SOME EXAMPLES RELATED TO SQUARES OF ELEMENTS IN
RINGS

GRIGORE CALUGAREANU

ABSTRACT. We provide a 2 X 2 integral matrix that is not fine yet its square
is fine. Additionally, we characterize the rings in which the square of every
element is idempotent.

1. INTRODUCTION

3 9
-7 =2
(uniquely) nil-clean element that is not clean. Recently, Yigiang Zhou discovered
that A? is clean (private communication).

While it is easy to find a 2 x 2 matrix that is not nil-clean but its square is
nil-clean, to find a 2 x 2 matrix that is not fine but its square is fine is harder.
Generalizing a result from [2], we provide such an example. Also related to squaring
elements in a ring, we characterize the rings where the squares of all elements are
idempotent, that is, the rings which have the identity x* = x2.

In closing, for the matrix A above, we show that A? has precisely 13 clean
decompositions.

We recall the following well-known definitions. An element of a ring is: nil-clean
if it is a sum of an idempotent and a nilpotent, clean if it is a sum of an idempotent
and a unit and fine if it is a sum of a unit and a nilpotent. A nil-clean (or clean,
or fine) element is called strongly nil-clean (resp. clean, or fine), if the components
of the sum commute.

We denote by U(R), the set of all units of a ring R, by N(R), the set of all
nilpotents of R and by J(R) the Jacobson radical of R. We solve the quadratic
Diophantine equations using [7].

In [1], the integral matrix A = was presented as an example of

2. A NON-FINE MATRIX WHOSE SQUARE IS FINE

As already mentioned in the introduction, it is easy to provide examples of
matrices that are not nil-clean but their squares are nil-clean. Clearly, the trivial
nil-clean elements (i.e., the idempotent is trivial or the nilpotent is zero) have nil-
clean squares. Hence examples must be nontrivial, and for matrices, these should
(not) have trace equal to 1.

The matrix A = [ 1 2

1 _o ] has trace = —1, so is not nil-clean, but A% =

[ _11 _22 } is idempotent and hence (trivially) nil-clean.
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Before presenting an example of 2 x 2 integral matrix that is not fine, but its
square is fine, we first prove a characterization which generalizes equation 5.10 in
Example 5.9, [2].

b

Theorem 2.1. For a 2 X 2 integral matriz [ LCL d

Then A is fine iff

(i) at least one of the systems cx + by =1, s> + xy = 0 in unknowns x,y, s has
an integer solution, whenever a = d, or

(ii) at least one of the (quadratic) Diophantine equations

c®2? +[(a — d)* + 2bczy + b*y® — 2cla — 2bly + 1 = 0

in unknowns x,y has an integer solution such that —xy is a square, whenever a # d.

] denote | := —det(A) £ 1.

Proof. Since nilpotents in My(Z) have the form { Z ] with s2 + zy = 0,

A is fine iff det([ a b } - * ) = £1. This condition can be written

c d y =S
s(a—d)=—cx—by+1. If a=d we get (i) and if a # d, squaring and eliminating
s, we obtain the quadratic Diophantine equation in the statement. Observe that
—s(a —d) = —cx — by + 1 is also suitable since (—s)? + zy = 0 and so the final step
consists of the choice between s and —s (in order to have s(a—d) = —cx—by+1). O

17

8 0

Diophantine equations (ii) are:
6422 + 113xy + 49y* — 161z — 14y + 1> =0 (¥)

with [ = 56+ 1, and both have no integer solutions, so A is not fine. More precisely

the equations are

6422 + 1132y + 49y> — 880z — 770y + 3025 = 0

Example. Take A = { ], declared not fine in [2]. Indeed, for A, the

and
642% + 1132y + 49y — 912z — 798y + 3249 = 0.
9 | 57

For A¢ = [ 3 56
as (*), but with a different | = —3136 + 1.

For | = —3135 we have 6422 + 113zy + 49y2 + 50160z + 43890y + 9828225 = 0,
with no integer solutions, and

for | = —3137 we have 6422 + 113zy + 49y? + 50192z + 43918y + 9840769 = 0,
equation which has an integer solution: (x,y) = (—2143296,2798929), for which
(as desired) the product —xy is a square, that is s = +2449272. The final step is
to choose s or —s (because of the squaring in the proof of Theorem 2.1).

