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1 Introduction

In this note we consider only nonzero unital rings and for a ring R, Id(R)
denotes the set of all the idempotents of R.

It is easy to check that if e is an idempotent in a unital ring R then 2e — 1
is an order two unmit, i.e., u? = 1, or equivalently, u=! = u.

Observe that, to simplify the wording, the previous definition does not as-
sume u # 1, so the identity is also an order two unit.

We can call an order two unit u € U(R) an id-unit if there exists an idem-
potent e such that u = 2e — 1. We denote by IU(R) the set of all id-units of a
ring R.

In any unital ring R, {£1} are id-units, corresponding to the trivial idem-
potents e € {1,0}. We shall call these, trivial id-units.

Obviously, if a ring has only the trivial idempotents, it also has only the triv-
ial id-units. Examples include the domains, or the local rings and in particular
the division rings.

Therefore, a natural problem consists in characterizing the nontrivial id-
units in some given Tings.

Clearly this can be done in any ring for which all idempotents are known,
i.e. with the above notations, IU(R) = 2Id(R) — 1.

After some elementary remarks in section 2, in section 3 we characterize the
id-units in Z,,, integers modulo n, for some positive integer n, and, in section 4,
the id-units in 2 x 2 matrix rings over commutative domains.

2 Elementary
Lemma 1 If2 € U(R) then every order two unit is an id-unit.
Proof. If 2 € U(R), the definition is equivalent to e = 27!(1 + u). Indeed, the

RSH is an idempotent (i.e. (271 (14+u))?=2"1(1+u)) ifu? =1). m
Obviously, the trivial id-units belong here.
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Example. Take U = [ 10

] for which U? = I. Over Z, this is not an

id-unit: there is no integral matrix F such that 2E = I, + U = [ b ] .
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However, it is a nontrivial id-unit over Zs: indeed, E = 9 o | 1san

01

idempotent and 2F — I, = U = [ 10

] . This follows also from the previous

lemma, as 215 is a unit in Ma(Z3).

As examples (and the study) below show, there are (nontrivial) id-units also
when 2 is not cancellable.

It is easy to show that the uniqueness of the idempotent, for a given id-unit,
generally fails.

Example: in M(Zz) (where 215 = 05 is not cancellable), we have 6 nontrivial
idempotents:
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the corresponding id-unit is Is.

Of course 2e —1 = 2¢’ — 1 iff 2e = 2¢’, so we have uniqueness if 2 is cancelable
(such a ring is called 2-torsionfree). In particular, 2 € U(R). That is

Lemma 2 If a ring R is 2-torsionfree, the function f : Id(R) — IU(R),
f(z) =2z —1, z € Id(R) is bijective and so |Id(R)| = |IU(R)|.
For an arbitrary ring R, the function f is surjective (by construction) and

s0 |[IU(R)| < |Id(R)).

The converse fails, that is, there are id-units generated by only one idempo-
tent (that is, f is injective) also in rings which are not 2-torsionfree.

Example. Clearly 2 ¢ U(Zy2) and is not cancellable. Then Id(Z3) =
{0,1,4,9} and U(Zy2) = {1,5,7,11}, all are order two units. In this case, 1 and
11 = —1 are the trivial id-units, and we have nontrivial id-units: 7=2-4—1
which is generated only by the idempotent 4. Sois 5 =2-9 — 1.

In what follows, we omit the superscript for classes modulo n, for any n.

Remarks. 1) If f(e) = u then f(1—¢)=2(1—¢€)—1=1—2e = —u, that
is, f(1— ) = —f(e).

2) In what follows, we assume the rings have not characteristics 2. Other-
wise, the only order two id-unit is —1.

3 Id-units in Z,

We first recall some well-known characterizations.



It is well-known that w is a unit in Z, iff ged(u,n) = 1. Suppose n =
pit...py " . The number of units of Z,, is given by Euler’s totient function ¢(n) =
(pr = Dp* (o = Dpp ™t = [U(Z)]-

The number of idempotents of Z,, is 2* = |Id(Z,)| (including the two trivial
idempotents).

Also notice that v is a unit in Z,, iff n—wu is a unit in Z,, (indeed, uv = 1(mod
n) <= (n —u)(n —v) = 1(mod n)).

