigate in

* the underlying structure of the triconcepts cannot be read from the
trilattice




Proposed solution

* A local navigation paradigm in the tricontexts:
e one can get from a triconcept to another if it is reachable
* once chosen a triconcept you can see all possible next steps




Derived contexts

Every triadic context (Ky, Kz, K3.Y') gives rise to the following
projected dyadic contexts:

KU = (Ky, Ky x K3, YD) with YV (m,b) <= (g, m,b) €Y,

K@ = (K», K1 x K3, Y®)) with mY(2>(g, b) 1= (g, m.b) €Y,

K®) = (K3, Ky x Ko, Y®)) with bY®) (¢, m) <= (g, m,b) € Y.

For {i.j.k} = {1,2.3} and Ay C Ky, we define K, U) = (Ki, K;, Y(I]))

where (aj,a;) € Y;i if and only if (a;,a;,a;) € onr all a;, € Ay.

B K) = flattened versions of the triadic context, obtained by
putting the “slices” of (K1, K>, K3, Y) side by side.

[ Kgi ) = the intersection of all those slices that correspond to
elements of A;.




Derivation operators

Definition ((7)-derivation operators)

For {i,j,k} ={1,2,3} with j < kand for X C Kj and Z C K; x K
the (i)-derivation operators are defined by:

X XU = {(aj,ar) € Kj x K¢ | (a;.q;,0,) € Y forall q; € X}.
Z ZW = {a; € K; | (aj.a;.a;) € Y for all (aj,a;) € Z}.

Definition ((7,j, Xi)-derivation operators)

For {Z,], k} = {1, 2_, 3} and Xf C KI,X] C K], Xk C Kkr the
(1,], Xk )-derivation operators are defined by

X; = XM = fa: € K | (ay,a5,a) € Y forall (a;,a) € X; x X;}
Xj X}?"’-f- o= fa; € K, | (a;, a,ax) € Y forall (a;, ar) € X; x X}.




Recall triadic concepts

B triadic concepts are maximal cuboids of incidences

Definition

A triadic concept (short: triconcept) of K := (K1, K5, K3, Y) isa
triple (A1, Az, Az) with A; C K, forie {1,2,3} and

A; = (A; x AW for every {i, ], k} = {1,2,3} with j < k. The sets
A1, Az, and Az are called extent, intent, and modus of the triadic
concept, respectively. We let T(K) denote the set of all triadic
concepts of K.




Exercise assignement

Let K=(K1, K2, K3, Y) be a triadic context, where
K1=1{1,2,3,4},

K2 ={a,b,c,d},

K3 ={a, B, v}, and

Y={(1,a,B), (1,a,y), (1,b,a), (1,b,B), (1,c,a), (1,c,B), (2,b,a), (2,b,B),
(2,a,B8),(2,a,y),(3,a,B8),(3,a,y),(3,d,a),(4,d,B),(4,3,B8),(4,a,y),(4,b,a), (4,b,B)

1. Give all three slice representations of K.
2. Compute three different triconcepts of K.
3. For a triconcept (A1, A2, A3) compute the projections K",




Navigation example
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Choose T := ({¢3., 94,85}, {mo,my,ma, m3, ms}, {c1,c2}) as the
triconcept wherefrom local navigation starts and consider
perspective 3 (i.e., modus). By projecting along {c1,c2}, we
obtain the following concept lattice.

Triconcept T corresponds to the leftmost dyadic concept.
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By choosing the rightmost concept of this lattice corresponding
to the triconcept ({¢2, ¢3, 84}, {ma. ms3,my}, {c1,c2}) as a next
step and the first perspective the reachable triconcepts are:

c1

cO c2
m0 mé
m2

m5

m1




Reachable triconcepts

Definition

For (Ay, Az, A3) and (By, By, B3) triadic concepts, we say that

(B1, By, B3) is directly reachable from (A1, Az. A3) using
perspective (1) and we write (A1, A2, Az) <1 (B1, B2, B3) if and
only if (B2, B3) € ‘B(Kff)). Analogously, we can define direct
reachability using perspectives (2) and (3).

We say that (By, B>, B3) is directly reachable from (A1, A2, Az) if it
is directly reachable using at least one of the three perspectives, that
s, formally

(A1,A2,A3) < (B1, B2, Bs) & [(A1, A2, A3) <1 (By, B2, B3)] Vv
[(A1,A2,A3) <2 (B1, B2, B3)| V [(A1, A2, A3) <3 (B1, B2, B3)|.

