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Helicity and the Calugareanu invariantt

By H. K. MorraTT AND RENZO L. Riccaf

Department of Applied Mathematics and Theoretical Physics, Silver Street,
Cambridge CB3 9EW, U K.

The helicity of a localized solenoidal vector field (i.e. the integrated scalar product of
the field and its vector potential) is known to be a conserved quantity under ‘frozen
field’ distortion of the ambient medium. In this paper we present a number of results
concerning the helicity of linked and knotted flux tubes, particularly as regards the
topological interpretation of helicity in terms of the Gauss linking number and its
limiting form (the Calugareanu invariant). The helicity of a single knotted flux tube
is shown to be intimately related to the Cdlugdreanu invariant and a new and direct
derivation of this topological invariant from the invariance of helicity is given.
Helicity is decomposed into writhe and twist contributions, the writhe contribution
involving the Gauss integral (for definition, see equation (4.8)), which admits
interpretation in terms of the sum of signed crossings of the knot, averaged over all
projections. Part of the twist contribution is shown to be associated with the torsion
of the knot and part with what may be described as ‘intrinsic twist’ of the field lines
in the flux tube around the knot (see equations (5.13) and (5.15)). The generic
behaviour associated with the deformation of the knot through a configuration with
points of inflexion (points at which the curvature vanishes) is analysed and the role
of the twist parameter is discussed. The derivation of the Calugareanu invariant from
first principles of fluid mechanics provides a good demonstration of the relevance of
fluid dynamical techniques to topological problems.

1. Introduction

The purpose of this paper is to gather together a number of results concerning the
helicity A of an arbitrary solenoidal vector field B(x) confined to knotted or linked
tube-like structures, particularly as regards its topological interpretation. This
interpretation is straightforward when the field B is confined to two linked oriented
flux tubes carrying fluxes @, and @,: provided each tube is unknotted and the field
lines within each tube are unlinked closed curves circulating once parallel to the tube
axis, the helicity is given by

H = 20D, D,, (1.1)

where 7 (an integer, positive, negative or zero) is the (Gauss) linking number of the
two tubes (Moreau 1961 ; Moffatt 1969). If, however, B is confined to a single knotted
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flux tube with flux @, then the helicity is related to the topology of the knot in a more
subtle way. On purely dimensional grounds, a result of the form

H = hd?, (1.2)

where k is a real number determined partly by the topology of the knot and partly
by the twist of the field B within the knot tube, is to be expected. Since this twist
can be arbitrarily prescribed (equivalent to an arbitrary ‘framing’ of the knot), the
number £ can take any value, positive or negative. Nevertheless, the fact that A is
then invariant under topological deformation of the knot tube and the field within
it, does carry some important information about the knot itself.

This type of problem appears to have been first addressed by Calugareanu (1959,
1961; hereafter referred to as C59 and C61). Calugareanu considered two
neighbouring closed curves €, C* forming the boundaries of a (possibly knotted)
ribbon of small spanwise width e, and showed that the linking number n of ' and C*
can be expressed in the form

n=wW+I+N (1.3)

(this equation is given at the end of p. 613 of C61), where #” and J are respectively
the writhe and the normalized total torsion of €' (for definition of these quantities,
see (4.8) and (5.13) below), and A" is an integer representing the number of rotations
of the unit spanwise vector N on the ribbon relative to the Frenet pair (n,b) (unit
principal normal and unit binormal) in one passage round C. For the moment, we
simply note that 7 and A" are well defined only if C' has no point of inflexion (i.e.
no point at which the curvature vanishes). If C'is continuously deformed through an
inflexional configuration (i.e. through a state that does contain a point of inflexion)
then, as will be shown in §6 below, J is discontinuous by +1, but A is
simultaneously discontinuous by an equal and opposite amount F 1 as a result of the
discontinuous behaviour of the Frenet pair (n, b) in going through the inflexion, so
that the sum J + .4 does vary continuously.

The difficulty associated with inflexion points was recognized by Céalugareanu (see
the long footnote on p. 8 of C59) and was to some extent resolved through
consideration of a particular example of deformation through an inflexional
configuration in C61 (pp. 616-617). Deformations of this type were described as
‘degenerate’ by Pohl (1968, p. 83); in fact, as pointed out by Ricca & Moffatt (1992),
any deformation whose projection on any plane involves a type I Reidemeister move
(see, for example, Kauffman 1991, p. 16) must involve passage through an inflexional
configuration. General deformations (or ‘ambient isotopies’) do therefore typically
involve such passage and consideration of the associated behaviour of J and A~
cannot be avoided.

