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Abstract. LetX be a subset of a ring R. The ring R is said to be X-reversible

if for any a, b ∈ X, the condition ab = 0 implies ba = 0. In this paper, we
describe the X-reversible rings in the cases where X is the set of idempotents,
the set of (unit)regular elements, or the set of quasiregular elements.

1. Introduction

Cohn [7] defined a ring R to be reversible if for any a, b ∈ R, the condition ab = 0
implies ba = 0. This concept has a rich history, as discussed in [1] or [14].

Anderson and Camillo [2], studied rings in which zero products commute, refer-
ring to such rings as ZC2, a term equivalent to what is now known as reversible.
Prior to Cohn’s work, these rings were investigated under different names: com-
pletely reflexive by Mason [17] and zero commutative by Habeb [10]. Later, Tugan-
baev [19] explored reversible rings in his monograph on distributive lattices arising
in ring theory, using the term of commutative at zero to describe these.

Clearly, commutative rings and reduced rings are reversible. A ring is called
Abelian if every idempotent is central. It is easy to verify that every reversible
ring is Abelian. Recently, various generalizations of reversible rings have been
studied by many authors. The results obtained have found numerous applications
in noncommutative ring theory.

To set the stage for our discussion, we begin with the following
Definition. Let X be a subset of a ring R. The ring R is called X-reversible if

for any a, b ∈ X, the condition ab = 0 implies ba = 0. Obviously, that commutative
rings are X-reversible for every subset X.

Clearly, the condition refers only to the (pairs of distinct) zero divisors which
(both) belong to X. Since if ab = 0 then (ba)2 = 0, both a and b are two-sided
zero divisors. This also shows that (possibly noncommutative) reduced rings are
X-reversible for every subset X.

In what follows, the term pair of zero divisors will be used exclusively in this
sense.

Note that if a zero divisor a in R belongs to a subset X, i.e., ab = 0 for some
b ∈ R, a zero divisor c ∈ X with (say) ac = 0, may not exist.

To further generalize this definition, a ring R is said to be trivially X-reversible,
if X contains no pairs of zero divisors. This way, any domain D is trivially X-
reversible, for every subset X of D. As an example, the (noncommutative) domain
of the Lipschitz quaternions HZ is trivially X-reversible for every subset X of HZ.

In another direction, every ring is trivially U(R)-reversible.
For a ring R, reg(R) denotes the set of all (von Neumann) regular elements of R,

ureg(R) denotes the set of all the unit-regular elements, Id(R) denotes the set of
1
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all idempotents, N(R) denotes the set of all nilpotent elements and Q(R) denotes
the set of all quasiregular elements. The Jacobson radical of R is denoted by J(R).

For X = N(R), the N(R)-reversible rings were studied in [1], under the term
CNZ (commutation of nilpotents at zero).

In this paper, we describe the X-reversible rings for the cases X = Id(R),
X = reg(R), X = ureg(R) and X = Q(R). It turns out that the Id(R)-reversible
rings, the reg(R)-reversible rings and the ureg(R)-reversible rings are precisely the
Abelian rings. The Q(R)-reversible rings, however, form some special subclass of
nilpotent-reversible rings.

The rings we consider have identity and are nonzero (i.e., 1 ̸= 0). For a ring R,
Z(R) denotes the center of R.

2. General

Lemma 2.1. Let X,Y ⊆ R.
(i) If X ⊆ Y and R is Y -reversible then R is also X-reversible.
(ii) If 0 ∈ X ∩ Y and R is (X + Y )-reversible, then R is X-reversible and

Y -reversible.
(iii) If 1 ∈ X ∩ Y and R is XY -reversible, then R is X-reversible and Y -

reversible.
(iv) If R is trivially X-reversible or trivially Y -reversible, then R may not be

trivially XY -reversible, even if XY = Y X.
(v) If R is reduced or commutative, then it is X-reversible for any subset X of

R.