As s(a—d) # —cx — by + 1 but —s(a — d) = —cx — by + [, we have to choose
s = —2449272.

This gives the fine decomposition

57 7 | | —2449272 2143296 2449329 2143303
8 56 | | 2798929 2449272 —2798921 —2449216 |’

since the LHS is nilpotent (zero trace and zero determinant) and the determinant
of the RHS is = —1 (we used [8], for computation).

, written in /, the Diophantine equations (ii) are the same
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3. RINGS WITH IDEMPOTENT SQUARES

In this section, we describe the rings where the squares of all elements are idem-
potent.

To simplify the discussion, we define a ring as SI if all of its squares are idem-
potent. Formally, a ring R is SI iff R? = Id(R), meaning that for every x € R, we
have z# = z2.

As a trivial example, Boolean rings are SI. An example of SI ring which is not

Boolean is Zia, as Z3, = {0,1,4,9} = Id(Z12). Clearly, Z, Q, R and C are not SI.

The study of rings with the polynomial identity z* = 22 for every = € R, dates
back over 80 years.

Alfred Foster introduced the concept of a Boolean-like ring in his 1946 paper
[4]. He defined elements of a ring that satisfy 2% = 2% as weakly idempotent. A
Boolean-like ring is a commutative ring of characteristic 2 with identity in which (1—
a)a(l—b)b = 0 holds for all elements a, b of the ring. Several well-known properties
of Boolean-like rings are as follows: each element is weakly idempotent (i.e., the
Boolean-like rings form a special class of SI rings); the nilpotent elements form
an ideal; the idempotent elements form a subring; each element can be uniquely
written as the sum of an idempotent and a nilpotent (that is, the ring is uniquely
nil-clean).

The concept of (m,n)-Boolean ring (m > n > 1) was introduced by Maurer and
Szigeti (see [9]) as a ring in which every element satisfies the identity 2™ = z™.
Their paper proves that the structure of (m, n)-Boolean rings depends significantly
on the parity of the difference m — n. If this difference is odd, a reduction theorem
is established. These rings are then (m — n + 1,1)-Boolean and, by Jacobson’s
theorem, commutative. Moreover, such rings are reduced. For cases where the
difference m — n is even, no such reduction theorems exist and rings satisfying
the identity 2"t2 = zm, for some positive integer n, deserve special attention.
Specifically, for n = 2, these rings are what we refer to as SI rings. For example,
the ring of 2 x 2 upper-triangular matrices over a Boolean ring is a (4, 2)-Boolean
ring, which is not commutative. Additionally, Z;s is a (4, 2)-Boolean ring that is
not reduced.

In 1998, Hirano and Tominaga [5] proved that every element of a ring R is a sum
of two commuting idempotents iff R satisfies the identity 2> = x. The following
characterization was subsequently established (actually, (iii) was added in [11]).

Theorem 3.1. The following conditions are equivalent for a ring R.

(i) The ring R has the identity x® = x.

(ii) Every element of R is a sum of two commuting idempotents.

(1ii) Every element of R is a difference of two commuting idempotents.

(iv) R is a direct product R = A x B, where A is zero or a Boolean ring and B
is zero or a subdirect product of Zs’s.

Thus, these are precisely the rings all whose elements are tripotents.

More recently, in [11] (see Theorem 3.10), a structure theorem was proved for

rings which have the identity 2% = z%.

Theorem 3.2. The following conditions are equivalent for a ring R.
(i) every element of R is a sum of an idempotent and a tripotent that commute,
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(ii) R has the identity x% = x*,
(i) R = A x B, where A is zero or AJJ(A) is Boolean with U(A) a group of
exponent 2, and B is zero or a subdirect product of Z3’s.

We now present a characterization of the SI rings, with some elements of the
proof having analogous results in [11]. For the reader’s convenience, we provide a
complete and detailed exposition below.

First, we recall a result that, for rings, dates back to [5], and for elements, to
[10].

Proposition 3.3. An element a in a ring is strongly nil-clean iff a — a? is a

nilpotent.
Secondly, we recall from [3] the following characterization.

