

IDEMPOTENT 2×2 MATRICES OVER COMMUTATIVE RINGS

GRIGORE CĂLUGĂREANU

ABSTRACT. The purpose of this note is twofold. First, we establish necessary conditions for 2×2 matrices over arbitrary commutative rings to be idempotent, expressed in terms of their trace and determinant. Second, we demonstrate that, within the same framework, the rank conditions $\text{rk}(E) = \text{Tr}(E)$ and $\text{rk}(E) + \text{rk}(I_2 - E) = 2$ are neither necessary nor sufficient for a 2×2 matrix to be idempotent. Finally, an example shows that even if all (five) conditions hold, the matrix may not be idempotent.

1. INTRODUCTION

Much is known about 2×2 idempotent matrices over commutative domains. Apart from the trivial idempotents $0_2, I_2$, every nontrivial idempotent matrix has trace = 1 and zero determinant. Consequently, these are of form $E = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ with $a(1-a) = bc$.

As such, over PIDs, it is easy to check that the rank $\text{rk}(E) = \text{Tr}(E)$ and $\text{rk}(E) + \text{rk}(I_2 - E) = 2$.

Moreover, also over commutative domains, a 3×3 matrix E over a GCD domain R is nontrivial idempotent if and only if $\det(E) = 0$, $\text{rk}(E) = \text{Tr}(E) = 1 + \frac{1}{2}(\text{Tr}H^2(E) - \text{Tr}(E^2))$ and $\text{rk}(E) + \text{rk}(I_3 - E) = 3$ (see [2]).

Over commutative rings, without any additional hypothesis, the situation is different.

The goal of this note is twofold: to find a maximal set of necessary conditions in terms of trace and determinant of the 2×2 nontrivial idempotent matrices over arbitrary commutative rings and to show, in the same context, that the above mentioned rank conditions are neither necessary nor sufficient for a 2×2 matrix to be idempotent.

Finally, an example shows that even if we gather all these conditions, these are not sufficient for a 2×2 matrix to be idempotent.

It might seem that our motivation is debatable: after all, checking if a matrix is idempotent is simple, while computing its trace and determinant to verify certain relations is more tedious. Our purpose here, therefore, is mainly theoretical.

2. THE RANK OF 2×2 MATRICES OVER COMMUTATIVE RINGS

We first recall (from [1]) the notion of rank, in particular, for 2×2 matrices, and present some examples.

Let $A \in \mathbb{M}_2(R)$ over a nonzero commutative ring R . For each $n \in \{1, 2\}$, $I_n(A)$ denotes the ideal generated by all $n \times n$ minors of A . Then

$$(0) \subseteq I_2(A) \subseteq I_1(A) \subseteq R.$$

Here $I_2(A) = \det(A)R$ and $I_1(A) = aR + bR + cR + (t - a)R$, denoting the trace by $t := \text{Tr}(A)$ and $A = \begin{bmatrix} a & b \\ c & t - a \end{bmatrix}$.

Accordingly

$$(0) = \text{Ann}_R(R) \subseteq \text{Ann}_R(I_1(A)) \subseteq \text{Ann}_R(I_2(A)) \subseteq \text{Ann}_R((0)) = R.$$

Then we recall the

Definition. The rank of A , hereafter denoted $\text{rk}(A)$, is $\{\max(s) : \text{Ann}_R(I_s(A)) = (0)\}$.

From [1] (see **4.11 (d) + (e)** and Exercise 5) and some simple consequences we summarize

Lemma 2.1. (i) $\text{rk}(A) = 0$ iff $\text{Ann}_R(I_1(A)) \neq (0)$ [that is, 0 is the maximum integer t above] iff there exists a nonzero $r \in R$ such that $ra = rb = rc = r(t - a) = 0$.

(ii) $\text{rk}(A) = 1$ iff $\text{Ann}_R(I_2(A)) \neq (0)$ [that is, 1 is the maximum integer t above] iff there exists a nonzero $r \in R$ such that $r \det(A) = 0$.

(iii) $\text{rk}(A) = 2$ iff $\text{Ann}_R(I_2(A)) = (0)$ [that is, 2 is the maximum integer t above] iff $\det(A)$ is cancellable.

(iv) $\text{rk}(A) < 2$ iff $\det(A)$ is a zero divisor (incl. $\det(A) = 0$) [actually, if $\det(A) = 0$ then $\text{Ann}_R(I_2(A)) = R$].

(v) If $\det(A) \in U(R)$ then $\text{rk}(A) = 2$.

(vi) If A has at least an unit entry then $I_1(A) = R$ and so $\text{Ann}_R(I_1(A)) = (0)$. Hence $\text{rk}(A) > 0$ [if (say) $a \in U(R)$ from $ra = 0$ we get $r = 0$].

(vii) If A has an unit entry and zero divisor determinant then $\text{rk}(A) = 1$.

Remark. The converse in (v), fails (unless cancellable = unit, if the ring is finite).