Proof. (i) Obvious.
(ii) As 0 ∈ X ∩ Y , it follows X,Y ⊆ X + Y and we use (i).
(iii) As 1 ∈ X ∩ Y , it follows X,Y ⊆ XY and we use (i).
(iv) for X = Id(R) and Y = U(R), it is well-known that ureg(R) = XY =

Id(R)U(R) = Y X = U(R)Id(R), but ureg(R) contains pairs of zero divisors (e.g.,
any nontrivial idempotent and the complementary idempotent).

(v) Just note that ab = 0 implies (ba)2 = 0. □
Question. Can something special be proved if X is an ideal ? Example: X =

J(R).

3. New descriptions of Abelian rings

Recall that a ring R is called idempotent reversible if for every e, f ∈ Id(R),
ef = 0 implies fe = 0.

An easy proof shows that this not a new class of rings.

Proposition 3.1. A ring is idempotent reversible iff it is Abelian.

Proof. The condition is obviously sufficient. Conversely, let r ∈ R be arbitrary and
e2 = e ∈ R. The following (zero) product has idempotent factors: e(e + ere) = 0.
By hypothesis, (e + ere)e = 0 and so ere = 0. Similarly, (e + ere)e = 0 gives
e(e+ ere) = 0 and so ere = 0. Hence er = ere = re, as desired. □

We proceed with the following
Definitions. A (non-commutative) ring R is termed regular reversible if it is

reg(R)-reversible and unit-regular reversible if it is ureg(R)-reversible. Since

Id(R) ⊂ ureg(R) ⊂ reg(R) ⊂ R
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it follows that

reversible ⇒ reg.reversible ⇒ ureg.reversible ⇒ idemp.reversible = Abelian.

However, more can be proved.

Theorem 3.2. Abelian rings are regular reversible.

Proof. Let a, b ∈ R for an Abelian ring R and let a ∈ reg(R). There exists x ∈ R
such that a = axa. Suppose ab = 0. Then xab = bxa = 0 (as the idempotent xa is
central). By right multiplication with a, we obtain 0 = bxa2 = baxa = ba (again,
xa is a central idempotent), as desired. □

Remark. As one can observe in the proof above, it suffices for only one of the
elements a, b ∈ R to be regular.

Corollary 3.3. For any ring R, the following properties are equivalent.
(i) R is regular reversible;
(ii) R is unit-regular reversible;
(iii) R is idempotent reversible.
(iv) R is Abelian.

4. Quasiregular reversible

Recall that an element r of a ring R is called quasiregular if 1− r is a unit. We
denote the corresponding set of elements by Q(R).

It is well-known that N(R) ⊆ Q(R). According to Lemma 2.1 (i), it follows that
the Q(R)-reversible rings are nilpotent reversible.

Clearly, any statement about quasiregular elements admits an equivalent formu-
lation in terms of the associated units.

A simple computation gives the following characterizations.

Theorem 4.1. Let R be a ring. The following conditions are equivalent.
(i) R is Q(R)-reversible;
(ii) for every r, s ∈ Q(R), rs = 0 implies sr = 0;
(iii) for every units u, v ∈ U(R), (1− u)(1− v) = 0 implies (1− v)(1− u) = 0;
(iv) for every units u, v of R, 1 + uv = u+ v implies uv = vu.

Corollary 4.2. The rings with commuting units (in particular, commutative rings)
are quasiregular reversible.

Remarks. 1) Note that the quasiregular reversibility requires commutation
only for units with 1 + uv = u+ v.

This equality holds whenever u = v is unipotent with a zerosquare nilpotent
(i.e., u = 1 + t with t2 = 0).

This commutation clearly holds if u = 1 (and v is arbitrary) or v = 1 (and u is
arbitrary). Moreover, it also holds for u = v.

2) The fact that quasiregular reversible rings are nilpotent reversible, follows also
via unipotent elements, from the previous proposition.