The concept of the self-linking number SL of a closed curve €' having no points of
vanishing curvature was introduced by Pohl (1968). SL is defined as half the sum of
the indices of the cross-tangents of €' (i.e. the tangents of €' which intersect €' in a
point distinct from the point of tangency). Pohl showed that SL is an integer, and
he proved that

SL=w+7. (1.4)

Under regular isotopy (i.e. continuous deformation of €' not passing through any
inflexional configuration), SL is invariant so that Pohl’s result provides an alternative
proof of the invariance under regular isotopy of # +.7, as proved in C59. Pohl’s
work was extended to higher dimensions by White (1969), who again restricted
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consideration to regular isotopy (which he described (p. 179) as ‘non-degenerate
isotopy’).

A third strand of inquiry was introduced by Fuller (1971) who defined the total
twist number T'w for a ribbon by

Tw=.21_n§C(N’xN)-tds, (1.5)
where N' = dN/ds. It is easy to show (see §5 below) that
Tw=T +.N, (1.6)

(a result nowhere actually stated by Fuller). Fuller then defines the writhe #~
through

W =n—"Tw, (1.7)
where 7 is the linking number of the curves €, C* bounding the ribbon, but nowhere
does he prove that this # is the same as that defined by the Gauss integral (equation
(4.8) below). This identification is however established by Calugareanu’s result (1.3)
in conjunction with (1.6). The definition (1.5) of Tw provides a quantity which
evidently varies continuously under all continuous deformations of the ribbon (i.e.
under ambient isotopy).

Curiously, Fuller (1972), in a paper dedicated to Calugdreanu (on his 70th
anniversary), gives White (1969) the credit for the result n = #” + Tw, although this
result (with Tw = 7 4+ A7) can be found clearly stated, and coupled with a tentative
discussion of the role of inflexion points, in C61. White’s achievement was to place
this result in the wider context of differentiable manifolds of arbitrary dimension;
but the theorem in the form (1.3), or in the equivalent form

n=w+Tw (1.8)

should surely be described as Calugdreanu’s theorem.

We feel it necessary to emphasize this point because in some more recent papers
and text books, Calugareanu is given less than due credit for his achievement. Thus,
for example, Pohl (1980) describes (1.8) as ‘White’s formula’, and only rather
grudgingly states that ‘White’s formula was actually put forward by Georges
Calugareanu (1961), originally, for curves (' having nowhere vanishing curvature.
This proof was very complicated and his formulation confusing...’. We question this
judgement and would simply reiterate that Calugdreanu (1961) explicitly considers
the zero curvature, or inflexional, problem, whereas White (1969) explicitly excludes
such considerations. A general misunderstanding of Calugareanu’s contribution has
gradually led people to refer to equation (1.8) as ‘White’s theorem’, so that even in
text books (e.g. Kauffman 1987, p. 18; 1991, p. 489), references to C59 and C61 have
gradually disappeared.

Our aim in the present paper is to show that all of these results can be obtained
in a straightforward manner starting from the helicity invariant of classical fluid
dynamics. The link between helicity and the Cilugdreanu invariant was conjectured
by Moffatt (1981) and was developed on the basis of the result (1.8) by Berger & Field
(1984). However, a direct derivation of (1.8) from the invariance of helicity has not
previously been given. We provide such a direct proof in §§2-6 of this paper. First,
in §2, basic results concerning the helicity of linked flux tubes are stated. Then in §3,
it is shown that for a knotted flux tube constructed in such a way that the field lines
are closed satellites of C, each pair of field lines having linking number n, the helicity
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is given by # = n®? (the proof was given by Ricca & Moffatt (1992), but is repeated
here for completeness). In §4, the helicity is decomposed into writhe and twist
contributions, the writhe contribution involving the Gauss integral (4.8), which
admits interpretation in terms of the sum of signed crossings of (' averaged over all
projections. In §5, the twist contribution is considered, part of this being associated
with torsion of € and part with what may be described as ‘intrinsic twist’ of the field
lines in the flux tube around C. In §6 the generic behaviour associated with
inflexional configurations is analysed and the role of the twist parameter is discussed
in §7. Finally in §8 we summarize the conclusions. Our hope is that the alternative
proof presented in this paper and the associated discussion may help to demonstrate
the relevance of fluid dynamical techniques to topological problems.

2. The helicity of linked flux tubes

Consider an arbitrary solenoidal vector field B(x) = V x A(x) of compact support
2 in R®. We suppose that n*B = 0 on 02, the boundary of &. The helicity s# of B
is then the pseudo-scalar quantity defined by

Jf=j A-BdV, 2.1)
9

where dV is the volume element d®x. Note immediately that # does not depend on
the gauge of A4; for if 4 is replaced by 4 +Vyr, then # is unchanged since

JB-VlﬁdV=f n-Byrds = 0. (2.2)
2 09

If we adopt the Coulomb gauge for 4 (i.e. V' 4 =0) and impose the further
condition 4 = O(|x|™®) as |x| > o0, then A(x) is given by the Biot—Savart law:
1 [B(x*) X (x —x¥)
4n | —x*3