An example for (vii) is $A = E_{ij}$ for any i, j . Hence the idempotents E_{11}, E_{22} and the nilpotents E_{12}, E_{21} , all have rank 1.

Examples. 1) $A = 2I_2$ over \mathbb{Z}_4 is a nonzero matrix of rank zero.

2) Over \mathbb{Z}_6 , [1].

(a) $A = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$. All entries are zero divisors. Here $I_2(A) = 4R$, $I_1(A) = 2R$ and $\text{Ann}(4R) = \text{Ann}(2R) = 3R \neq (0)$. Thus $\text{rk}(A) = 0$.

Alternatively, there exist $2 \neq 0$ with all products by the entries equal zero.

(b) $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. All entries are zero divisors. Since $\det(A) = 0$, **4.11 (e)** implies $\text{rk}(A) < 2$. Since $I_1(A) = 2R + 3R = R$, $\text{Ann}(I_1(A)) = (0)$. Therefore $\text{rk}(A) = 1$.

(c) $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$. Then $\det(A) = 5 \in U(R)$. Therefore $\text{rk}(A) = 2$ by **4.11 (d)**.

3) $A = \begin{bmatrix} 1 & 0 \\ 3 & 3 \end{bmatrix} \in \mathbb{M}_2(\mathbb{Z}_6)$, $t = 4$, $d = 3$, but $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \neq A$.

Regarding the rank, since $\det(A) = 3$ is a zero divisor, $\text{rk}(A) < 2$. Next $I_1(A) = R + 3R = R$ and $I_2(A) = 3R$. Then $\text{Ann}(I_1(A)) = (0)$ and so $\text{rk}(A) = 1 \neq \text{Tr}(A)$.

3. ABOUT IDEMPOTENT 2×2 MATRICES

First observe that according to Cayley-Hamilton's theorem,

$$(Tr(E) - 1)E = \det(E)I_2 \quad (*)$$

is equivalent to $E^2 = E$.

Hence if $E^2 = E$ and $t = Tr(E) = 1$ then $d := \det(E) = 0$ and so $E = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ with $a(1-a) = bc$, the already mentioned form of idempotent matrices over commutative domains.

Note from the start that $\det^2(E) = \det(E)$, so the *determinant must be an idempotent of R* i.e.,

$$d^2 = d.$$

Moreover, taking traces from $(*)$ (or taking $Tr(E^2) = Tr(E)$ with a bit of computation), we get

$$t(t-1) = 2d.$$

From $(Tr(E) - 1)E = \det(E)I_2$, if $E = [e_{ij}]$, we get

$$(5) \quad (t-1)e_{11} = e_{11}e_{22} - e_{12}e_{21} = (t-1)e_{22} \text{ and}$$

$$(6) \quad (t-1)e_{12} = 0 = (t-1)e_{21}.$$

From (5) we obtain

$$(7) \quad (e_{11} - 1)e_{11} = -e_{12}e_{21} = (e_{22} - 1)e_{22}$$

and from (6) we obtain also

$$(8) \quad (t-1)(e_{12} \pm e_{21}) = 0.$$

Hence $e_{12}, e_{21}, e_{11} \pm e_{22} \in Ann(t-1)$, all are zero divisors, if $t \neq 1$.

Multiplying $(*)$ by E , we get $(t-1)E = dE$, or equivalently, $(t-d-1)E = 0_2$. Hence

$$(9) \quad (t-d-1)e_{ij} = 0, \text{ for all } i, j \in \{1, 2\}.$$

Here all entries of E are in $Ann(t-d-1)$, so, if $t-d \neq 1$, all entries are zero divisors (incl. e_{11}, e_{22}).

By taking determinants, we also get

$$(10) \quad (Tr(E) - \det(E) - 1)\det(E) = 0, \text{ or}$$

$$(t-1)d = d^2 = d$$

which implies

$$(t-2)d = 0.$$

Equivalent conditions (but not in terms of trace, determinant and rank) to $E^2 = E$, are obviously

$$(1) \quad e_{11}^2 + e_{12}e_{21} = e_{11},$$

$$(2) \quad e_{12}t = e_{12},$$

$$(3) \quad e_{21}t = e_{21},$$

$$(4) \quad e_{12}e_{21} + e_{22}^2 = e_{22}.$$

The conditions (1)-(4) are necessary and sufficient, the other conditions (5)-(10) are only necessary for a 2×2 matrix E to be idempotent..

Summarizing, denoting $d = \det(E)$, $t = Tr(E)$, for an idempotent 2×2 matrix E , and assuming $t \neq 1$ and $t-d \neq 1$, all entries are zero divisors and the following

equalities are necessary:

$$t(t-1) = 2d, (t-2)d = 0, d^2 = d.$$

4. THE $t = d + 1$ CASE

For 2×2 matrices over commutative rings we can prove the following equivalence.

Proposition 4.1. *Let R be a commutative ring and let $A \in \mathbb{M}_2(R)$. Then $\text{Tr}(A) = \det(A) + 1$ iff $\det(A - I_2) = 0$.*

Proof. Note that for 2×2 matrices

$$\det(A - I_2) = \det(A) - \text{Tr}(A) + 1.$$

Therefore the statement is straightforward. \square

There is an analogous result for 3×3 matrices.