Theorem 3.4. A ring R is strongly nil-clean iff J(R) is nil and R/ J(R) is Boolean.
Thirdly, the following result is routine.

Proposition 3.5. A direct product of rings is SI iff all its components are SI. Any
factor ring of a SI ring is SI.

Next, we outline the prerequisites essential for proving the characterization the-
orem.

Lemma 3.6. (i) If R/J(R) is Boolean then

(a) 2 € J(R),

(b) UR) =1+ J(R),

(c) N(R) € J(R).

(ii) If R has the identity x3 = x, then R = Ry X Ry, where Ry is a Boolean ring
(a subdirect product of Zo’s) and Ry is a subdirect product of Zs’s.

(iii) Let A = R/22R and B = R/3R. If223 = 0 in R, then A, B are SI rings
with22=0in A, 3=0in B, and R= A x B.

(iv) If b* = b% and 3 =0 in a ring B, then B is a subdirect product of Z3’s.

(v) If a* = a® and 4 =0 in a ring A, then A/J(A) is Boolean.

Proof. (i) If R/J(R) is Boolean, then 72 —r € J(R) for every r € R. For (a), we
take r = 2. For (b), let u € U(R). Then u?> —u € J(R) and since J(R) is an ideal,
u € 1+ J(R). The converse is well-known (e.g., see Corollary 4.5 in [6]). For (c),
let t € N(R). As 1+¢ € U(R), by (b) it follows that t € J(R).

(i) Let t € N(R). Ast =13 =5 = ... it follows that ¢t = 0, so R is reduced.
By Andrunakievich-Ryabukhin theorem (e.g., see Theorem 12.7 in [6]), R is a
subdirect product of domains. Since the only suitable domains are Zs and Zg, it
follows that R is a subdirect product of Zs’s and Zj’s.

(iii) Suppose 223 = 0. Then 22RN3R =0 and R = 2R + 3R. By the Chinese
Remainder theorem, R = R/2?°R x R/3R.

(iv) Tripotents have idempotent squares, since r* = 7?2 follows directly from
r3 = r. Moreover, if 3 = 0 in a SI ring, the converse also holds. Indeed, replacing
r with 1 + r in the equation 72 = r? yields 1 +2r + 72 = 1 + 4r + 602 + 493 + 4
whence r» = 3. Hence, b* = b? and 3 = 0 in a ring B imply b = 3. Thus B is a
subdirect product of Z3’s.

(v) Suppose a* = a? and 4 = 22 = 0. For any a € A, as a* = a?, we have
(@ —a®)? = a®*(1 — a)? = a®(1 — 2a + a?) = 2(a® — a?), which is nilpotent as 2

4
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is nilpotent. Thus, a — a? is nilpotent and so by Proposition 3.3, a is strongly
nil-clean. Therefore, the ring A is strongly nil clean and by Theorem 3.4, A/J(A)
is Boolean. (]

Now we are ready to characterize the rings all whose squares are idempotent
(i.e., the ST rings).

Theorem 3.7. The following conditions are equivalent for a ring R.

1) z* = 2% for all x in R.

2) R is isomorphic to A, or B, or A x B, where A/J(A) is Boolean and j* =
2§ =0 for all j € J(A), and B is a subdirect product of Z3’s.

Proof. 2) = 1). If A/J(A) is Boolean then 2 € J(A). As j? = 0 for every j € J(A),
J(A) is nil and so A is strongly nil-clean by Theorem 3.4.

As now J(A) € N(A), by Lemma 3.6 (i) (c) it follows that J(A) = N(A), so
every a € Aisasum e+j with e = €2, j2 = 0 and ej = je. Hence, a2 = e+2¢j = e
as 2j = 0. Thus, a* = . If B is a subdirect product of Zs3’s then B has the identity
2% = z, and so has also the identity z* = x2.

1) = 2) 2% = 22 gives 223 = 0 in R, so by Lemma 3.6 (iii), R = A x B where
4=0in A and 3 =0 in B. By Lemma 3.6 (iv), A/J(A) is Boolean and B is a
subdirect product of Z3’s.