A(x) = avx, (2.3)

so that, from (2.1),

[B(x) x B(x*)]* (x —x*) "
4n'f drdr*. (2.4)

x —x*°

Consider now the special situation in which B is zero except in two flux filaments
centred on two unknotted oriented closed curves (', €, which may be linked (figure
1). We may suppose that the cross sections of the filaments are small, and that they
carry fluxes 8®,, 6P,. We suppose further that, within each filament, the B-lines are
themselves unlinked curves which close on themselves after just one passage round
the filament, running ‘parallel’ to C;, C, respectively. In these circumstances,
A may be evaluated directly from (2.1): integrating first over the cross section,
BdV 8P, dx,, 8P,dx, on O, (, respectively, so that

H = qulff; A-dx1+8¢2§ A-dx,. (2.5)
o C,
Now § A-dx, =J B-ndS, (2.6)
C'l Dl
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Figure 1. Linked, oriented and unknotted flux tubes with no internal contribution to helicity. In
this case # = 2n®, ®,, where n is the (Gauss) linking number of the two tube axes. (a) n = +1;
B)yn=-2;()n=0.

D,

Figure 2 Figure 3

Figure 2. Two linked oriented flux tubes, each one of which is made up of a large number of
filaments of small cross section. Each pair of filaments (one from each tube) makes a contribution
2n 8P, 8P, to the total helicity, and the total helicity is 2n®, @,.

Figure 3. Knotted flux tube whose tube axis is a trefoil knot.

where D, is the open disc surface spanning ;. Moreover
J’ B-ndS = nod,, (2.7)
Dl

where n is the (Gauss) linking number of {C}, C}, i.e. the algebraic number of times
that C, crosses D, (allowing for direction of crossing). Three examples are shown in
figure 1. Similarly,

45 A-dx, =ndP,, 2.8)
CZ

and hence, from (2.5),
H = 2n0D,dD,. (2.9)

Thus # is determined solely by the two fluxes and the linking number of the two
filaments.

In this derivation, it is essential that each flux tube should by itself have zero
helicity and this is ensured by the above assumption that the B-lines within either
tube on its own are unlinked closed curves. In these circumstances also, the value of
n is given from (2.4) by integrating over the two cross sections: allowing for the fact
that we may have xe €, x*eC, or xe C,, x*e (|, we find again # = 2n 3P, 6@, with

_ 1 (dx x dx*): (x—x*)
n = 4"3‘;013‘;02 L . (2.10)

This is the well-known Gauss formula for =.
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The restriction to small cross sections of the two filaments is easily lifted. In the
situation indicated by figure 2 in which B is confined to two flux tubes, in each one
of which the B-lines are again unlinked closed curves passing once (the long way)
round the torus, we may regard each flux tube as made up of a large number of
filaments of small cross section. Each pair of filaments (one from each tube) make a
contribution 2n 3®, 8@, to the total helicity, so that summing over all such pairs, this

is now given by
' H = 20D, D,. (2.11)

3. The helicity of a single knotted flux tube

If a flux tube is knotted (as for example in figure 3) then its axis €' is necessarily
a twisted closed curve in R?, and we cannot avoid consideration of the twist of B
within the tube itself (which, as will become clear, may change as the flux tube is
continuously deformed). It is useful first to define a standard procedure for the
construction of a flux tube of prescribed helicity around any given knot K. Here we
adopt the procedure of Moffatt (1990).

Suppose we deform the knot continuously to lie entirely in the (z,y) plane except
at crossing points (the knot being viewed in projection) where we must allow
indentations into z> 0 or z <0 (figure 4). The crossings are labelled + or —
according as the overpass must be rotated anticlockwise or clockwise to bring it into
coincidence (complete with arrow) with the underpass. By a finite number of crossing
switches (i.e. reflections of indentations), it is always possible to convert K to the
unknot K, which may then be continuously deformed to the circle C:2*+4* = R
Conversely, the circle Cj may be converted to K by simply reversing these steps (i.e.
deformation to K, followed by appropriate crossing switches).

Suppose then that we start with the circle € and place around this a tubular
neighbourhood of small cross section

Ty:(r—R)*+2 < (eR)?,

where r = (2% +y2):. Within T),, we now define in cylindrical polar coordinates (r, 8, z),
a field
B, = (0,2nr®/V,0), (3.1)

where V = 2n%*R? is the volume of 7}, and @ (as may be easily verified) is the flux of
B, through any section of the tube. The field lines of B, are thus unlinked circles near
r = 2. The helicity of the field is clearly zero.

We may now inject helicity (figure 5) by ‘Dehn surgery’, i.e. by cutting the tube
at a section 6 = const., twisting the free ends through a relative angle 2mh, and
reconnecting. We may suppose that the resulting twist is uniformly distributed
round the tube. If 4 is an integer n, say, then each B-line in the new flux tube is a
closed curve in the form of a helix with axis the circle »r = R, and each pair of B-lines
has linking number n,. The helicity thus generated is given by

®
H, = J 21y pdep = n, D?, (3.2)
0

since we may build up the tube by increments d¢, the increment in helicity at each
stage being 2n, ¢ d¢, from (2.11).
We now propose to distort C, to the curve K, defined above, carrying the tube 7}
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Figure 4. Oriented trefoil knot in a projection plane: at crossing points we must allow indentations
into z > 0 (as at the point (@) in the figure) or z < 0 (as at points (b) and (c) in the figure).