4.1. Matrix rings. Matrix rings that are quasiregular reversible are scarce.

Corollary 4.3. Let R be a ring with char(R) ̸= 2 and let n ≥ 2 be a positive
integer. The matrix ring Mn(R) is not quasiregular reversible.
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Proof. We first prove the statement for n = 2. Take U2 =

[
1 0
0 −1

]
and

V2 =

[
1 1
0 1

]
. Then I2 + U2V2 =

[
2 1
0 0

]
= U2 + V2 but, if 2 ̸= 0, U2V2 =[

1 1
0 −1

]
̸=
[

1 −1
0 −1

]
= V2U2. Hence, by Proposition 4.1, M2(R) is not

quasiregular reversible.
For an arbitrary n > 2, we take the n×n invertible matrices obtained by taking

U2 and V2 respectively as 2 × 2 block left-upper corner and fill in with 1’s on the

diagonal and zeros elsewhere. For instance Un =



1 0 0 0 · · · 0
0 −1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1


. This

way, In + UnVn = Un + Vn but UnVn ̸= VnUn and the proof is complete, using
Proposition 4.1. □

Since the previous proof uses only upper triangular matrices, it also proves the
corresponding result.

Corollary 4.4. Let R be a ring with char(R) ̸= 2 and let n ≥ 2 be a positive
integer. The ring Tn(R) is not quasiregular reversible.

Remarks. 1) In the remaining case, char(R) = 2, we show that M2(F2) is
quasiregular reversible.

The ring has 6 units (incl. I2), 3 of order two and 2 of order three. The quasireg-
ular matrices are the 4 nilpotents (incl. 02), 3 of index two, namely, E12, E21,[

1 1
1 1

]
, and the 2 order three units, namely υ =

[
0 1
1 1

]
and ω =

[
1 1
1 0

]
.

Since I2 + υ = ω and I2 + ω = υ, these units are quasiregular.
The only possible zero products xy of 2 quasiregular elements are either if x = 0

or y = 0, or else x = y is zerosquare. In these cases, yx = 0 so the ring is
quasiregular reversible.

However, M2(F2) is not reversible (e.g., E11E21 = 0 but E21E11 = E21 ̸= 0).
2) It follows from Theorem 4.3 that M2(F3) is not quasiregular-reversible. A

computer found 72 pairs of not quasiregular-reversible matrices. A sample follows.

Since U =

[
0 1
1 0

]
and V =

[
0 1
2 1

]
are units (V −1 =

[
1 2
1 0

]
), I2 + U =[

1 1
1 1

]
and I2 + V =

[
1 1
2 2

]
are quasiregular. Then

[
1 1
1 1

] [
1 1
2 2

]
= 02

but

[
1 1
2 2

] [
1 1
1 1

]
=

[
2 2
1 1

]
̸= 02.

These results partly follow from [1].
There it is first proved that Tn(R) is not nilpotent-reversible for n ≥ 3, using

E23E12 = 0 ̸= E13 = E12E23. Then the closure to subrings shows that Mn(R) is
also not nilpotent-reversible for n ≥ 3. This shows that,

Theorem 4.5. For any ring R and n ≥ 3, both Tn(R) and Mn(R) are not
quasiregular-reversible.
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Moreover, it is proved (see Theorem 2.7) that: A ring R is reduced if and only
if T2(R) is nilpotent-reversible.

Example 2.2 M2(F ) is nilpotent-reversible for any field F (not Abelian, and so
not reversible). [By determining the nilpotent 2 × 2 matrices].

As already seen in the previous corollary, the equation I2 + UV = U + V for
matrices, is of interest when studying quasiregular reversibility. For 2× 2 matrices
over commutative rings, a remarkable necessary condition can be found.

Proposition 4.6. Let R be a commutative ring and U, V ∈ M2(R). If I2 + UV =
U + V then (det(U)− 1)(det(V )− 1) = (Tr(U)− 2)(Tr(V )− 2).

Proof. By taking determinants and traces, we find (only) some necessary conditions
for the matrices U , V to satisfy the equation I2 + UV = U + V .

Taking determinants:

det(U + V ) = det(I2 + UV ) = 1 + Tr(UV ) + det(U) det(V ) (1).

Taking traces:

Tr(U) + Tr(V ) = 2 + Tr(UV ) (2).

