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Abstract. This study explores the relationship between various properties of

elements in a ring and their squares. The properties examined include idempo-

tent, nilpotent, unit, regular, quasi-regular, nil-clean, clean, and fine. Finally,
we characterize the rings where the squares of all elements are idempotent.

1. Introduction

In [1], the integral matrix A =

[
3 9
−7 −2

]
was presented as an example of

(uniquely) nil-clean element that is not clean. Recently, Yiqiang Zhou discovered
that A2 is clean (private communication). More specifically, using any standard
binary quadratic equation solver, such as [7], we show that A2 is not nil-clean but
is clean of index 13 (details are provided in the Appendix). We recall the following
well-known definitions.

An element a of a ring R is: quasi-regular if 1 − a is a unit, nil-clean if it is a
sum of an idempotent and a nilpotent, clean if it is a sum of an idempotent and
a unit, fine if it is a sum of a unit and a nilpotent. A nil-clean (or clean, or fine)
element is called strongly nil-clean (resp. clean, or fine) , if the components of the
sum commute.

Let R be a ring and define the squaring function s : R → R by s(r) = r2. We
say that a ring property P is preserved by squaring if, for any r ∈ R, s(r) has P
whenever r has it, and, we say that P is reflected by squaring if, for any r ∈ R, r
has P whenever s(r) has it.

In this exposition we examine the main ring theoretic properties that elements
of a ring may have, in relationship to squaring (i.e., preservation or reflection of
properties). The properties we address include: idempotent, nilpotent, unit, von
Neumann regular, quasi-regular, clean, nil-clean, fine.

Summarizing, nilpotents and units are both preserved and reflected by squaring,
idempotents are preserved by squaring, but are generally not reflected. Regular
elements are generally neither preserved nor reflected by squaring and quasi-regular
elements are generally not preserved, but are reflected by squaring. Nil-clean, clean
and fine elements are generally neither preserved nor reflected by squaring.

Finally, we characterize the rings where the squares of all elements are idempo-
tent.

We denote by Eij , the n × n matrix with all entries zero except for the (i, j)-
entry, which is 1, by U(R), the set of all units of a ring R and by N(R), the set of
all nilpotents of R.
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2. Nilpotent, unit, idempotent

Clearly, both nilpotents and units are preserved and reflected by squaring.
Idempotents are obviously preserved by squaring but are generally not reflected

in this way. Simple examples are the nonzero ”minus idempotents”, i.e., elements
e such that e2 = −e. These elements are not idempotent but their squares are
idempotent. To illustrate this further, consider matrices over any unital ring with

2 ̸= 0. Take the matrix A =

[
1 1
−2 −2

]
. This matrix is not idempotent, but

squaring it gives A2 = −A =

[
−1 −1
2 2

]
, which is idempotent.

3. Regular, quasi-regular

Von Neumann regular elements behave poorly under squaring: in general, regu-
lar elements are neither preserved nor reflected by squaring. Since our focus is on
providing 2× 2 (integral) matrix examples, we first make some observations about
regular 2× 2 matrices over commutative domains.

Let R be a commutative domain and let A ∈ Mn(R). Suppose A = AXA, for
some matrix X. Taking determinants on both sides, we get det(A)(det(AX)−1) =
0. This implies either det(A) = 0 or det(AX) = 1 (and also det(XA) = 1). Hence,
if det(A) ̸= 0, both AX and XA must be units. Since the matrix ring is Dedekind
finite, it follows that both A, X are units. Therefore, regular matrices must either
be invertible or have a zero determinant.

Next, we define elements a, b, c, d in a ring to be coprime (or, equivalently, the
row vector

[
a b c d

]
is unimodular) if there exist elements x, y, z, t such that

ax+ cy + bz + dt = 1.
With this, we can now provide an elementary proof for the following characteri-

zation.

Theorem 3.1. Let R be a commutative domain. A nonzero 2× 2 matrix with zero
determinant is (von Neumann) regular iff its nonzero entries are coprime

Proof. Set A =

[
a b
c d

]
̸= 02 with ad = bc and X =

[
x y
z t

]
. Then AXA = A

amounts to a (nonhomogeneous) system, namely

a2x+ acy + abz + bct = a
abx+ ady + b2z + bdt = b
acx+ c2y + adz + cdt = c
bcx+ cdy + bdz + d2 = d

.

Since ad = bc, the system reduces to

a(ax+ cy + bz + dt) = a
b(ax+ cy + bz + dt) = b
c(ax+ cy + bz + dt) = c
d(ax+ cy + bz + dt) = d

.

If any of a, b, c, d is zero, the corresponding equality holds for any x, y, z, t.
Since we have assumed A ̸= 02, at least one entry (say a) is nonzero. Cancelling

a in the first equation, we get ax + cy + bz + dt = 1, which holds iff a, b, c, d are
coprime. □
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In terms of preservation, consider the zero determinant regular integral matrix

A =

[
1 2
2 4

]
= A

[
5 0
0 −1

]
A. However, by Cayley-Hamilton’s theorem, the

square A2 = 5A is not regular, since its entries are not coprime.
Regarding reflection, it is easy to verify that in Z12, 4 = 22 is regular, as it has

four inner inverses. On the other hand, 2 is not regular.
It is also important to note that the 2 × 2 matrices over commutative domains,

cannot be given as nonexamples for reflection. As discussed in the remarks preced-
ing the above theorem, a regular matrix is either a unit or a zero determinant matrix
with coprime entries. Clearly, in both cases, if A2 is regular, so is A. Therefore, for
a valid matrix example, we require zero divisors.

An easy computation (which reduces to 4 ∤ 2) shows that the upper triangular

matrix B =

[
2 1
0 2

]
is not regular in T2(Z12). However, B2 = 4

[
1 1
0 1

]
is even

unit-regular, as it is the product of an idempotent matrix and a unit.