Figure 5. Dehn surgery: ‘cut’ the tube at a section = const., ‘twist’ the free ends through a
relative angle 2nh and then ‘reconnect’.

Figure 6. Each negative (positive) switch is equivalent to the insertion of a small loop of flux @
annihilating flux on one side of the crossing and creating flux on the other side. In the figure the
net increment of helicity is +2@2.

with it. To do this we must specify the isotopy that acts upon the field B,. We picture
the field as embedded in an incompressible fluid medium which moves with velocity
u(x,t) (where V-u = 0) carrying B(x, t) with it according to the ‘frozen field’ equation

OB/dt = V x (u x B). (3.3)

It is well known that the flux of B through any material surface is conserved under
this evolution, and that the helicity of the field is also conserved (Woltjer 1958;
Moffatt 1969). We choose a velocity field u(x,t), te(—t,,t,), that brings C, into
coincidence with K, and that carries T} into a tubular neighbourhood 7} of K. The
flux in this tube is then still @ and its helicity is still n, 2.

We now convert K, to K by appropriate crossing switches. Suppose that N,
positive switches (i.e. switches which create positive crossings) and N_ negative
switches are needed to effect this transformation. Each positive switch is equivalent
to the insertion of a small loop of flux @ annihilating flux on one side of the crossing
and creating flux on the other side (figure 6). The net increment of helicity is 22
Similarly a negative switch gives a net increment of helicity —2®2. Hence the
helicity of the field in the new tubular neighbourhood 7" around X is

H =N, N=n,+2(N,—N.). (3.4)

By this construction, the B-lines within 7' are still clearly closed curves, all
satellites of K, and each pair of B-lines having the same linking number », since the
crossing switches treat all pairs in the same way. Following the argument of Ricca
& Moffatt (1992), » is in fact equal to N; for suppose we divide the flux tube into
m (> 1) sub-tubes, each sub-tube carrying flux @,, = @/m (figure 7). The helicity of a
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Figure 7. Subdivision of the flux tube into m(> 1) sub-tubes.

sub-tube in isolation is J#,, = # /m?, since #,, is quadratically related to the flux @,,.
The total helicity is therefore m#, plus the sum of the interaction helicities due to
linkage of pairs of sub-tubes with linking number =, i.e.

H = mH,, +im(m—1) 2nd?,
=X [m+ (m—1)n®*/m,
whence H = nd?, (3.6)

(3.5)

so that » = NV as asserted.
It is obvious now that the linking number » may be given any desired value by
suitable (retrospective) choice of 7,:

nyg =n—2(N,—N_). (3.7)

In particular, the choice n, = —2(N, —N_) makes n = 0, so that the linking number
of every pair of B-lines in the knotted flux tube is zero. Consideration of the example
of figure 1¢ shows that this does not in general imply that the B-lines are unlinked!

4. The writhe contribution to helicity

Suppose now that the knot K is in the form of a curve C' which has no inflexion
points (i.e. points of zero curvature). Let s be arc length on C from some origin O, and
let the parametric equations of C' be x = X(s), where X{(s) is periodic with period L,
the length of C. The unit tangent vector is # = dX/ds, and the unit principal normal
n and binormal b = ¢ x n then satisfy the Frenet equations

dt/ds =cn, dn/ds=—ct+7b, db/ds=—1n, 4.1)

where ¢(s) is the curvature and 7(s) the torsion of €' at position s. (Note that n, b and
7 would not be defined at an inflexion point where ¢ = 0; problems associated with
deformation through inflexional configuration will be treated in §6 below.)

We now seek to obtain an alternative expression for the helicity in the flux tube
T constructed around K, directly from the formula (2.1) by considering its limiting
behaviour as the cross section of 7' tends to zero. The field B may be decomposed into
the sum of two parts:

B=B,+B,, (4.2)

where B, is the axial field parallel to the tube axis and B,, is the meridional field in
meridian planes perpendicular to the tube axis. When the cross section of the tube
is small, we may adopt a local cylindrical coordinate system (r, 4, z) and suppose that

B, =(0,0,B,(r)), B, = (0,B,r),0). (4.3)
Proc. R. Soc. Lond. A (1992)
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Evidently V:B, =0 and VB, =0, so that we may introduce separate vector

potentials:
B,=VxA4, B,=VxA,, (4.4)

with V- A, = 0 and V' A4, = 0. The lines of force of the B, -field are unlinked circles,
so that

J A, B, dV =0. (4.5)
T
Hence the total field helicity is given by

H =J Aa~BadV+f
T

T

Aa-Bde+f A, -B,dV
T

=J Aa-BadV+2j A, B, dV (4.6)
T T

(using integration by parts and the divergence theorem) the integrals in each case
being over the tube 7'.