If A/J(A) is Boolean, by Lemma 3.6 (i) (a) 2 € J(A) and so by (i) (b), 3 € U(A).
For every a € A we have a* = a? and (a+1)* = (a+1)?, whence 2a? = 2a. Finally,
for every j € J(A), we have (1+7)* = (1+5)? and since (1+7)? is a unit it follows
that (1+ j)? = 1. Hence 0 = 2j + j2 = 352, so j2 = 0, and so 2j = 0. O

4. APPENDIX

Zhou’s discovery is particularly intriguing as it follows that for the matrix A =

[ 39 }, which is (uniquely) nil-clean but not clean in My(Z), the squared

7 -2
P VR A . . . )
matrix A% = 7 _ng | clean but not nil-clean in My (Z), since Tr(A?) =

~113 ¢ {0,1}.

In order to find all the clean decompositions of A, we use the following well-
known characterization.
Theorem 4.1. Let R be a commutative domain and A = ch 2 } a matriz over

R. Then A is nontrivial clean iff at least one of the systems
>+ z+yz=0 (1)
(a—d)x+cy+bz+det(A) —d==+1 (£2)
in unknowns x,y, z is solvable over R. If b # 0 and any of (£2) holds, then (1) is
equivalent to
ba? — (a — d)xy — cy® +bx + (d —det(A) £ )y =0 (£3).

The signs in the equations correspond accordingly.

Recall that the integer solutions of the systems give . _: L _y } , the idem-
potent of the clean decomposition. Since det(A?) = 3249, and b = 9 # 0, the two

pairs of conditions (here a —d =5 and ¢ = —7) are the following.
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(+3): 922 — 5y + Ty? + 92 + (=59 — 3249 + 1)y = 0,
(+2): bx — Ty + 9z + 3249 + 59 = +1

respectively

(-3): 922 — by + Ty* + 9z + (=59 — 3249 — 1)y = 0,
(-2): 52 — Ty 4+ 9z 4 3249 + 59 = —1.

We solve the quadratic Diophantine equations using [7].

(4+3) has the solutions: (0,0),(—1,0) and (300, 301).
Only (300, 301) satisfies (+2), gives z = —300 and so yields the following clean

decomposition:
549 301 301 355 —292
2 — _
A= [ 7 —59] - [ 300 —300] [ 293 241 } where the LHS

matrix is idempotent and the RHS unit matrix has determinant 1.

(-3) has the solutions: (0,0), (—1,0) and another 25:

(115,522), (272,208) [357], (104,520) [21], (-148,259) [84], (-1,472)
(-158,158) [157], (-80,395) [16], (-125,62) [250], (259,182) [370], (-148,108)
(

(174,75)

104,27), (272,459), (190,90), (-86,387), (-141,282) [70]

174,75) [406], (-141,90), (174,522), (252,483) [132], (300,387)

(255,480) [136], (-18,459), (300,300) [301], (-90,27), (207,108)

For each of the above pairs (z,y), instead of checking (-2), equivalently, we can

(z+ Dz

Y
Only the underlined pairs satisfy (-2), with the corresponding z added between
brackets, so we have another 12 clean decompositions:

verify whether the fraction is an integer. If so, this gives —z.

273 208 —327 —199 ] [ 105 520 ~159 511
| 357 —272} [ 350 213 ] { 21 —104} [ 14 45 }
[ 147 259 93 —250 | [ —157 158 103 —149
-84 148 } [ 7 207 ] { _157 158 ] { 150 —217 }
[ 79 395 25 —386 | [ —124 62 0 53
16 80 } [ 9 —139] [ 950 125 ] [ 243 —184}
[ 260 182 | [ —314 —173 | [ —140 282 86 —273
370 —259 | T | 363 200 |"| —70 141 } [ 63 —200 ]
(175 75 ] [ 220 —66 253 483 307 —474
406 —174 | T | 399 115 } [ ~132 —252 } 125 193 |’
256 480 | [ —310 —471°] [ 301 300 —355 —291
~136 —255 | | 129 196 |’ | —301 —300} { 204 241 ]

Here the LHS matrices are idempotents and the RHS matrices are units with
determinant —1.

Summarizing, A% has precisely 13 clean decompositions.
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