Regarding the quasiregular property, it is well-known (and easy to check, as
1− a2 = (1− a)(1 + a)) that if a2 is quasiregular, then a is quasiregular. In other
words, quasiregular elements are reflected by squaring.

However, quasiregular elements are generally not preserved by squaring. For
instance, consider the example above over any unital ring with 3 /∈ U(R). The

matrix B =

[
2 1
0 2

]
= I2+

[
1 1
0 1

]
is quasiregular. However, B2 =

[
4 4
0 4

]
=

I2 +

[
3 4
0 3

]
is not quasiregular.

Remark. Since an element a is quasiregular iff a = 1 + u for some unit u, it
follows that a2 = 1 + (2 + u)u is also quasiregular iff 2 + u ∈ U(R).

4. Squares of nil-clean elements

Regarding preservation, since the nil-clean elements are sums of the form e + t
where e2 = e and t ∈ N(R), it follows that, in particular when t = 0 or e = 0, the
idempotents and the nilpotents have idempotent or nilpotent squares, respectively,
and so have nil-clean squares. Furthermore, if e = 1 then e+ t = 1+ t is unipotent.
Since the square of a unipotent is also unipotent, it follows that unipotents also
have nil-clean squares.

Thus, the only case left to verify is the preservation for sums of the form e+ t,
where e is a nontrivial idempotent and t is a nonzero nilpotent. Elements of this
form are referred to as nontrivial nil-clean.

A ring is termed a GCD ring if greatest common divisors exist.
For 2× 2 matrices over commutative domains we have the following result.

Theorem 4.1. Let A be a 2× 2 nontrivial nil-clean matrix A over a commutative
domain D. If A2 is also nil-clean then A is idempotent or else, the characteristics of
D is 2. If every nontrivial idempotent 2× 2 matrix is similar to E11 (in particular,
if D is a GCD domain) then the converse also holds.

Proof. Over commutative domains, every nontrivial nil-clean 2 × 2 matrix has

trace = 1. Hence it has the form A =

[
a b
c 1− a

]
and the square is A2 =
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a2 + bc b

c bc+ (1− a)2

]
. A necessary condition for the square to be nil-clean

is that the trace 2(a2 − a + bc) + 1 equals 1. This holds iff a(1 − a) = bc or
char(D) = 2. In the first case, det(A) = 0, so A is an idempotent, so trivially
nil-clean. Thus, for the converse, it remains to show that over a domain of char-
acteristics two, if the nontrivial idempotent 2 × 2 matrices are similar to E11, the
square of a nontrivial nil-clean 2× 2 matrix is also (nontrivial) nil-clean. Since the
nil-clean property is invariant under similarity, we can start with A = E11+T with

T 2 = 02 (i.e., Tr(T ) = det(T ) = 0) and so T =

[
x y
z −x

]
with x2+yz = 0. Then

A2 = E11 +E11T + TE11 =

[
1 + 2x y

z 0

]
=

[
1 y
z 0

]
=

[
1 y
0 0

]
+

[
0 0
z 0

]
is

a (nontrivial) nil-clean decomposition (2x = 0 as char(D) = 2). □

Using this, we can easily provide examples which show that the nil-clean property
is, in general, not preserved by squaring.

Example. Over any domain with 2 ̸= 0, consider the unit U =

[
1 1
1 0

]
=[

1 1
0 0

]
+

[
0 0
1 0

]
. Then U is nil-clean. However, when squaring, U2 =

[
2 1
1 1

]
is not nil-clean as its trace is not equal to 1.

To further show that the nil-clean property is also not reflected by squaring, we

refer to the example given in section 2. Indeed, the matrix A =

[
1 2
−1 −2

]
has

trace = −1, so is not nil-clean, but A2 =

[
−1 −2
1 2

]
is idempotent and hence

(trivially) nil-clean.

By easy computation we have

Lemma 4.2. Let A be a 2× 2 matrix over any commutative ring. Then Tr(A2) =
Tr2(A)− 2 det(A).

Corollary 4.3. Let A be a 2×2 matrix over any commutative ring. Then Tr(A2) =
1 iff Tr2(A) = 1 + 2det(A).

Furthermore, one might wonder whether the squares of matrices that are not
nil-clean could be nilpotent. The answer to this question is negative.

Proposition 4.4. Over commutative domains, matrices that are not nil-clean, have
no nilpotent squares.

Proof. By denial, in order to have Tr(A2) = det(A2) = 0, and so det(A) = 0,
using Lemma 4.2, we get also Tr(A) = 0. Hence A is nilpotent and so (trivially)
nil-clean. □

In the reminder of this section, we will discuss a straightforward positive result
regarding the preservation of the nil-clean property.

Proposition 4.5. Let e2 = e and t ∈ N(R). If e+te+et is idempotent or te+et+t2

is nilpotent, then (e+ t)2 is nil-clean.
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To simplify the writing and wording we introduce the following
Definition. The pair (e, t) with e2 = e and t ∈ N(R) is called i-pre-nil-clean if

e+ te+ et is an idempotent.
Obviously, for any nilpotent t, the pair (0, t) is i-pre-nil-clean so in our study we

focus on e ̸= 0.
We first show that i-pre-nil-cleanness is invariant under conjugation.

Lemma 4.6. If (e, t) is i-pre-nil-clean and v ∈ U(R) then (vev−1, vtv−1) is also
i-pre-nil-clean.

Proof. If e+ te+ et is idempotent, so is v(e+ te+ et)v−1 = vev−1 + vev−1vtv−1 +
vtv−1vev−1. □

Secondly, we exclude the second trivial case.

Proposition 4.7. The pair (1, t) is i-pre-nil-clean iff 2t = 0.