Consider first the axial contribution #, = [ A, B,dV. Here we may use the
Biot—Savart expression (2.3) in the limiting form

_ 1 dx* x (x —x*)
A(x) = 4n¢j€0mw|x—x*l3 . (4.7)

Although this expression diverges when x e, its axial component does not diverge,
and the limiting expression

* *
%=_¢2§>§ dXde (x—x )=@2"ﬂ/, (4.8)

x"‘l3

say, is finite. The quantity ¥ is called the writhing number (Fuller 1971) or simply the
writhe of C, and bears a formal similarity to the Gauss integral (2.10). However, it is
important to recognize that #” is not a topological invariant of C; in fact it changes
continuously (in general) under continuous deformation of C.

The physical meaning of the writhe is as follows. Suppose we view the closed curve
C projected on a plane with unit normal v. We then see a number n,(v) of positive
crossings and n_(v) of negative crossings. Then

W= {n,(v)—n_(v)), (4.9)

where the angular brackets denote averaging over all directions v of projection. This
fact is evident from consideration of the diagram of figure 8. The elements dx, dx*
will intersect in projection if and only if n is parallel to + (r+Adx—udx*) where
r=x—x* 0<A<1land 0 <pu<1,ie. onlyif v lies within a solid angle

dw = 2(dx x dx*)-r/4nr® (4.10)

(the factor 2 allowing for the + possibilities above). Thus when we average over all
directions of v, take account of crossing signs and then integrate over all pairs of
elements dx,dx*, we obtain

L dxxdxn
_Ef}gjc ,” = {ny(v) =n_(v)), (4.11)

Proc. R. Soc. Lond. A (1992)
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Figure 8. Contribution to the solid angle by elements dx, dx* on the curve €. The v-direction
indicates a line of apparent intersection of dx, dx*.

(©

Figure 9. Values of the writhe for a number of flattened configurations. (a) # = +1;
by W =—2; (¢c) W =0.

as stated. The geometric interpretation of %" in terms of solid angle was originally
discussed in C59 and later, in terms of spherical area, by Fuller (1978); its
interpretation in terms of average number of apparent crossings was given by Fuller
(1971). The same type of argument leads to Freedman & He’s (1991) expression for
the crossing number

1 [(dx x dx*) - #|
- it A . 4.12
f ¢ XA ()4 ) (4.12)
When the knot K is flattened onto the (x,y) plane except for indentations at the
crossings, the writhe may be easily computed from the formula (4.11), since in this
case n,(v) and n_(v) are independent of the viewing direction v except for a
vanishingly small solid angle of directions nearly parallel to the (x,y) plane. Thus the
writhe in this limiting situation is simply given by
W~(n+—-n_), (4.13)
and is an integer. Values of the writhe for a number of flattened configurations are
shown in figure 9.
We note also that the field A, provides a family of Seifert surfaces for the knot, as
noted by Akhmet’ev & Ruzmaikin (1992). A Seifert surface is a non-self-intersecting

oriented open surface bounded by the knot K. Let the cross section of the knot tube
T tend to zero. Outside 7', V x 4, = 0 so there exists a scalar field (not single-valued)

such that

A,=V?, (4.14)
and, near K, ¥, ~ (2n) '@0 where 6 is the azimuth angle used above. Thus the
Proc. R. Soc. Lond. A (1992)
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surfaces ¥, = const. are all bounded by the knot, and since V¥, is single valued the

knot does not intersect such a surface at any other point. Any surface ¥, = const.
is therefore a Seifert surface.

5. Torsion and twist contributions to helicity

Consider now the second contribution in equation (4.6),

%;=2J‘A,Bde=2J‘AAmBAde, (5.1)
y T

T

arising from the meridional component of the field B,,. Note that from the first of
(4.3) and the first of (4.4), A, = (0,4,(r),0) where

iy
rdr

Let us consider the change in S, under a virtual displacement 3&(s) of the flux tube

due to instantaneous changes dc(s), 87(s) in curvature and torsion of C'. With plane

polar coordinates (r,6) in the cross-sectional plane at any section s of the tube 7'
(figure 10), with ¢ measured from the direction of the principal normal n, let

rA,) = B,(r). (5.2)

ézrér=r(ncos0+bsin0)} 53
é,=—nsinf+bcosb, (5-3)
so that, assuming 6& to be the same for all (r, ),
8¢ = rcosOdn+rsin 6 6b, (5.4)
d d . d
and so d~85§ = (rcos 0)£5n+(rsm 0)£8b. (5.5)

Since it is only the variation of 8¢ with arc length s that contributes to distortion of
the field, we may suppose that at s =s,;, 8&(s;) = 0, i.e. dn(s,) = 8b(s,;) = 0. Then,
from the Frenet relations (4.1), we have