KS? = (K. K. Yg?), where (a;,a;) € YZ) if and only if
(a;,aj,ar) € Y forall ay € Ay.




Mutually reachable triconcepts

Proposition

Let (Aq, A2, A3), (B1, B2, B3) be two triconcepts. If A; = B; for an
i € {1.2,3} then (Ay.Aj. A3) <; (B1,B>.B3) and
(B1,B2,B3) <i (A1, A2, Az).




Reachability for triconcepts

Definition

We define the reachability relation between two triconcepts as being
the transitive closure of the direct reachability relation <. We denote
this relation by <.

Definition

The equivalence class of a triconcept (A1, A2, Az) with respect to the
preorder < on T(K) will be called a reachability cluster and denoted
by (A1, Az, As)].




Obtaining the clusters of triconcepts using a
graph

* Consider a directed graph with triconcepts as nodes and with directed
edges between the triconcepts for which the reachability relation

holds

* The strongly connected components of the graph represent the
clusters of triconcepts.




More than two clusters
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The triconcepts are partitioned in clusters the following way:

C1 ={({c}.{3}.{"})}

Co = {({b}, {2}, {B.7})}

C3 — {({ﬁ}‘ {1}" {a" 5" ,‘\f})" ({ﬂ" b" C}" {1" 2" 3}" @)"
({a,b,c},0,{c, 3,7}), (0,{1,2,3},{, B,7})}

Ci <G <Gy

The triconcepts ({c},{3},{v}) and ({b},{2},{B.v}) have disjoint
extents and intents, but ({c},{3}.{v}) <3 ({b},{2},{5,7}).




Reachability in composed tricontexts

There is a way of composing several tricontexts such that the
reachability clusters of the composed tricontext coincide with
the union of the reachability clusters of the constituents, except
for the greatest cluster.

o

Definition

Given tricontexts _
Ky = (KL KL K, Y, K, := (KI, K4, K4, Y"), with K. and K!

being disjoint for all j 7é kandall i € {1,2,3}, their composition
Kiw... WK, is the tricontext K := (Ky. Kz, K3, Y) with

Ki:=Uj_ Kfand Y == |J}_, Y~




Size of the tricontext vs. Number of
reachability clusters

We can find qubic tricontexts (i.e., |[Ki| = |Kz| = |K3| = n),
where the number of clusters equals n + 1:

Proposition

Let K = (K1. K3, K3, Y) be a tricontext of size n x n x n with
Ki={kl|1<i<n},Ky={k#|1<i<n},

K5 = {k? | 1 < i < n}. Let the relation Y be the spatial main
diagonal of the tricontext, meaning that a triple (k!, k]-z, K)ey
iff i = j = k. Then there are n+1 clusters, n minimal clusters and
the maximal cluster.

o




The number of minimal clusters is not
bounded by the dimension of the context

Consider the following 6 x 6 x 4 tricontext Kgg4.
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Besides the maximal cluster, we have six minimal ones which
are all singletons consisting of the following triconcepts,
respectively:

Cr = ({ah {1} {a. 8, Co o= ({0} {2}, {o. 1),

Cy = ({c}, {3} {d}), Co:=({d}, {4}, {5.7}),

Cs := ({e},{5}.{B.9}), Ce:= ({f}* {6}.{7.9}).




Consider the 16 x 16 x 16 context built by composing the
previous context with its rotations: K := Keges ¥ Keae & Kyge.
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We can prove that Ky has 19 clusters, the maximal one and
6 + 6 + 6 = 18 minimal ones, respectively.




Exercise assignment

e Use FCA TOOLS BUNDLE and the local navigation feature for triadic
data sets.




The context of reachable triconcepts

Let K := (K1, K2, K3,Y) be a triadic context. We denote by T(K) the
set of all triconcepts. Then, the formal context of reachable triconcepts

is defined as K, .= (T(K), T(K), <).

We denote with C the set of clusters of triconcepts from K and
with [ the following set: I = {A N B|(A,B) € K.} \ {0}.




Structure of the clusters

Let (A, B) € K, be a concept and denote by C := AN B. If C # 0,

then C is a set of mutually reachable concepts, i.e., C x Cis a
rectangle of crosses in K..