Proof. Indeed, (1 + 2t)2 = 1 + 2t amounts to 1 + 2t = 1 (by multiplication with
(1 + 2t)−1) and so 2t = 0. □

Corollary 4.8. If R is a domain, (1, t) is i-pre-nil-clean iff 2 = 0 and t is an
arbitrary nilpotent, or else 2t = 0. In particular, if R = M2(Z) there are no i-pre-
nil-clean pairs (I2, T ) with T ̸= 02.

Furthermore, we can prove more general results regarding the preservation of
the nil-clean property.

Definition. A ring R will be called IE, if the 2×2 nontrivial idempotent matrices
over R are similar to the matrix E11. Examples of IE rings include GCD domains
and in particular Bézout domains and PIDs.

Theorem 4.9. Let R be an IE commutative domain with 2 ̸= 0. The only i-pre-nil-
clean pairs (E, T ) with idempotent E ̸= I2 in M2(R) have E = 02 and an arbitrary
nilpotent matrix T .

Proof. According to Lemma 4.6, over an IE domain, for nontrivial idempotents
E, it suffices to show that there are no i-pre-nil-clean pairs (E11, T ). These would
correspond to all pairs with nontrivial idempotent E. Denote T = [tij ], 1 ≤ i, j ≤ 2.

Then Σ = E11 + E11T + TE11 =

[
1 + 2t11 t12

t21 0

]
has trace = 1 iff t11 = 0, and

determinant = 0 iff at least one of t12, t21 is zero. In this case T has a zero first
row (or a zero first column), so is idempotent iff t22 = 1. But then T has trace 1,
so is not nilpotent □

Remarks. 1) If 2 = 0 then Σ =

[
1 t12
t21 0

]
, so (E11, T ) is i-pre-nil-clean if

t12 = 0 or t21 = 0. Since also t11 = 0 it follows that T ∈ {E12, E21}.
2) If (E, T ) is an i-pre-nil-clean pair so is (Et, T t), the pair of transposes.

Returning to the second case in Proposition 4.5, we introduce the following
Definition. The pair (e, t) with e2 = e and t ∈ N(R) is called n-pre-nil-clean if

te+et+ t2 is nilpotent. Clearly, for any nilpotent t, the pair (0, t) is n-pre-nil-clean.
Therefore, in our study, we focus on cases where e ̸= 0. Unlike i-pre-nil-clean pairs,
even in M2(Z), n-pre-nil-clean pairs are abundant.
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A similar computation to the one in Lemma 4.6 shows that the n-pre-nil-clean
pairs are also invariant under conjugations. Therefore, over any IE domain, for
non-trivial idempotent matrices, it suffices to determine the nilpotents T such that
(E11, T ) is an n-pre-nil-clean pair.

Note that if (E, T ) is an n-pre-nil-clean pair, so is (Et, U t), the pair of transposes.

Theorem 4.10. Let R be any commutative domain. For a 2×2 nilpotent T = [tij ]
over R, (E11, T ) is an n-pre-nil-clean pair iff t11 = 0, or else 2t11 = 0 and t22 = 0.

Proof. Denote T = [tij ], 1 ≤ i, j ≤ 2 such that det(T ) = Tr(T ) = 0 (i.e. t11t22 −
t12t21 = 0 = t11 + t22). Then

Σ = E11T+TE11+T 2 =

[
t211 + t11t22 + 2t11 t12(t11 + t22 + 1)
t21(t11 + t22 + 1) t222 + t11t22

]
=

[
2t11 t12
t21 0

]
and by computation Tr(Σ) = 2t11 and det(Σ) = −t11t22. □

Corollary 4.11. Over Z there are precisely two n-pre-nil-clean pairs with idempo-
tent component E11: (E11, E12) and (E11, E21).

Proof. Over the integers t11 = 0 and so t22 = 0. Hence also t12 = 0 or t21 = 0. □

Remark. By conjugation, we obtain infinitely many such integral n-pre-nil-clean
pairs.

5. Squares of clean elements

First, we discuss the trivial clean elements.
Since the clean elements are sums e+u with e2 = e and u ∈ U(R), in particular

(if e = 0), the units have unit squares and so have clean squares.
If e = 1, we have sums 1 + u which are known as the quasiregular elements of a

ring. The preservation and reflection of quasiregular elements was already discussed
in Section 3.

Since reflections of quasiregular elements are also quasiregular, these elements
are also clean.

Returning to the example of quasiregular 2 × 2 matrix B =

[
2 1
0 2

]
not pre-

served by squaring, note that B2 =

[
4 4
0 4

]
is neither quasiregular (if 3 is not a

unit) nor clean (if 4 is not a unit). To see this we recall the following characteriza-
tion.

Theorem 5.1. Let R be a commutative domain and A =

[
a b
c d

]
a matrix over

R. Then A is nontrivial clean iff at least one of the systems{
x2 + x+ yz = 0 (1)

(a− d)x+ cy + bz + det(A)− d = ±1 (±2)

in unknowns x, y, z is solvable over R. If b ̸= 0 and any of (±2) holds, then (1) is
equivalent to

bx2 − (a− d)xy − cy2 + bx+ (d− det(A)± 1)y = 0 (±3).

The signs in the equations correspond accordingly.
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For B2, the equations (±2) are 4(z + 3) = ±1, with no solutions if 4 is not a
unit.

This shows that clean elements are (generally) not preserved by squaring. The
example actually shows more: the square of a quasiregular element may not be
clean.

For matrices we have the following result.

Theorem 5.2. Let R be a commutative ring and U ∈ U(M2(R)). The square of
I2 + U is also clean iff det(U) + 2(Tr(U) + 2) is a unit.

Proof. We use the final remark in Section 3 and the fact that det(U + 2I2) =
det(U) + 2Tr(U) + 4. □

For a clean element e+u , if u = 1, we have sums 1+ e with square 1+ 3e. This
square has the same form if 3 is idempotent but not only in this case. Without 3e
being idempotent, 1 + 3e still can be clean.

Actually, we can prove the following result.