L sn = —or+87b
ds
at s=s,. (5.6)

d
_(E 0b =—0rn
Now under the assumed virtual displacement 3&(s), the axial field B, (and so 4 4(r))

is unchanged, but the meridional field B,, at s = s, is changed by an amount

3B, = (B, V)8 = B.(r) 1.8 )

due to the variation of &8& with arc length (this is the process that in
magnetohydrodynamics is known as ‘generation of toroidal field by differential
rotation’ (see Moffatt 1978). Hence, at s = s,

o8, = 5.0 (3¢

= B,(r) [—sin ﬁn'(—:—;’; 5§)+cos Hb'(% 85)]. (5.8)
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Figure 10. Cross section of the flux tube with plane polar coordinates (r, 8).

Substituting from (5.5) and (5.6), we have
OB, = B,(r)rd7(s) at s=s,. (5.9)

Since the same argument may be used at any section, (5.9) gives the field
perturbation due to the virtual displacement for all s;, and the resulting change in
the S, is therefore

0H, = QJ Ay(r)dBy(r)dV

T
= QJ Ay(r) B,(r)rd7(s)dV. (6.10)
T
If we integrate first over the cross section, using (5.2) and the result
® 1d & \?
JO A(,';a—r(wA(,)-r‘Qnrdr = (r4,)*P = 215%(5&) , (5.11)
then from (5.10) 0H, = >80T, (5.12)
1
where I = on CT(S)dS (5.13)

is the total torsion of C, normalized by the factor (2m)~.

It is easy to show how the total twist number 7w defined by (1.5) is related to the
normalized total torsion. For this, let us take N =ncos@+bsin® as the unit
spanwise vector on the ribbon relative to the Frenet pair (n,b). By the Frenet
equations (4.1), we have

N =dN/ds = —ccos Ot+ (1+dO/ds) é,, (5.14)
where é, = —nsin ©® + b cos @. By (1.5), the total twist number for a ribbon is thus
given by

1 1 de
=—¢ (N'XN): =_— —
o C( x N)-tds 2n£~<7+ ds)ds

and we identify (1/2m) [@], = A4". As was pointed out by Banchoff & White (1975),
the total twist number 7w depends on the choice of the vector field N.

Now, if we consider a time-dependent deformation of C' which does not pass
through any inflexional configuration, then (5.12) may be written

A, /At = BT /dt, (5.16)

Tw

1
T+
T +-—[0]. (5.15)
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or equivalently Hy = PNT +T,), (5.17)

where J is a constant. In fact 7, = A"; however, to establish this point, we have to
consider the behaviour when C does pass through an inflexional configuration.

6. Generic behaviour associated with inflexion points

If a curve x = X(s) has an inflexion point at s = s, then ¢ = d¢/ds = d*°X/ds? = 0
at s = s, so that near s = s, we have the Taylor expansions

1) =t,+i(s—s) i+ ..., (6.1)
X(s) = Xc+(8_'sc) tc+%(8‘80)3t;/+.... (62)

Moreover, since |¢f| = 1, 42
(t// . t)s=gc — a;i t2 . = 07 (63)

so that £ is perpendicular to ¢,. We may therefore choose origin at the inflexion point
(X, =0, s, =0) and axes Oxyz with Ox parallel to ¢, and Oz parallel to ¢,. The form
of the curve near the inflexion point is then given by

X(s) = (s,0,08%), (6.4)
where o = 1|¢7], i.e. it is the plane cubic curve y = 0, z = aa®. By simple rescaling, we
may take a = 1.

We now wish to consider a time-dependent curve x = X(s,t) passing through the
inflexional configuration (6.4) at { = 0, but having 0¢/0s # 0 when ¢ # 0. Since

ot =13()/ds = 0, (6.5)

we may always, by rigid rotation, ensure that at s = 0, ¢ remains parallel to Ox and
t’ remains parallel to Oy. These conditions are satisfied by the time-dependent
twisted cubic

X(s,t) = (s —3%%, 1%, 5°), (6.6)
for which t =0X/0s = (1 — 222, 2ts, 35%) (6.7)
and lt] = 14+0(s*), (6.8)

so that, near s = 0, ¢ is indeed the unit tangent vector. Figure 11 shows this family
of curves and their projections on the three coordinate planes.
From (6.7), to leading order in |¢| and |s],

dt/0s ~ 2(0,1, 3s), (6.9)
so that c(s,t) = |0t/s| ~ 2(12 + 9s%)2 (6.10)
_ 1ot  (0,t,3s)

and n(s,t) = prp ——~(t2+982)%'

(6.11)
Note here that for very small ¢, n rotates through an angle © about the direction
t,=(1,0,0) as s increases from —s, to +s, where s, > |¢|; and that this rotation
is clockwise (right-handed) for t < 0, and anticlockwise (left-handed) for ¢ > 0; thus
the number of rotations of the pair (m,b) about the tangent direction ¢ in
the anticlockwise sense increases by +1 as t increases through zero (at the instant
¢t = 0, this number is undefined).