Proof of [ = C;

B Every intersection A N B of a concept (A, B) € K, is part of
a cluster

B An intersection is also maximal = an intersection is equal
to a cluster

B For every cluster C there is a concept with the intersection
equal to the cluster: (C™,C")

The set of clusters covers only a part of a lattice, the concepts
(A, B) € K, which have a nonempty intersection.




OPEN QUESTIONS

 What is the depth of the graph of triconcepts?

* What is the maximal number of clusters that a tricontext can have in
relation with its dimensions? Current upper bound is the number of
triconcepts, which is exponential.

e What is the number of minimal clusters that a tricontext can have in
relation with its dimensions?

* If we use the reachability relation as a navigation paradigma, which is
a suitable starting point? Obviously the starting point should be in a
minimal cluster, but which is the right minimal cluster?




Clarified contexts

B dyadic case: a context is called clarified if there are no
identical rows and columns

B triadic case: a context is called clarified if there are no
identical slices

B reason: since a triconcept (Aq, A, A3) is a maximal triple of
triadic incidences, removing identical slices in the
tricontext does not alter the structure of triconcepts

Definition

A triadic context (Kq, Ks. Kg, Y) is_clariﬁed if for every i € {1,2,3}
and every u,v € K;, from u) = 0 follows u = v.




Advantages of reduction

* context reduction has no effect on the conceptual structure

* reducible objects and attributes can be written as combinations of
other objects and attributes

* we can reduce the data quantity without losing information




Reduced dyadic context

Definition

In a dyadic context, an element is reducible if and only if the
row/column of that element is the intersection of some rows/columns.

Definition
A clarified context (G, M, I) is called

B object reduced if it has no reducible objects

B attribute reduced if it hias no reducible attributes




Reduced triadic context

Definition

Let K = (K1,K,K3.Y) be a tricontext and a; € K;, i = 1,2,3. Then
the element a; is reducible if and only if there exist a subset X C K;

vk k)
with Yy = Y{ 0l where

YUY = {(b;,by) € K; x Ky | Wby € X. (by, by, by) € Y}, for
{i.j.k} = {1,2.3}.

The definition states that a; is reducible it and only if the slice of
a; is the intersection of some slices corresponding to the
elements of a certain subset X C K;

ot

Definition
A clarified context (K1, Ky, K3,Y) is called
B object reduced if it has no reducible objects

B attribute reduced if it has no reducible attributes

B condition reduced if it has no reducible conditions




B if we switch the role of the objects with that of the
attributes we look at the context (M, G,I~!) =
former attribute concepts are now object concepts

B using this observation, an equivalent definition of the
reduced context can be given using joins as follows




Definition

A clarified context (G, M, I) is called row reduced if every object
concept is V-irreducible and column reduced if every attribute
concept is N-irreducible.

Definition

A clarified tricontext (Ky, K. K3,Y) is called object reduced if
every object concept from the context (Kq, Ky x Kz, YD) is
V-irreducible, attribute reduced if every object concept from the
context (Kz, K3 x Ki, Y(z)) is \V-irreducible, and condition reduced
if every object concept from the context (K, Ky x Ky, Y®)) is
V-irreducible.




Reduction example

Q|| b1 | b2 | b3 g || by | ba | b3 Qg3 || by | b2 | b3
my || x | x | x my X | x 1y x | x
nis %) X >
1 X ms || x ms

B non-trivial triconcepts of this context are:

(181} {m1}.{b1,b2,05})
(182}, {ms}.{b1})
(181-82.83}, {1}, {02, b3})
(1g1}. {m1,mz}, {b2})
(182}, {m1,m2}, {b3})

B we observe the slice corresponding to ¢35 is the intersection
of the slides corresponding to ¢; and ¢

o o o g 0O

B by reducing object ¢3, the number of triconcepts remains
unchanged and the trilattice will be the same




A different characterisation of reducible
elements

Let K := (Kq, K3, K3, Y) be a tricontext. For g € Ky,m € Ko, b € K3
we define the following relations, where ./ is the arrow relation from

dyadic FCA:

.b)

Beromy (gb
gmb)EDf::)»b,/(g )

b) e ¥ & (g,m,b) € <and (g,m,b) € A, and

.b) e

With this notation, an element 4; € K; will be reducible if and
only if its corresponding slice, i.e., (K;, K, ng)) does not
contain the triadic arrow ¥




R. Wille:

Definition 25. If ((/, M,[) is a context, ¢ € G an object, and m € M an
attribute, we write

: g4m and

| if g’ Ch"and ¢’ # A, then hIm,
[ g4m and

| if m’ C n' and m’ # n/, then gin,
g/ ' m < g,/ mandyg m.

g,/ m <

9,/'m <=




Exercise assignment

* Use ConExp to practice reducing using arrow relations in formal
contexts.