Next, we recall the special 2 × 2 formula

det(U + V ) + Tr(UV ) = det(U) + det(V ) + Tr(U)Tr(V ) (3).

From (1) we get

det(U + V )− Tr(UV ) = 1 + det(U) det(V ) (4).

Subtracting (4) from (3) we get

2Tr(UV ) = det(U) + det(V ) + Tr(U)Tr(V )− 1− det(U) det(V ),

and so

2(Tr(U)+Tr(V )− 2) = det(U)+det(V )+Tr(U)Tr(V )− 1−det(U) det(V ) (5).

Equivalently,

(det(U)− 1)(det(V )− 1) = (Tr(U)− 2)(Tr(V )− 2) (6).

□

Delimit examples. We mentioned that for classes of rings, the following im-
plications hold: commuting units ⇒ quasiregular reversible ⇒ nilpotent reversible.

A. Quasiregular reversible ring but not commuting units.
Since domains are trivially quasiregular reversible, any noncommutative domain

that has two not commuting units will do. For example, the Lipschitz quaternions
{a+ bi+ cj+ dk ∈ H : a, b, c, d ∈ Z}, form a noncommutative domain (which is not
a division ring) and i, j are two not commuting units.

As for a not trivially quasiregular reversible example, take M2(F2) (see the

previous remark). For instance,

[
0 1
1 0

] [
0 1
1 1

]
=

[
1 1
0 1

]
̸=
[

1 0
1 1

]
=[

0 1
1 1

] [
0 1
1 0

]
are not commuting units.

B. Nilpotent-reversible ring but not quasiregular reversible.
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The matrix ring M2(k) for any field k (is clearly not Abelian but it) is nilpo-
tent reversible (see [1]). According to Corollary 4.3, if char(k) ̸= 2, M2(k) is not
quasiregular reversible.

4.2. Factor rings. In one direction, assume that R/I is quasiregular-reverible for
some ideal I of R . If 1 + uv = u+ v holds for units u, v of R, then 1 + uv = u+ v
implies uv = vu and so only uv − vu ∈ I follows.

Even if we suppose that units lift modulo I (e.g., I is nil), if 1+uv = u+ v holds
in R/I, by the lifting hypothesis, units u, v exist in R so that 1 + uv − u − v ∈ I,
not necessarily = 0. Hence uv = vu may not follow.

Thus, if R/I is quasiregular-reversible, then R may not be quasiregular-reversible.
Example. Start with the ring R = Tn(S) for some ring S and some positive

integer n > 2, which, according to Corollary 4.4, is not quasiregular-reversible.
Take the ideal I which consists of the upper triangular matrices with zero diagonal
entries. Then R/I is commutative so (quasiregular-) reversible.

In the opposite direction, if R is quasiregular-reversible then R/I may not be
quasiregular-reversible.

Examples. 1) Let k be a field and let R := k⟨x, y⟩ be the free associative k-
algebra on two independent, noncommuting generators. Since R is a domain, R is
quasiregular-reversible.

Let I := (xy) be the two-sided ideal generated by xy, and set R := R/I. In R
we have x ̸= 0, y ̸= 0, but xy = 0 and yx ̸= 0.

Define u′ := 1 + x, v′ := 1 + y in R. Both u′ and v′ are units, since their
constant terms are equal to 1. Since xy = 0 in R, a direct computation in R gives
1 + u′v′ = u′ + v′ but u′v′ − v′u′ = −yx ̸= 0, showing that R is not quasiregular-
reversible.

2) In the same domain R, consider I the ideal generated by xy, x2 and y2 (see
[1]). Then R/I is not nilpotent-reversible and so not quasiregular-reversible

4.3. General.

Proposition 4.7. (1) The class of quasiregular-reversible rings is closed under
direct products and (finite) direct sums.

(2) Let e ∈ R be a central idempotent. Then R is Q(R)-reversible iff eR and
(1− e)R are Q(R)-reversible rings.