Proposition 5.3. Let E be a nontrivial 2×2 idempotent matrix over a commutative
domain. Then I2 + 3E is clean iff 3 is a unit.

Proof. Start with a nontrivial idempotent E =

[
a b
c 1− a

]
such that a(1− a) =

bc. Then I2 + 3E =

[
3a+ 1 3b
3c 4− 3a

]
has determinant = 4 and the equations

(±2) in the previous theorem become

3(2a− 1)x+ 3cy + 3bz + 4− 4 + 3a = ±1,

with no solutions iff 3 ∤ 1 (i.e., 3 is not a unit). Conversely, if 3 is a unit then
(x, y) = (0, 0) is a solution for both systems. □

Therefore, we can give the following

Example. Over Z4 take E =

[
1 1
0 0

]
. Then 3E is not idempotent ((3E)2 =

E ̸= 3E) but I2 + 3E =

[
0 3
0 1

]
is idempotent, so clean.

Discarding these exceptions, we are left with squares of clean elements, which
are sums of a nontrivial idempotent and a unit ̸= 1.

Analogous to the previous section, we highlight a straightforward positive result
regarding the preservation of clean elements.

Proposition 5.4. Let e2 = e and u ∈ U(R). If e + ue + eu is idempotent or
ue+ eu+ u2 is a unit, then (e+ u)2 is clean.

To simplify the writing and wording we introduce the following
Definition. The pair (e, u) with e2 = e and u ∈ U(R) is called i-pre-clean if

e+ue+eu is an idempotent. Obviously, for any unit u, the pair (0, u) is i-pre-clean
so in our study we focus on e ̸= 0. A simple computation shows that i-pre-cleanness
is invariant under conjugation.

As for the second trivial case, the pair (1, u) is i-pre-clean iff 2(1 + 2u) = 0.
Therefore
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Proposition 5.5. If R is a domain, (1, u) is i-pre-clean iff 2 = 0 and u is an
arbitrary unit, or else 1+2u = 0, which gives only the pair (1,−2−1) if 2 is a unit.
In particular, if R = M2(Z) there are no i-pre-clean pairs (I2, U).

Further, over IE rings, we can prove more general results concerning preservation.
The following result shows that (nontrivial) i-pre-clean 2×2 matrices are relatively
rare.

Theorem 5.6. Let R be an IE commutative domain with 2 ̸= 0. The only i-pre-
clean pairs (E,U) with E ̸= I2 in M2(R) have E = 02 and an arbitrary invertible
matrix U .

Proof. By invariance under conjugation, over an IE domain it suffices to show that
there are no i-pre-clean pairs (E11, U). These would correspond to all pairs with
nontrivial idempotent E. Denote U = [uij ], 1 ≤ i, j ≤ 2. Then Σ = E11 + E11U +

UE11 =

[
1 + 2u11 u12

u21 0

]
has trace = 1 iff u11 = 0, and determinant = 0 iff at

least one of u12, u21 is zero. But in this case U has a zero row (or a zero column),
so is not a unit. □

Remarks. 1) If 2 = 0 then Σ =

[
1 u12

u21 0

]
, so the pair (E11, U) is i-pre-clean

for every lower (or upper) triangular unit U . Over Z2, U = I2 or U =

[
1 1
0 1

]
are examples of this sort.

2) If (E,U) is an i-pre-clean pair, so is (ET , UT ), the pair of transposes.

Returning to the second case in Proposition 5.4, we introduce the following
Definition. The pair (e, u) with e2 = e and u ∈ U(R) is called u-pre-clean if

ue + eu + u2 is a unit. Clearly, for any unit u, the pair (0, u) is u-pre-clean so in
our study we focus on e ̸= 0.

Different from i-pre-clean pairs, u-pre-clean pairs are abundant, even in M2(Z).
A simple computation shows that also the u-pre-clean pairs are invariant under

conjugations. Thus, over any IE domain, for the non-trivial idempotent matrices it
suffices to determine the units U such that (E11, U) is a u-pre-clean pair.

Note that if (E,U) is an u-pre-clean pair, so is (Et, U t), the pair of transposes.

Theorem 5.7. Let R be any commutative domain. For a 2×2 unit U = [uij ] over
R (that is, det(U) = 1), (E11, U) is a u-pre-clean pair iff (u11 − 2)u22 = 1.

Proof. Denote U = [uij ], 1 ≤ i, j ≤ 2 such that det(U) = 1 (i.e. u11u22 − u12u21 =
1). Then

Σ = E11U + UE11 + U2 =

[
u2
11 + u11u22 + 2u11 − 1 u12(u11 + u22 + 1)
u21(u11 + u22 + 1) u2

22 + u11u22 − 1

]
and by computation det(Σ) = 2(u22 + 1) − u11u22 = 1 iff (u11 − 2)u22 = 1 and
u12u21 = u11u22 − 1. □

Corollary 5.8. Over Z there are precisely eight u-pre-clean pairs (E11, U).

Proof. The equation (u11−2)u22 = 1 has only two solutions over the integers given
by u11 = 1 and u11 = 3 with u22 = −1 and u22 = 1, respectively. The corresponding
entries u12, u21 satisfy u12u21 = −2 and u12u21 = 2, respectively. Therefore the
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possible units U are

[
1 1
−2 −1

]
,

[
1 2
−1 −1

]
,

[
3 1
2 1

]
,

[
3 −1
−2 1

]
and their

transposes. □
Remark. By conjugation, we obtain infinitely many such integral u-pre-clean

pairs.

An element that is not clean but whose square is clean is

[
3 9
−7 −2

]
∈ M2(Z),

as observed by Y. Zhou (mentioned in the Introduction). This shows that clean
elements are not reflected by squaring.

As in the previous subsection, we check whether matrices that are not clean may
have some particular clean squares, that is, idempotents or units.

Since, if x2 is a unit, so is x, we focus on the idempotent squares of matrices
over commutative domains.

