Units generated by idempotents

Grigore Călugăreanu

October 18, 2025

1 Introduction

In this note we consider only nonzero unital rings and for a ring R, Id(R) denotes the set of all the idempotents of R.

It is easy to check that if e is an idempotent in a unital ring R then 2e-1 is an order two unit, i.e., $u^2=1$, or equivalently, $u^{-1}=u$.

Observe that, to simplify the wording, the previous definition does not assume $u \neq 1$, so the identity is also an order two unit.

We can call an order two unit $u \in U(R)$ an *id-unit* if there exists an idempotent e such that u = 2e - 1. We denote by IU(R) the set of all id-units of a ring R.

In any unital ring R, $\{\pm 1\}$ are id-units, corresponding to the trivial idempotents $e \in \{1,0\}$. We shall call these, trivial id-units.

Obviously, if a ring has only the trivial idempotents, it also has only the trivial id-units. Examples include the domains, or the local rings and in particular the division rings.

Therefore, a natural problem consists in *characterizing the nontrivial id*units in some given rings.

Clearly this can be done in any ring for which all idempotents are known, i.e. with the above notations, IU(R) = 2Id(R) - 1.

After some elementary remarks in section 2, in section 3 we characterize the id-units in \mathbb{Z}_n , integers modulo n, for some positive integer n, and, in section 4, the id-units in 2×2 matrix rings over commutative domains.

2 Elementary

Lemma 1 If $2 \in U(R)$ then every order two unit is an id-unit.

Proof. If $2 \in U(R)$, the definition is equivalent to $e = 2^{-1}(1+u)$. Indeed, the RSH is an idempotent (i.e. $(2^{-1}(1+u))^2 = 2^{-1}(1+u)$) if $u^2 = 1$). \blacksquare Obviously, the trivial id-units belong here.

Example. Take $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ for which $U^2 = I_2$. Over \mathbb{Z} , this is not an id-unit: there is no integral matrix E such that $2E = I_2 + U = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. However, it is a nontrivial id-unit over \mathbb{Z}_3 : indeed, $E = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is an idempotent and $2E - I_2 = U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. This follows also from the previous lemma, as $2I_2$ is a unit in $\mathbb{M}_2(\mathbb{Z}_3)$.

As examples (and the study) below show, there are (nontrivial) id-units also when 2 is not cancellable.

It is easy to show that the *uniqueness* of the idempotent, for a given id-unit, generally fails.

Example: in $\mathbb{M}(\mathbb{Z}_2)$ (where $2I_2 = 0_2$ is not cancellable), we have 6 nontrivial idempotents:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}.$$
 For all 6, the corresponding id-unit is I_2 .

Of course 2e-1=2e'-1 iff 2e=2e', so we have uniqueness if 2 is cancelable (such a ring is called 2-torsionfree). In particular, $2 \in U(R)$. That is

Lemma 2 If a ring R is 2-torsionfree, the function $f: Id(R) \longrightarrow IU(R)$, f(x) = 2x - 1, $x \in Id(R)$ is bijective and so |Id(R)| = |IU(R)|.

For an arbitrary ring R, the function f is surjective (by construction) and so $|IU(R)| \leq |Id(R)|$.

The converse fails, that is, there are id-units $generated\ by\ only\ one$ idempotent (that is, f is injective) also in rings which are not 2-torsionfree.

Example. Clearly $\overline{2} \notin U(\mathbb{Z}_{12})$ and is not cancellable. Then $Id(\mathbb{Z}_{12}) = \{\overline{0}, \overline{1}, \overline{4}, \overline{9}\}$ and $U(\mathbb{Z}_{12}) = \{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$, all are order two units. In this case, $\overline{1}$ and $\overline{11} = -\overline{1}$ are the trivial id-units, and we have nontrivial id-units: $\overline{7} = 2 \cdot \overline{4} - \overline{1}$ which is generated only by the idempotent $\overline{4}$. So is $\overline{5} = 2 \cdot \overline{9} - \overline{1}$.

In what follows, we omit the superscript for classes modulo n, for any n.

Remarks. 1) If f(e) = u then f(1 - e) = 2(1 - e) - 1 = 1 - 2e = -u, that is, f(1 - e) = -f(e).

2) In what follows, we assume the rings have not characteristics 2. Otherwise, the only order two id-unit is -1.

3 Id-units in \mathbb{Z}_n

We first recall some well-known characterizations.

It is well-known that u is a unit in \mathbb{Z}_n iff $\gcd(u,n)=1$. Suppose $n=p_1^{\alpha_1}...p_k^{\alpha_k}$. The number of units of \mathbb{Z}_n is given by Euler's totient function $\phi(n)=(p_1-1)p_1^{\alpha_1-1}...(p_k-1)p_k^{\alpha_k-1}=|U(\mathbb{Z}_n)|$.

The number of idempotents of \mathbb{Z}_n is $2^k = |Id(\mathbb{Z}_n)|$ (including the two trivial idempotents).

Also notice that u is a unit in \mathbb{Z}_n iff n-u is a unit in \mathbb{Z}_n (indeed, $uv \equiv 1 \pmod{n} \iff (n-u)(n-v) \equiv 1 \pmod{n}$).

Remarks. 1) For any unit u in \mathbb{Z}_n , we can always consider $\frac{1+u}{2}$.

Indeed, $2 \notin U(\mathbb{Z}_n)$ iff n is even, case in which the units are odd, so $\frac{1+u}{2}$ exists. If $2 \in U(\mathbb{Z}_n)$ then clearly $\frac{1+u}{2} = 2^{-1}(1+u)$.

2) $\frac{1+u}{2}$ is 'of interest' because it is a possible idempotent solution of u=2e-1, in the definition of id-units.