Proof. (1) Follows at once from Theorem 4.1 since U

(∏
i∈I

Ri

)
=
∏
i∈I

U(Ri) and

similar for (finite) direct sums.
(2) It follows directly from (1) and the Q(R)-reversible closure for subrings, since

R ∼= eR⊕ (1− e)R. □

Proposition 4.8. Let R be a ring. Then R[x] is Q(R)-reversible iff so is R.

Proof. Follows at once from Theorem 4.1 since U(R[x]) = U(R). □

Proposition 4.9. Let R be an algebra with identity over a commutative ring S.
Then R is Q(R)-reversible iff the Dorroh extension R# is Q(R)-reversible.

Proof. Follows at once from Theorem 4.1 since U(R#) ∼= U(R) × U(S) is a ring
isomorphism given by ϕ(r, s) = (r + 1R.s, s). □
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5. The chart

Recall some well-known classes of rings which constitute an environment of our
new classes.

Definitions. A ring is called uni ring (see [4]) if units commute with nilpotents,
is unit-central if U(R) ⊆ Z(R) and nilpotent-central if N(R) ⊆ Z(R), the analogues
of Abelian rings (Id(R) ⊆ Z(R)). The first class was studied in [13] and the second
in [9] (as CN-rings) and (central reduced rings) in [20]. We just mention that there
is a great deal of work on central units for integral group rings (see [12] for a
comprehensive bibliography).

Finally, rings with commuting units and rings with commuting nilpotents (used
in [5] and [13]) may be considered. The first were studied by various authors as
rings with Abelian group of units.

Somehow related to the subject, we recall from [21] or [14], that a ring R is
called central reversible if for any a, b ∈ R, ab = 0 implies ba belongs to the center
of R (i.e., is a central zerosquare nilpotent). It is proved (Lemma 2.13) that central
reversible rings are Abelian.

[Proof. Let e2 = e ∈ R. For any r ∈ R, e(er − ere) = 0 implies (er − ere)e =
er − ere is central. Commuting er − ere by e we have er − ere = 0.

Similarly for any r ∈ R, (re − ere)e = 0 implies re − ere = 0. Therefore R is
abelian.]

The converse fails: R =

{[
a b
c d

]
: a ≡ d(mod 2), b ≡ c ≡ 0(mod 2)

}
.

Since for ab = 0, ba is zerosquare, it follows that nilpotent central rings are
central reversible.

Recall that for every nilpotent element t in a ring with identity R, 1 + t is a
unit which we call unipotent. Via unipotent elements, the following chart is readily
checked (DF stands for Dedekind finite).

commuting − units
↗ ↘

unit− central → nilp− central → uni → commuting − nilp
↓ ↓

central− reversible ↛ nilp− reversible
↓ ↓

Abelian −→ DF
In the chart above, classes not connected by arrows are independent, and none

of the arrows are reversible (examples gathered in [4]).
Based on the structure of this chart, we now turn our attention to the following

two questions.

A. Which are the Abelian rings that are nilpotent reversible ? Are these the
nilpotent-central rings (which - see chart - are Abelian and nilpotent reversible) ?

Negative: consider again R =

{[
a b
c d

]
∈ M2(Z) : a ≡ d(mod 2), b ≡ c ≡ 0(mod 2)

}
.

Since R is a subring of M2(Z), a matrix T of R is nilpotent iff det(T ) = Tr(T ) = 0.
From ad − bc = 0 follows that (not only b and c but also) a, d must be even, so

T = 2

[
a b
c −a

]
with a2+ bc = 0. Hence T is the double of an arbitrary nilpotent

matrix of M2(Z). As M2(Z) is nilpotent reversible (see [1] Lemma 2.4, (4)), so is
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R (closure to subrings (2)). Moreover (see [20], Example 2.18), R is connected, so

(trivially) Abelian, but not nilpotent central :

[
0 2
0 0

]
is nilpotent but not central

(not commuting with

[
1 0
0 3

]
).

The example shows that even connected rings (more special than the Abelian
rings) that are nilpotent reversible, may not be nilpotent central. Thus, the char-
acterization for Abelian and nilpotent reversible rings is not in the above chart and
remains an open question.