Proposition 5.9. Over commutative domains, matrices that are not clean have no
idempotent squares.

Proof. As det(A2) = 0 requires det(A) = 0, using Corollary 4.3, Tr(A2) = 1
requires Tr(A) ∈ {±1}. Since if Tr(A) = 1, A is idempotent, so clean, we focus
on finding a matrix that is not clean with zero determinant and trace = −1. This
is not possible. Indeed, by Cayley-Hamilton’s theorem, A2 + A = 0 so A is the
negative of a (nonzero) idempotent, so not idempotent. □

6. Squares of fine elements

Since the fine elements are nonzero sums of the form t+ u where t ∈ N(R) and
u ∈ U(R), in particular (if t = 0), the units have unit squares and thus have fine
squares. If u = 1 then t+1 is unipotent, with unipotent square, so unipotents have
fine squares.

Now, we turn our attention to the so-called nontrivial fine elements, where t ̸= 0
and u ̸= 1. As in the nil-clean and clean cases, the fineness property is gener-
ally neither preserved nor reflected by squaring. Various examples illustrating this
behavior can be found in [2].

It is well-known that 0 is not fine, as this is ruled out by definition - nilpotents
cannot be units. Consider the nilpotent matrix E12 ∈ M2(R) for any unital ring

R. Notably, we can express E12 as

[
0 0
−1 0

]
+

[
0 1
1 0

]
, which shows that E12

is fine. However, its square E2
12 = 02, is not fine.

A less trivial example follows. Before presenting it, we first prove a characteri-
zation which generalizes equation 5.10 in Example 5.9, [2].

Theorem 6.1. For a 2 × 2 integral matrix

[
a b
c d

]
denote l := − det(A) ± 1.

Then A is fine iff
(i) at least one of the systems cx + by = l, s2 + xy = 0 in unknowns x, y, s has

integer solutions, whenever a = d, or
(ii) at least one of the (quadratic) Diophantine equations

c2x2 + [(a− d)2 + 2bc]xy + b2y2 − 2clx− 2bly + l2 = 0

in unknowns x, y has integer solutions such that −xy is a square, whenever a ̸= d.
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Proof. Since nilpotents in M2(Z) have the form

[
s x
y −s

]
with s2 + xy = 0,

A is fine iff det(

[
a b
c d

]
−

[
s x
y −s

]
) = ±1. This condition can be written

s(a− d) = −cx− by + l. If a = d we get (i) and if a ̸= d, squaring and eliminating
s, we obtain the quadratic Diophantine equation in the statement. Observe that
−s(a− d) = −cx− by+ l is also suitable since (−s)2 + xy = 0 and so the final step
consists of the choice between s and −s (in order to have s(a−d) = −cx−by+l). □

Remarks. 1) In the case (i), whenever at least one of −a2 ± 1 is divisible by b
or c, the system is solvable with x = 0 or y = 0, respectively. In both cases, s = 0.
To see this, recall that we have to solve cx+ by = bc− a2 ± 1.

2) Also in case (i), if det(A) = 0 then l = ±1 and so cx + by = ±1 is solvable
only if b, c are coprime. As a2 = bc, both b, c must be (coprime) squares (and so

a = ±
√
bc).

Example. A =

[
6 4
9 6

]
gives 9x + 4y = ±1. For +1 the general solution is

x = 1+ 4n, y = −2− 9n. Here −xy = (4n+1)(9n+2) = 36n2 +17n+2 so we are
searching for an n to have a square −xy = s2. However, there is no integer n for
such a square (36n2 + 17n + 2 = s2 is a quadratic Diophantine equation, without
integer solutions). So A is not fine.

For zero determinant 2 × 2 matrices (with a = d) we can prove the following
result.

Proposition 6.2. Let A =

[
a b
c a

]
be a zero determinant matrix over a commu-

tative domain, i.e., a2 = bc. If 2a is not a unit (that is, both 2 and a are not units)
then A2 is not fine.

Proof. As in case (i), if det(A) = 0 then also det(A2) = 0 so the l = ±1 is common

for both linear Diophantine equations. For A2 =

[
a2 + bc 2ab
2ac a2 + bc

]
, which is

also in case (i), the corresponding equation is 2acx+2aby = 1, with no solutions if
2a is not a unit. □

To provide another example of a fine element whose fineness property is not
preserved under squaring, we first recall Corollary 5.4 from [2].

Corollary 6.3. A matrix A =

[
a b
0 0

]
∈ M2(Z) is fine iff b ≡ ±1 (mod a).

Using this, it follows that

[
2 3
0 0

]
is fine (over Z), but its square

[
4 6
0 0

]
is

not.
Actually this example can be generalized using an easy result.

Lemma 6.4. Let a, b ∈ Z. If ab ≡ ±1 (mod a2) then a ∈ {±1}.

Combining with the previous corollary we obtain

Proposition 6.5. The integral matrix

[
a b
0 0

]2
is not fine whenever a /∈ {±1}.
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Corollary 6.6. For all the fine matrices

[
a b
0 0

]
with a /∈ {±1}, the square is

not fine.

Demonstrating that fineness is not reflected by squaring is more challenging. We
present a 2× 2 integral matrix that is not fine, yet its square is fine.

Example. Take A =

[
1 7
8 0

]
, declared not fine in [2]. Indeed, for A, the

Diophantine equations (ii) are:

64x2 + 113xy + 49y2 − 16lx− 14ly + l2 = 0 (*)

with l = 56±1, and both have no integer solutions, so A is not fine. More precisely
the equations are

64x2 + 113xy + 49y2 − 880x− 770y + 3025 = 0

and

64x2 + 113xy + 49y2 − 912x− 798y + 3249 = 0.