Object concepts

In the triadic case, an object concept should be defined as a set
of triconcepts

Definition

Let K := (K1, K2, K3.Y) be a tricontext, g € K1, m € Ky, and b € Ky
be objects, attributes, and conditions, respectively. The object
concept of ¢ is defined as

v2(¢) := {(A1,A2,A3) € T(K) | Ay = gD, where (1)) is the
derivation operator ¢ in K\, i € {1,2,3}. Similar, the attribute
concept of m is defined as

p2(m) = {(A1,A2,Az) € T(K) | Ay = m P2}, while the
condition concept of b is defined as

BA(b) = {(A1,Ar.A3) € T(K) | A3 = bBIB)},




Experiments

B the cancer registry database, in its original form, contains
25 attributes for each patient, including an identification
number, for example Tumor sequence, Topography,
Morphology, Behavior, Basis of diagnosis, Differentiation degree,
Surgery, Radiotherapy, Hormonal Therapy, Curative Surgery,
Curative Chemotherapy

B to prepare the data for a triadic interpretation, the
knowledge management suite Toscana] and ToscanaZ2Trias,
a triadic extension developed at Babes-Bolyai University
Cluj-Napoca, have been used

B Toscana2Trias uses the TRIAS algorithm developed by
Jaschke in order to compute the triconcepts of the data
represented as a triadic context




Example

B we have selected a number of 4686 objects, 11
attributes (all 8 degrees of certainty in the oncological
decision process, in-situs carcinoma and tumor
sequence 1, i.e., just one tumor) and 3 conditions
(Gender = Male, age < 59, and survival > 30 months)

B this selection of a tricontext with 4686 objects, 11
attributes and 3 conditions contains 44545 tuples
(crosses in the tricontext) and 63 triconcepts

B the clarified tricontext contains 61 objects, 11
attributes and 3 conditions

B the reduced context contains 23 objects, 4 attributes
and 3 conditions, resulting in a relation with 77 tuples




Conclusion

Role of reduction for triadic FCA:
B climinates redundant information

B increases efficiency in determining the underlying
conceptual structure

B reducible objects (or attributes, conditions) may give
important clues about logical dependencies in the data




lceberg Concept Lattices

The seven most general concepts (for
minsupp = 85%) of the 32086

concepts of the mushroom database
(http://kdd.ics.uci.edu/).




lceberg Concept Lattices: Support

Def.: The support of a set X © M of attributes is defined as

Xf
supp(X) := ||G||

Def.: The iceberg concept lattice of a formal context (G, M, I) for a
given minimal support value minsupp is the set

{(A, B) e B(G,M,I) |supp(B) = minsupp}




lceberg Concept Lattices
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lceberg Concept Lattices
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lceberg Tri-Lattices

@ Given support constraints 7, 7, T :
tri-concept (A, B, C) frequent
< (Al =71, |B| =1, and |C] = T,

— jceberg tri-lattice




Computing Tri-Concepts

@ Given
»sets U, T, R
» ternary relation Y < U x 1" x R
» support constraints 7, 7, T,

e Find (A, B, (') with
» AcU, BCc1T, CCR
g ‘A‘ = Ty, B‘ = Tt, (T‘ = Tr
» Ax Bx(CCY
» such that none of the sets A, B or (' can be enlarged without violating
the former condition




Computing Tri-Concepts

computes the iceberg tri-lattice of a triadic
formal context

Algorithm

o Let Y := {(u, (t,7)) | (u,t,r) € Y}
o Loop: Find (frequent) concepts (A, )
in (UT x R.Y)

In the example:

(A, 1) =
({u, us}, {(tr,r1), (t1,72), (2, 71)})




Computing Tri-Concepts

computes the iceberg tri-lattice of a triadic
formal context

Algorithm

o Let Y := {(u, (t.7)) | (u,t,7) € Y}
o Loop: Find (frequent) concepts (A, )
in (U, T x R,Y)

Loop: Find (frequent) concepts (B, C)
in (1, R, 1)

Y

i+
/

1

In the example:

(T, R, I)=(T, R.{(t1,11), (t1,72), (t2,71)})
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Computing Tri-Concepts

computes the iceberg tri-lattice of a triadic
formal context

Algorithm

o Let Y := {(u,(t,r)) | (u,t.r) €Y}
o Loop: Find (frequent) concepts (A, I)
in (U, 1T xR.Y)

Loop: Find (frequent) concepts (B, C)
in (T, R, T)

In the example:

(B,C) = ({t1},{r1.7m2})




Computing Tri-Concepts

-

i
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computes the iceberg tri-lattice of a triadic
formal context
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Algorithm

o Let Y := {(u, (t,7)) | (u,t,7) €Y}
o Loop: Find (frequent) concepts (A, )
in (U,T xR,Y)

Loop: Find (frequent) concepts (B, C)
in (1T, R, 1)

If A= (B x C)¥, then output
(A,B,C)
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(B x C)" = ({t1} x {ri,m})"
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Computing Tri-Concepts

computes the iceberg tri-lattice of a triadic
formal context

Algorithm

o Let Y := {(u,(t,r)) | (u,t,r)e Y}
o Loop: Find (frequent) concepts (A, I)
in (UT xR.Y)

Loop: Find (frequent) concepts (B, C)
in (1T,R,T)

If A= (B x C)?, then output
(A.B.C)

In the example: H
(B x O) = ({t1} x {ri,r2})"
= {ug,uz} = A




Computing Tri-Concepts

computes the iceberg tri-lattice of a triadic
formal context

Algorithm

o Let Y := {(u, (t,7)) | (u,t,r) €Y}
@ Loop: Find (frequent) concepts (A, I)
in (U, T x R,Y)

Loop: Find (frequent) concepts (B, C)
in (1, R, T)

If A= (B x C)Y, then output
(A,B.C)

In the example:

(A, B,C) = ({ug,us}, {t1}. {r1,ra})




Computing Tri-Concepts

Require: U.T. R.Y.71,. 7.7,
1Y = {(u, (t,7) | (u,t.7) e Y}
2. (A, 1) := FirstFrequentConcept((U,T x R.Y).T,)
3: repeat

4. if [I| = 14 - 7, then

5: (B.C'") := FirstFrequentConcept((1,R. 1), 1)

6: repeat

7 if |C'| =7, then

8: if A= (B xC)" then

0: print AB,C

10: end if

11: end if

12: until not NextFrequentConcept((B,C), (1, R,1), 1)
13:  end if

14: until not NextFrequentConcept((A,I). (U, T x R,Y),T,)




Computing Tri-Concepts

The FirstFrequentConcept method:

Require: (G, M.I), T
1: A:= @I
2. B:= Al
3: if |A| < 7 then
4:  NextFrequentConcept((A, B), (G, M,I),T)
5: end if
6: return (A, DB)




Computing Tri-Concepts
the NextFrequentConcept method:

Require: (A, B).(G,M.I). 7
1: i := max(M)
2: while defined(i) do
3: A= (B L] ?:)I

4 if |A| > 7 then

5 D:= Al

6 if B <; D then
7 B:=D

8 return true
9 end if

10:  end if

11: i:=max(M\B n{l,...,i—1})
12: end while
13: return false




Evaluation

BibSonomy Dataset:
@ all publication records until November 23rd, 2006

@ removed: DBLP, posts with the tag “imported”
o (Ul =262 |1T1=5954, |[R| =11101, Y| = 44944

Result:

@ 13992 tri-concepts (75 minutes on a 2 GHz PC)

@ with support constraints 7, = 3, 7+ = 2, 7. = 2

» 21 tri-concepts
» contain 41 publications, 15 users and 36 tags
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Neighborhoods

The visualization of tri-lattices is . ..
@ at the moment manual work,
@ time-intensive and pretty complicated,

@ or even impossible (cf. tetrahedron condition and Thomson
condition).

Thus: easier visualization option desireable




Neighborhoods

ldea:

@ We regard tri-concepts as nodes in a graph.

@ We connect two tri-concepts with an edge, when they contain the
same tags, users, or resources.

More formally:
@ Two tri-concepts (A, Ay, A3) and (B;. By, B3) are neighbors, if for
an i€ {1,2,3} it holds A; = B;.
@ neighbor relation ~ < (B(F) x B(F))

@ T[he neighborhood graph then is (*B(FF), ~).




Neighborhoods

neighborhood graph for the tri-concept
({jaeschke, schmitz, stumme}, { fca, triadic}, {1,37})
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