Now the binormal is given by b = ¢ x n, and the torsion is obtained from (4.1): for

| and 1l
i and |s| small, 7(s, ) ~ 3t/ (£2+9s). (6.12)
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t<0 2 t>0

t=20 F—0 t<0

Figure 11. The twisted cubic (6.6) for —1 < s < 1 and for various values of ¢£. The curve
contains an inflexion point at (i) s = 0 when ¢ = 0. Plane projections are shown below.

As expected, ¢ vanishes only at ¢t = s = 0, and 7 is singular at this inflexion. However,
the singularity is integrable ; the contribution to the normalized total torsion 7 from
any small interval [ —s,, s,] is

1 (% 1 (% 3¢ 1 3s
%J\‘SOT(S,” ds = EJO mds = Earctan (TO), (613)

and, irrespective of the value of s,, this jumps from —3} to +3 as ¢ increases through
zero, i.e. as the curve passes through the inflexional configuration. Hence 7 is
discontinuous as C passes through the inflexion, with discontinuity [ ] = +1. The
reverse passage (or equivalently replacement of ¢ by —¢ in (6.6)) gives a jump
[ ]=—1. This behaviour, recognized by Calugdreanu (1961) for a particular
example, appears to be generic.

7. Role of the twist parameter

We have seen from §§4 and 5 above that the helicity of a twisted flux tube with
axis C can be expressed in the form

H = Dh = OXW +T +T,). (7.1)
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(@) [—

O —

Figure 12. (¢) Writhe, (b) torsion and (c¢) twist contributions of a ribbon to the Calugireanu
invariant. If a coiled ribbon is stretched so that its centre-line becomes straight, then the initial
torsion of the centre-line is converted to the final twist of the ribbon about its centre-line.

&

C

|
©®

Figure 13. Mapping of closed curves (' to their images ¢ on the unit sphere.
Under continuous deformation of the flux tube, J# is conserved and hence
h=W+7 +7, = const. (7.2)

The writhe %~ defined by (4.8) varies continuously as C is deformed continuously ;
however, if (! passes through an inflexional configuration, then .7 jumps by +1.
Hence, as 7 jumps by +1, the term J, must jump by a compensating amount F1,
to maintain the overriding invariance of helicity.

The equal and opposite jumps in (# +.7 ) and J, may be understood with
reference to the simple example illustrated in figure 12. If a coiled ribbon is stretched
so that its centre-line becomes straight (at which stage d¢/ds = 0 on the centre-line!),
then the initial writhe of the centre-line is converted to the final twist of the ribbon
about its centre-line. This example is not generic since it involves the appearance of
a continuum of inflexion points. However, it captures the essence of the nature of the
interchange between (¥ +.7 ) and 7, 7, represents the intrinsic twist of the ribbon
about its centre-line, and this in general jumps by F1 when the centre-line is
deformed through an isolated inflexion point.
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Figure 14. Mapping of the curve C, on a ‘critical’ torus to its image (', on the unit sphere. At the
critical value r, = R/m?, inflexion points appear on C, and they are mapped to the m cusps on the
unit sphere (m = 6 in the case illustrated).

There is a further useful way of picturing this inflexional behaviour (see figure 13);
the set of unit vectors #(s) on a closed curve C trace out a corresponding closed curve
C’ on the unit sphere. For example a circle C' corresponds to an equatorial circle C”;
a helix wound around a fat torus corresponds to an epicyclic curve with a number of
double points, and so on. If ¢ is continuously deformed, then its image (" is
continuously deformed also, and the number of double points of " may change. In
fact this does happen when ' is deformed through an inflexion (at s = s; say) at
which d#/ds = 0. When C has an inflexion, C” has a cusp at the corresponding point
on the sphere.

The case of a helix wound around a torus,

X(8) = [(R+7r,cosme) cos ¢, (R +7r,cosme)sin ¢, rysin me], (7.3)

(where m is an integer) is particularly interesting in this respect (figure 14). If
ro = 0, this is a circle, the principal normal n = n, pointing towards its centre. For
very small values of r,, the direction of n simply oscillates about the position n, as
we move round C. As r, increases further the amplitude of these oscillations increases,
until at a critical value r,(= R/m?) inflexion points appear on C at the points where
cosmep = —1; for r, > r, the principal normal n makes m complete rotations around
the axis of the torus in one passage round C.

If we now place a flux tube of cross-sectional radius ¢ < r, around C, and consider
a time-dependent deformation in which r, = 7,(¢) decreases through the critical value
7., then [T ]| = —m, [J,] = +m in going through the critical point, i.e. torsional
helicity is instantaneously converted to twist helicity, the total helicity being of
course conserved.