For A2 =

[
57 7
8 56

]
, written in l, the Diophantine equations (ii) are the same

as (*), but with a different l = −3136± 1.
For l = −3135 we have 64x2 + 113xy + 49y2 + 50160x+ 43890y + 9828225 = 0,

with no integer solutions, and
for l = −3137 we have 64x2+113xy+49y2+50192x+43918y+9840769 = 0. The

second equation has an integer solution: (x, y) = (−2143296, 2798929), for which
(as desired) the product −xy is a square, that is s = ±2449272. The final step is
to choose s or −s (because of the squaring in the proof of Theorem 6.1).

As s(a − d) ̸= −cx − by + l but −s(a − d) = −cx − by + l, we have to choose
s = −2449272.

This gives a huge fine decomposition[
57 7
8 56

]
=

[
−2449272 −2143296
2798929 2449272

]
+

[
2449329 2143303
−2798921 −2449216

]
,

since the LHS is idempotent and the determinant of the RHS is = −1 (we used [8],
for computation).

Analogous with the previous two sections, we can consider the following defini-
tions for any unital ring R.

The pair (t, u) with t ∈ N(R) and u ∈ U(R) is called n-pre-fine if t+ ut+ tu is
nilpotent, and u-pre-fine if ut+ tu+ u2 is a unit. Clearly

Proposition 6.7. Let t ∈ N(R) and u ∈ U(R). If t + ut + tu is nilpotent or
tu+ ut+ u2 is a unit, then (t+ u)2 is fine.

However, without the advantage of similarity to E11 for nontrivial idempotent
2× 2 matrices, determining such pairs becomes more challenging. Nevertheless, we
can establish the following notable result.

Theorem 6.8. Let T =

[
x y
z −x

]
be a nilpotent matrix and let U = [uij ],

i, j ∈ {1, 2} be an invertible matrix over a commutative ring. Then the pair (T,U)
is n-pre-fine iff x(u11 − u22) + zu12 + yu21 = 0.
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Proof. By computation, using x2 + yz = 0 and det(U) = 1, for Σ = T + TU +UT ,
we get det(Σ) = α2 and Tr(Σ) = 2α where α := x(u11 − u22) + zu12 + yu21. □

Example. While obviously (T, I2) is n-pre-fine for every nilpotent matrix T ,

for given T =

[
1 1
−1 −1

]
and given u21 = 1, there are only two n-pre-fine pairs

(T,U) over the integers:

(
T,

[
0 −1
1 2

])
and

(
T,

[
−2 −1
1 0

])
.

As for u-pre-fine pairs we have the following result.

Theorem 6.9. Let T =

[
x y
z −x

]
be a nilpotent matrix and let U = [uij ],

i, j ∈ {1, 2} be an invertible matrix over a commutative ring. Then the pair (T, U)
is u-pre-fine iff [x(u11 − u22) + zu12 + yu21 − 1]2 = 1.

Proof. By computation, using x2+yz = 0 and det(U) = 1, for Σ1 = TU+UT+U2,
det(Σ1) = 1. By computation, det(Σ) = (α−1)2 with the same α := x(u11−u22)+
zu12 + yu21, as in the previous theorem. □

Example. While obviously (02, U) are u-pre-fine for every unit U , for given

T =

[
1 1
−1 −1

]
and given u21 = 1, there are only two n-pre-fine pairs (T,U) over

the integers:

(
T,

[
0 −1
1 0

])
and

(
T,

[
−2 −5
1 2

])
.

7. Rings with idempotent squares

Another approach to addressing the topic of this exposition is to examine the
rings in which all squares exhibit a particular property.

Since units and nilpotents are preserved and reflected by squaring, the rings in
which only unit squares (excluding 0) exist are precisely the division rings, while
the rings in which only nilpotent squares exist are the nil rings. In the remaining
of this section, we focus on the rings in which all squares are idempotent.

To simplify the discussion, we define a ring as SI if all of its squares are idem-
potent. Formally, a ring R is SI iff R2 = Id(R), meaning that for every r ∈ R, we
have r4 = r2.

The following straightforward result will be helpful.

Proposition 7.1. A direct product of rings is SI iff all its components are SI. Any
factor ring of a SI ring is SI.

As a trivial example, Boolean rings are SI. An example which is not Boolean is
Z12, as Z2

12 = {0, 1, 4, 9} = Id(Z12). Clearly, Z, Q, R and C are not SI.

Some additional examples are provided in the following result, where the direct
proofs are straightforward. A ring is said to be connected if it contains only the
trivial idempotents.

Proposition 7.2. (i) A connected ring is SI iff it is local, has only zerosquare
nilpotents and only order two units.

(ii) A domain is SI iff it is a division ring of exponent 2. In particular, the only
domains Zn that are SI are the fields Z2 and Z3.
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(iii) A local ring is SI iff it has only zerosquare nilpotents and only order two
units.

(iv) Let p be an odd prime number. Then Z2s is SI iff s ∈ {1, 2} and Zps is SI
iff s = 1.

(v) Let n ≥ 2 be a positive integer. The ring Zn is SI iff n ∈ {6, 12}.

Proof. (v) If a ring is SI, it has units of order at most two. Suppose n = 2spr11 ...prkk .

It is well known that, including the identity, Zn has 2k order 2 units if 0 ≤ s ≤ 1,
2k+1 order 2 units if s = 2 and 2k+2 order 2 units if s ≥ 3. Since the total number of
units is given by the Euler’s totient function ϕ(n) = 2s−1pr1−i

1 (p1−1)...prk−1
k (pk−1),

it follows that Zn has units of order greater than 2 iff k ≥ 2 (ϕ(n) ≥ 2s+1 for k ≥ 2).
Therefore, we have units of order at most 2 only for n = 2spt for some odd prime
p. More precisely, this holds iff p = 3 and t = 1. □

Remarks. 1) For s = 1 we have Z2
6 = {0, 1, 3, 4} = Id(Z6) and the case s = 2

(i.e., n = 12) was mentioned above.
2) The ring Zn with n = 2s · 3 has only 4 idempotents but more than 4 elements

in Z2
n if s > 2.