Now we are ready to prove the following

Proposition 3 Assume gcd(u, n) = 1. Then u is an id-unit in \mathbb{Z}_n iff $u^2 \equiv 1 \pmod{n}$.

Proof. Indeed, by the previous remarks, u is an id-unit iff $\left(\frac{1+u}{2}\right)^2 \equiv \frac{1+u}{2} \pmod{n}$. Equivalently, $(1+u)^2 \equiv 2+2u$ and also $u^2 \equiv 1 \pmod{n}$.

Examples. 1) For n = 12, $\phi(12) = 4$ and $U(\mathbb{Z}_{12}) = \{1, 5, 7, 11\}$. Then 1 and 11 = -1 are the trivial id-units, and since 7 = 12 - 5 it suffices to check 5. Indeed, $5^2 = 25 \equiv 1 \pmod{12}$ so 5 is an id-unit. Hence, so is 7.

2) For $n=60,\,\phi(60)=16$ and $2^3=8,$ that is, at most 8 units are id-units and the other 8 units are not id-units.

We indeed have 8 id-units: the trivial id-units $\{1,59\}$ and $\{11=2\cdot 36-1,19=2\cdot 40-1,29=2\cdot 45-1,31=2\cdot 16-1,41=2\cdot 21-1,49=2\cdot 25-1\}$. The other units, namely $\{7,13,17,23,37,43,47,53\}$ are not id-units.

In this special case, since the last digit of n = 60 is 0, for $u^2 \equiv 1$ we need the last digit of u to be 1 or 9. This way we can immediately isolate the id-units.

4 Id-units in 2×2 matrix rings

We proceed with matrix 2×2 rings.

As already mentioned, in order to determine the nontrivial id-units, we assume $2 \notin U(R)$.

Lemma 4 For an arbitrary unital ring R, $2I_2$ is a unit in $\mathbb{M}_2(R)$ iff $2 \in U(R)$.

Proof. If $2I_2$ is a unit, there exists a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, such that $2I_2 \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 2\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot 2I_2 = I_2$ implies $2a = a \cdot 2 = 1$ so $2 \in U(R)$.

Conversely, if $2 \in U(R)$, $2^{-1}I_2$ is the inverse of $2I_2$.

Therefore $2I_2$ is not a unit in $\mathbb{M}_2(\mathbb{Z})$ and $2I_2$ is a unit in $\mathbb{M}_2(\mathbb{Z}_n)$ iff n is odd. Combining with Lemma 1 gives

Proposition 5 If 2 is a unit in a ring R then the id-units U of $M_2(R)$ are the matrices with $U^2 = I_2$.

For commutative rings we can prove the following

Proposition 6 For a commutative domain R, a unit $U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $\det U = ad - bc = -1$ is a nontrivial id-unit in the matrix ring $\mathbb{M}_2(R)$ iff d = -a, $a \in 2R + 1$ and $b, c \in 2R$.

Proof. Since Cayley-Hamilton theorem is valid for matrices over commutative rings, for any idempotent 2×2 matrix E, we get $(Tr(E)-1)E = \det(E)I_2$. The nontrivial 2×2 idempotents are characterized by trace = 1 and determinant = 0, i.e. are of form $E = \begin{bmatrix} x+1 & y \\ z & -x \end{bmatrix}$ with x(x+1)+yz = 0. The conditions follow from the equality $2E = U + I_2$, i.e. $2\begin{bmatrix} x+1 & y \\ z & -x \end{bmatrix} = \begin{bmatrix} a+1 & b \\ c & d+1 \end{bmatrix}$. The condition $\det U = ad - bc = -1$, follows from $\det(2E - I_2) = -(2x + 1)^2 - 4yz = -1$ since x(x+1) + yz = 0.

 $\begin{array}{c} \textbf{Corollary 7} \ A \ 2 \times 2 \ \textit{matrix over a commutative domain R is a nontrivial idual tiff it is of form } \left[\begin{array}{cc} a & b \\ \frac{1-a^2}{b} & -a \end{array} \right] \textit{for } a \in 2R+1 \textit{ and } b \textit{ a divisor of } 1-a^2. \end{array}$

We just revisit the example in the introduction, $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ over \mathbb{Z}_3 .

Since $2 \in U(\mathbb{Z}_3)$, we must have $U^2 = I_2$, so Lemma 1 is verified. As for the previous corollary, notice that $a = 0 = 2 \cdot 1 + 1 \in 2\mathbb{Z}_3 + 1$ and b = 1 divides $1 = 1 - 0^2$.

Corollary 8 The nontrivial id-units in $\mathcal{M}_2(\mathbb{Z})$ are the matrices $U = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ with odd a, even b, c and $a^2 + bc = 1$ (i.e. $\det U = -1$ and $\left\{ \begin{bmatrix} a & b \\ \frac{1-a^2}{b} & -a \end{bmatrix} : a \in 2\mathbb{Z} + 1, b \in 2\mathbb{Z}, b|a^2 - 1 \right\}$).

Examples.
$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} - I_2, \begin{bmatrix} 3 & 2 \\ -4 & -3 \end{bmatrix} = 2 \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} - I_2$$
 and so on.

Remark. Over commutative rings which are not domains, we still have $(Tr(E) - 1)E = \det(E)I_2$, but Tr(E) = 1, and then $\det(E) = 0$, are not necessary conditions.

For an example, take $E=4I_2$ over \mathbb{Z}_6 . Then $E^2=E$ is a nontrivial idempotent with Tr(E)=2 and det(E)=4 (an idempotent in \mathbb{Z}_6).

Consequently, the characterization of 2×2 id-units over commutative rings requires more detailed analysis.