We also mention (see [21], Example 2.14) that the ring R above, is not re-

versible nor central reversible:

[
0 0
0 2

] [
2 2
0 0

]
= 02 but

[
2 2
0 0

] [
0 0
0 2

]
=[

0 4
0 0

]
̸= 02 and

[
0 4
0 0

]
is not commuting with

[
1 0
0 3

]
. So the possible

arrow in the chart ”central-reversible → nilpotent reversible”, fails.

6. The quasiregular-reversible class

So far we have introduced two new classes of rings:
[commuting units ⇒ quasiregular reversible ⇒ nilpotent-reversible],

and in the chart we already had
[commuting units ⇒ uni ⇒ commuting nilpotents ⇒ nilpotent-reversible].

The examples bellow show that the intermediate terms are pairwise independent.
1. Quasiregular reversible ⇏ uni.
Indeed, according to Proposition 4.1, for every u ∈ U(R), t ∈ N(R), 1+(1+t)u =

1 + t+ u implies (1 + t)u = u(1 + t), that is, tu = ut whenever tu = t, so not for
every u and t.

Example 1. Superseded by Example 3.

2. Uni ⇏ quasiregular reversible.
Indeed, uni means that units commute only with unipotents, that is, even if

u+ v = 1 + uv, uv = vu may fail, for units that are not unipotents.
[Recall that matrix rings are not uni]. Example 4 is not suitable, since that ring

is also not uni.
Example. Uni ring which is not units commuting (example missing in [4]).
Every reduced ring is trivially uni. Hence, we can take the Lipschitz noncom-

mutative domain HZ. Indeed, U(HZ) = {±1,±i,±j,±k} is the noncommutative
quaternion group.

However, it is also quasiregular reversible: (1 − u)(1− v) = 0 is possible only if
u = 1 or v = 1. In both cases uv = vu and we use Theorem 4.1.

Therefore, we take real quaternions HR which is a division ring, so reduced and
trivially uni. Every a ̸= 1 is quasiregular, as 1− a is a unit. However, it is trivially
X reversible, for any subset X.

Finally take the direct sum R = HR×HR. Here (i, 0) is quasiregular as (1− i, 1)
is a unit in R. Similarly, (0, j). Then (i, 0)(0, j) = 0 but so is also (0, j)(i, 0).

3. Quasiregular reversible ⇏ nilpotent commuting.
Indeed, for two unipotents 1 + t, 1 + x, from Proposition 4.1, we get tx = xt

only if tx = 0.
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Example 3. This supersedes Example 1, as uni ⇒ nilpotent commuting.
We showed that M2(F2) is quasiregular reversible. It is not nilpotent commuting:

E12E21 = E11 ̸= E22 = E21E12.

4. Commuting nilpotents ⇏ quasiregular reversible.
Indeed, commuting nilpotents refers only to units that are unipotents.
Example. Consider the ring T2(R) of the upper triangular 2× 2 matrices over

a reduced ring of characteristic ̸= 2. Then N(T2(R)) =

[
0 R
0 0

]
is a zero-square

ring and so trivially nilpotent commuting. According to Corollary 4.4, it is not
quasiregular reversible.

This example is superseded by Example 2, as uni ⇒ nilpotent commuting.

In Summary, we need only Examples 2 and 3 to show that the newcomers are
independent from the old terms of the chart (i.e., those in [4]).

quasireg − rev
↗ ↘

comm− units nilpotent− rev
↘ ↗

uni → comm− nilpotents
In [4] it mentioned that for UU rings (i.e., rings with only unipotent units),

commuting units, uni and commuting nilpotents are equivalent conditions.
It is easy to check that for UU rings, all six conditions above (including quasireg-

ular reversible and nilpotent reversible) are equivalent conditions.

References

[1] A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, Y. Lee On commutativity of nilpotent

elements at zero. Commun. Korean Math. Soc. 32 (4) (2017), 811-826.
[2] D. D. Anderson, V. Camillo Semigroups and rings whose zero products commute. Comm.

Algebra 27 (6) (1999), 2847-2852.

[3] H. E. Bell Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc. 2

(1970), 363-368.
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