3) If s is odd, Id(Z2s·3) = {0, 1, 2s + 1, 2s+1} and if s is even, Id(Z2s·3) =

{0, 1, 2s, 2s+1 + 1}.
4) Tripotents (i.e., elements r satisfying r3 = r) have idempotent squares, since

r4 = r2 follows directly from r3 = r. Moreover, if 3 = 0 in a SI ring, the converse
also holds. Replacing r with 1 + r in the equation r2 = r4 yields 1 + 2r + r2 =
1 + 4r + 6r2 + 4r3 + r4 whence r = r3.

The study of rings with the polynomial identity x4 = x2 for every x ∈ R, dates
back over 80 years.

Alfred Foster introduced the concept of a Boolean-like ring in his 1946 paper
[4]. He defined elements of a ring that satisfy x4 = x2 as weakly idempotent. A
Boolean-like ring is a commutative ring of characteristic 2 with identity in which
(1 − a)a(1 − b)b = 0 holds for all elements a, b of the ring. Several well-known
properties of Boolean-like rings are as follows: each element is weakly idempotent
(i.e., Boolean-like rings are a special class of SI rings); the nilpotent elements form
an ideal; the idempotent elements form a subring; each element can be uniquely
written as the sum of an idempotent element and a nilpotent element (that is, the
ring is uniquely nil-clean).

The concept of (m,n)-Boolean ring (m > n ≥ 1) was introduced by Maurer and
Szigeti (see [9]) as a ring in which every element satisfies the identity xm = xn.
Their paper proves that the structure of (m,n)-Boolean rings depends significantly
on the parity of the difference m− n. If this difference is odd, a reduction theorem
is established. These rings are then (m − n + 1, 1)-Boolean and, by Jacobson’s
theorem, commutative. Moreover, such rings are reduced. For cases where the
difference m − n is even, no such reduction theorems exist and rings satisfying
the identity xn+2 = xn, for some positive integer n, deserve special attention.
Specifically, for n = 2, these rings are what we refer to as SI rings. For example,
the ring of 2 × 2 upper-triangular matrices over a Boolean ring is a (4, 2)-Boolean
ring, which is not commutative. Additionally, Z12 is a (4, 2)-Boolean ring that is
not reduced.
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In 1998, Hirano and Tominaga [5] proved that every element of a ring R is a sum
of two commuting idempotents iff R satisfies the identity x3 = x. The following
characterization was subsequently established (actually, (iii) was added in [11]).

Theorem 7.3. The following are equivalent for a ring R.
(i) The ring R has the identity x3 = x,
(ii) Every element of R is a sum of two commuting idempotents,
(iii) Every element of R is a difference of two commuting idempotents
(iv) R is a direct product R = A×B, where A is zero or a Boolean ring and B

is zero or a subdirect product of Z3s.

Thus, these are precisely the rings all whose elements are tripotents.

More recently, in [11] (see Theorem 3.10), a structure theorem was proved for
rings which have the identity x6 = x4.

Theorem 7.4. The following are equivalent for a ring R.
(i) every element of R is a sum of an idempotent and a tripotent that commute,
(ii) R has the identity x6 = x4,
(iii) R = A × B, where A is zero or A/J(A) is Boolean with U(A) a group of

exponent 2, and B is zero or a subdirect product of Z3s.

In the following, we provide a characterization of SI rings. Some elements of the
proof have analogous results in [11], but for reader’s convenience, below we present
all the details here.

First, we recall a result that, for rings, dates back to [5], and for elements, to
[10] (see Proposition 3.2 and the accompanying remark).

Proposition 7.5. An element a in a ring is strongly nil-clean iff a − a2 is a
nilpotent.

Secondly, we recall from [3] the following characterization.

Theorem 7.6. A ring R is strongly nil-clean iff J(R) is nil and R/J(R) is Boolean.

We mention that in a nil-clean ring, the element 2 is a (central) nilpotent and, as
such, is always contained in J(R), and, that by definition, for any positive integer
n, 2 ∈ J(R/2nR).

Next, in the following lemma, we present some prerequisites necessary in the
proof of the characterization theorem.

Lemma 7.7. (i) If R/J(R) is Boolean then
(a) 2 ∈ J(R),
(b) U(R) = 1 + J(R),
(c) N(R) ⊆ J(R).
(ii) If R has the identity x3 = x, then R = R1 ×R2, where R1 is a Boolean ring

(a subdirect product of Z2s) and R2 is a subdirect product of Z3s.
(iii) Let A = R/22R and B = R/3R. If 223 = 0 in R, then A,B are SI rings

with 22 = 0 in A, 3 = 0 in B, and R ∼= A×B.
(iv) If b4 = b2 and 3 = 0 in a ring B, then B is a subdirect product of Z3s.
(v) If a4 = a2 and 4 = 0 in a ring A then A/J(A) is Boolean.
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Proof. (i) If R/J(R) is Boolean, then r2 − r ∈ J(R) for every r ∈ R. For (a), we
take r = 2. For (b), let u ∈ U(R). Then u2 − u ∈ J(R) and since J(R) is an ideal,
u ∈ 1 + J(R). The converse is well-known (e.g., see Corollary 4.5 in [6]). For (c),
let t ∈ N(R). As 1 + t ∈ U(R), by (b) it follows that t ∈ J(R).

(ii) Let t ∈ N(R). As t = t3 = t5 = ... it follows that t = 0, so R is reduced. By
Andrunakievich-Ryabukhin theorem (e.g., see Theorem 12.7 in [6]), R is a subdirect
product of domains. The only suitable domains are Z2 and Z3 (see Proposition 7.2).
Hence R is a subdirect product of Z2s and Z3s.

(iii) Suppose 223 = 0. Then 22R ∩ 3R = 0 and R = 22R + 3R. By the Chinese
Remainder theorem, R ∼= R/22R×R/3R.