+u

Remarks. 1) For any unit v in Z,, we can always consider

1+u
2

Indeed, 2 ¢ U(Z,) iff n is even, case in which the units are odd, so

1
exists. If 2 € U(Z,,) then clearly # =271 +u).
14+u

2)
2e¢ — 1, in the definition of id-units.

is ’of interest’ because it is a possible idempotent solution of u =

Now we are ready to prove the following

Proposition 3 Assume ged(u,n) = 1. Then u is an id-unit in Z, iff u®> =
1(mod n).

2
(mod n). Equivalently, (1 4+ u)?> = 2 + 2u and also u?> = 1(mod n).

2
1
Proof. Indeed, by the previous remarks, w is an id-unit iff ( —l—u) =

14+u
2
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Examples. 1) For n = 12, ¢(12) = 4 and U(Z;2) = {1,5,7,11}. Then 1
and 11 = —1 are the trivial id-units, and since 7 = 12 — 5 it suffices to check 5.
Indeed, 52 = 25 = 1(mod 12) so 5 is an id-unit. Hence, so is 7.

2) For n = 60, #(60) = 16 and 23 = 8, that is, at most 8 units are id-units
and the other 8 units are not id-units.

We indeed have 8 id-units: the trivial id-units {1,59} and {11 = 2- 36 —
1,19=2-40—1,29=2-45—1,31=2-16—1,41 =2-21 - 1,49 =2.25 1} .
The other units, namely {7,13,17,23,37,43,47,53} are not id-units.

In this special case, since the last digit of n = 60 is 0, for u? = 1 we need the
last digit of v to be 1 or 9. This way we can immediately isolate the id-units.

4 Id-units in 2 X 2 matrix rings

We proceed with matrix 2 x 2 rings.
As already mentioned, in order to determine the nontrivial id-units, we as-
sume 2 ¢ U(R).

Lemma 4 For an arbitrary unital ring R, 21 is a unit in M2(R) iff 2 € U(R).
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Proof. If 215 is a unit, there exists a matrix ] , such that 2715- { (Cl
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[
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Conversely, if 2 € U(R), 2711, is the inverse of 21,. =

2[a b}_[‘c’ b]~212—IgimplieSQa—a~2—1so2€U(R).

Therefore 215 is not a unit in My(Z) and 215 is a unit in My(Z,,) iff n is odd.
Combining with Lemma 1 gives

Proposition 5 If 2 is a unit in a ring R then the id-units U of Ma(R) are the
matrices with U? = I.

For commutative rings we can prove the following

Proposition 6 For a commutative domain R, a unit U = [ (cl Z with
detU = ad — bc = —1 is a nontrivial id-unit in the matriz ring Ma(R) iff

d=—a,a€2R+1 and b,c € 2R.

Proof. Since Cayley-Hamilton theorem is valid for matrices over commutative
rings, for any idempotent 2 x 2 matrix E, we get (Tr(E)—1)E = det(EF)I.The
nontrivial 2 X 2 idempotents are characterized by trace = 1 and determinant

=0, i.e. are of form F = { v+l _y with (z+1)+yz = 0. The conditions

z

—x c d+1
The condition det U = ad — bc = —1, follows from det(2E — I5) = —(2z +
1)2 —4yz = —1since z(z +1) +yz=0. =m

follow from the equality 2F = U+ 15, i.e. 2 [ xi—l y ] = [ a+l b ]

Corollary 7 A 2 x 2 matrix over a commutative domain R is a nontrivial id-

a b
unit iff it is of form | 1 — a2 fora € 2R+ 1 and b a divisor of 1 — a?.
5 a
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We just revisit the example in the introduction, U = 1 o |over Zs.

Since 2 € U(Z3), we must have U? = I5, so Lemma 1 is verified. As for the
previous corollary, notice that a =0 =2-14+1 € 2Z3+ 1 and b = 1 divides
1=1-0%

Corollary 8 The nontrivial id-units in My (Z) are the matrices U = [ Z ba }

a b
with odd a, even b,c and a® +bc=1 (i.e. detU = —1 and {| 1 — a2

b

a €2Z+1,b€2Z,bla®> —1}).
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Examples.[0 _1}—2{0 0]—12,{_4 _3}—2{_2 _1}_

I> and so on.

Remark. Over commutative rings which are not domains, we still have
(Tr(E) — 1)E = det(E)Iy, but Tr(E) = 1, and then det(E) = 0, are not
necessary conditions.

For an example, take £ = 41, over Zg. Then E? = FE is a nontrivial
idempotent with Tr(E) = 2 and det(F) = 4 (an idempotent in Zg).

Consequently, the characterization of 2 x 2 id-units over commutative rings
requires more detailed analysis.