The fact that J, jumps by +1 whenever C' passes through a single inflexion
suggests the interpretation that it represents, in some sense, the number of rotations
of the flux tube (or of the associated set of ribbons) about its axis in one passage
around C. This concept is, however, quite elusive, because one must specify carefully
the frame of reference with respect to which the flux tube rotates. There is no
difficulty in this when C' is not in an inflexional configuration, for then we may use
the Frenet frame (¢,n,b). Let C, C* be two neighbouring B-lines in the flux tube (the
boundaries of a ribbon), and, as before, let N(s) be the spanwise vector from C to C*
on this ribbon. Let 4" be the (integer) number of rotations of N(s) about ¢ with
respect to the Frenet frame (as defined in §5). We shall show that in fact 7, = A",

Under arbitrary continuous deformations of the flux tube, N(s,t) is a continuous
vector function of (s,t), and its components with respect to a fixed cartesian frame
of reference are also continuous. However, if ' passes through an inflexion at s,, then,
as we have seen in §6, the number of rotations of the Frenet pair (n, b) about the
tangent vector ¢ in one passage round C' changes by =+1; hence the number 4" of
rotations of N(s,?) relative to the Frenet frame changes by =+ 1.
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Figure 15. A plane projection of a knot may always be arranged so to have no inflexion points.
Here the figure-of-eight knot, with two inflexions, is isotoped to a configuration with no inflexion
points.

The knot K and its associated flux tube may always be deformed to lie nearly in
the (x,y) plane (as in §3) so that the write #  is (in the limit) an integer (n,—n_).
We may also always arrange that this plane projection of K has no inflexion points;
for example the figure-of-eight, containing two prototype inflexions, can be isotoped
(figure 15) to a curve of non-vanishing curvature. In such a ‘standard’ configuration,
the torsion 7(s) is zero everywhere except in the small indentations where it is small;
hence in the plane limit, 7 = 0. In this configuration therefore the helicity is given
by

H =nd* = (n,—n_)P*+I,P?, (7.4)

so that Iy =n—(n,—n_) (7.5)

is an integer. Consideration of the special case of a circle (n, = n_ = 0) shows that
is indeed the number of twists of the ribbon (unambiguous in the plane configuration)
about its centre-line. We thus identify J; and /" in this standard configuration, and
hence in every configuration of the knot.

8. Summary

In this paper we have discussed several properties of the helicity of linked and
knotted flux tubes. Different contributions to helicity have been analysed in terms
of the Gauss linking number (§2) and in terms of the Calugdreanu invariant (1.3). If
the field lines in a single knotted flux tube are twisted closed curves which close on
themselves after one passage around the tube, then the helicity of the flux tube is
given by

%”zf A-BdV = nd? (8.1)
T

where @ is the flux associated with the tube (§3). The integer % is an invariant under
frozen field distortion of the tube, and is identified with the Cdlugireanu invariant
(1.3). We have demonstrated this invariance by starting from the known invariance
of helicity. The helicity has been decomposed into writhe and twist contributions, the
writhe contribution involving the Gauss integral, which admits interpretation in
terms of the sum of signed crossings of the knot averaged over all projections (§4).
Part of the twist contribution is shown to be associated with the torsion of the knot
and part with what may be described as ‘intrinsic twist’ of the field lines in the flux
tube around the knot (§5). The generic behaviour associated with the deformation of
the knot through a configuration with points of inflexion (points at which the
curvature vanishes) has been analysed (§6) and the role of the twist parameter has
been discussed (§7).
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In deriving the relation
H=nD=(W+T +N)D?, (8.2)

where the writhe ¥ is defined by equation (4.8), the normalized total torsion J is
defined by equation (5.13) and A" = 7, is the twist parameter, we have shown that
(generically) (#"+7 ) jumps discontinuously through +1 as ' passes through an
inflexional configuration and that by virtue of the invariance of #, there is then a
compensating jump of F1 in A". This behaviour has been previously recognized by
Ricca & Moffatt (1992) and is associated with the classical type I Reidemeister move
of ambient isotopies.

The Calugareanu invariant is fundamental in relation to many problems that
involve continuous deformation of tube-like structures. Examples in the literature
range from the theory of dynamical systems (Uezu 1990) to the biochemistry of
excitable media (Winfree 1990), from the quantum field theory of string-like objects
(Tze & Nam 1989) to studies of DNA coiling (Tsuru & Wadati 1986), from the theory
of propagation of spinning particles (Jaroszewicz & Kurzepa 1991) to the general
problem of protein folding (De Santis ef al. 1986). Fundamental topological aspects
of these phenomena can be successfully described in terms of the Calugareanu
invariant. In this paper we hope that the direct derivation of the Calugdreanu
invariant from first principles of fluid mechanics together with the discussion of the
generic behaviour associated with inflexional configurations, which are ubiquitous in
many processes of continuous deformation of field structures, provides a good
demonstration of the relevance of fluid dynamical techniques to topological
problems.
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