(iv) This was already mentioned in Remark 4, after Proposition 7.2. That is,
b4 = b2 and 3 = 0 in a ring B imply b = b3. Thus B is a subdirect product of Z3s.

(v) Suppose a4 = a2 and 4 = 22 = 0. For any a ∈ R, as a4 = a2, we have
(a − a2)2 = a2(1 − a)2 = a2(1 − 2a + a2) = 2(a2 − a3), which is nilpotent as 2 is
nilpotent. Thus, a−a2 is nilpotent and so by Proposition 7.5, a is strongly nil-clean.
Therefore, the ring R is strongly nil clean and by [3], R/J(R) is Boolean. □

Now we are ready to characterize the rings all whose squares are idempotent
(i.e., the SI rings).

Theorem 7.8. The following conditions are equivalent for a ring R.
1) x4 = x2 for all x in R.
2) R is isomorphic to A, or B, or A × B, where A/J(A) is Boolean and j2 =

2j = 0 for all j ∈ J(A), and B is a subdirect product of Z3s.

Proof. 2) ⇒ 1). If A/J(A) is Boolean then 2 ∈ J(A). As j2 = 0 for every j ∈ J(A),
J(A) is nil and so A is strongly nil-clean by [3].

As now J(A) ⊆ N(A), by Lemma 7.7 (i) (c) it follows that J(A) = N(A), so
every a ∈ A is a sum e+j with e = e2, j2 = 0 and ej = je. Hence, a2 = e+2ej = e
as 2j = 0. Thus, a4 = a2. If B is a subdirect product of Z3s then B has the identity
x3 = x, and so has also the identity x4 = x2.

1) ⇒ 2) 24 = 22 gives 223 = 0 in R, so by Lemma 7.7 (iv), R = A × B where
4 = 0 in A and 3 = 0 in B. By Lemma 7.7 (v), A/J(A) is Boolean and B is a
subdirect product of Z3s.

If A/J(A) is Boolean, by Lemma 7.7 (i) (a) 2 ∈ J(A) and so by (i) (b), 3 ∈ U(A).
For every a ∈ A we have a4 = a2 and (a+1)4 = (a+1)2, whence 2a2 = 2a. Finally,
for every j ∈ J(A), we have (1+ j)4 = (1+ j)2 and since (1+ j)2 is a unit it follows
that (1 + j)2 = 1. Hence 0 = 2j + j2 = 3j2, so j2 = 0, and so 2j = 0. □

8. Appendix

Zhou’s discovery is particularly intriguing as it follows that for the ma trix A =[
3 9
−7 −2

]
, which is (uniquely) nil-clean but not clean in M2(Z), the squared

matrix A2 =

[
−54 9
−7 −59

]
is clean but not nil-clean in M2(Z), since Tr(A2) =

−113 /∈ {0, 1}.
In order to find all the clean decompositions of A, we use Theorem 5.1. Recall

that the integer solutions of the systems give the idempotent

[
x+ 1 y
z −x

]
of
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the clean decomposition. Since det(A2) = 3249, and b = 9 ̸= 0, the two pairs of
conditions (here a− d = 5 and c = −7) are the following.

(+3): 9x2 − 5xy + 7y2 + 9x+ (−59− 3249 + 1)y = 0,
(+2): 5x− 7y + 9z + 3249 + 59 = +1
respectively
(-3): 9x2 − 5xy + 7y2 + 9x+ (−59− 3249− 1)y = 0,
(-2): 5x− 7y + 9z + 3249 + 59 = −1.

We solve the quadratic Diophantine equations using [7].

(+3) has the solutions: (0, 0), (−1, 0) and one more (300, 301).
Only (300, 301) satisfies (+2), gives z = −300 and so yields the following clean

decomposition:

A2 =

[
−54 9
−7 −59

]
=

[
301 301
−300 −300

]
+

[
−355 −292
293 241

]
, where the LHS

matrix is idempotent and the RHS unit matrix has determinant 1.

(-3) has the solutions: (0, 0), (−1, 0) and another 25:
(115,522), (272,208) [357], (104,520) [21], (-148,259) [84], (-1,472)

(-158,158) [157], (-80,395) [16], (-125,62) [250], (259,182) [370], (-148,108)

(104,27), (272,459), (190,90), (-86,387), (-141,282) [70]

(174,75) [406], (-141,90), (174,522), (252,483) [132], (300,387)

(255,480) [136], (-18,459), (300,300) [301], (-90,27), (207,108)

For each of the above pairs (x, y), instead of checking (-2), equivalently, we can

verify whether the fraction
(x+ 1)x

y
is an integer. If so, this gives −z.

Only the underlined pairs satisfy (-2), with the corresponding z added between
brackets, so we have another 12 clean decompositions:[

273 208
−357 −272

]
+

[
−327 −199
350 213

]
,

[
105 520
−21 −104

]
+

[
−159 −511
14 45

]
,[

−147 259
−84 148

]
+

[
93 −250
77 −207

]
,

[
−157 158
−157 158

]
+

[
103 −149
150 −217

]
,[

−79 395
−16 80

]
+

[
25 −386
9 −139

]
,

[
−124 62
−250 125

]
+

[
70 −53
243 −184

]
,[

260 182
−370 −259

]
+

[
−314 −173
363 200

]
,

[
−140 282
−70 141

]
+

[
86 −273
63 −200

]
,[

175 75
−406 −174

]
+

[
−229 −66
399 115

]
,

[
253 483
−132 −252

]
+

[
−307 −474
125 193

]
,[

256 480
−136 −255

]
+

[
−310 −471
129 196

]
,

[
301 300
−301 −300

]
+

[
−355 −291
294 241

]
.

Here the LHS matrices are idempotents and the RHS matrices are units with
determinant −1.

Summarizing, A2 is an index 13 clean integral matrix.
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