Proposition 4.2. *Let R be a commutative ring and let $A \in \mathbb{M}_3(R)$. Then $\frac{1}{2}(\text{Tr}^2(A) - \text{Tr}(A^2)) - \text{Tr}(A) = \det(A) - 1$ iff $\det(A - I_3) = 0$.*

Proof. Indeed, for 3×3 matrices

$$\det(A - I_3) = \det(A) - \frac{1}{2}(\text{Tr}^2(A) - \text{Tr}(A^2)) + \text{Tr}(A) - 1$$

holds. \square

For the general $n \times n$ case, one has to use the coefficients in the Cayley-Hamilton's theorem:

$$A^n + c_{n-1}A^{n-1} + \cdots + c_1A + (-1)^nI_n = 0_n.$$

The coefficients c_i are given by the elementary symmetric polynomials of the eigenvalues of A . Using Newton identities, the elementary symmetric polynomials can in turn be expressed in terms of power sum symmetric polynomials of the eigenvalues: $s_k = \sum_{i=1}^n \lambda_i^k = \text{Tr}(A^k)$. Thus, we can express c_i in terms of the trace of powers of A .

An explicit formula follows

$$c_{n-m} = \frac{(-1)^m}{m!} \det \begin{bmatrix} \text{Tr}(A) & m-1 & 0 & \cdots \\ \text{Tr}(A^2) & \text{Tr}(A) & m-2 & \cdots \\ \vdots & \vdots & & \vdots \\ \text{Tr}(A^{m-1}) & \text{Tr}(A^{m-2}) & \cdots & \cdots & 1 \\ \text{Tr}(A^m) & \text{Tr}(A^{m-1}) & \cdots & \cdots & \text{Tr}(A) \end{bmatrix}.$$

5. THE EQUALITY $\text{rk}(A) = \text{Tr}(A)$

Examples below show that the condition $\text{rk}(A) = \text{Tr}(A)$ is neither necessary nor sufficient for the matrix A to be idempotent.

The condition is not necessary.

Example. Take $E = 4I_2$ over \mathbb{Z}_6 . Then $E^2 = E$, $\text{Tr}(E) = 2$ and since $3E = 0_2$, $\text{rk}(E) = 0 \neq 2 = \text{Tr}(E)$.

The condition is not sufficient, even if the necessary conditions $t(t-1) = 2d$, $(t-2)d = 0$, $d^2 = d$ hold.

First note that $rk(A) = Tr(A)$ holds iff

(0) $rk(A) = Tr(A) = 0$. Since $t = 0$ it follows $2d = 0$. As $rk(A) = 0$, there exists a nonzero $r \in R$ such that $a = rb = rc = r(t - a) = 0$.

Take $A = 2E_{12}$ over any commutative ring of characteristics 4. Then $\det(A) = Tr(A) = 0$ and $2A = 0$ for $2 \neq 0$, so $rk(A) = 0$. The matrix is zerosquare, not idempotent.

(1) $rk(A) = Tr(A) = 1$. If $t = 1$ then from $(t - 2)d = 0$ it follows $d = 0$ so $A = \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$ with $a(1-a) = bc$, is indeed idempotent (and as $d = 0$, $rk(A) = 1$).

(2) $rk(A) = Tr(A) = 2$. If $t = 2 = rk(A)$ then $\det(A) \neq 0$ is cancellable. From $d^2 = d$ it follows $d = 1$, so A is a unit.

However, A may not be (the only idempotent unit) I_2 .

Indeed, from Cayley-Hamilton's theorem, we have $A^2 - 2A + I_2 = (A - I_2)^2 = 0_2$. Hence $A = I_2 + T$ with zerosquare T . So (unipotent) not necessarily idempotent.

Example. Over any ring, take $A = I_2 + E_{12} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \neq I_2 + 2E_{12} = A^2$. All three equalities, incl. $Tr(A) = rk(A) = 2$, hold.

Therefore, over arbitrary commutative rings the equality $rk(A) = Tr(A)$ is neither necessary nor sufficient for the matrix A to be idempotent

6. THE EQUALITY $rk(A) + rk(I_2 - A) = 2$

Examples below show that the condition $rk(A) = Tr(A)$ is neither necessary nor sufficient for the matrix A to be idempotent.

The condition is not necessary.

Example. Take $E = 4I_2$ over \mathbb{Z}_6 . Then $E^2 = E$, $Tr(E) = 2$ and since $3E = 0_2$, $rk(E) = 0 \neq 2 = Tr(E)$.

$I_2 - E = 3I_2$ is also (the complementary) idempotent and $2E = 0_2$ shows that $rk(I_2 - E) = 0$. The sum of both ranks is $= 0 \neq 2$.

The condition is not sufficient.

Due to the fact that the complementary of the complementary is the initial idempotent, it suffices to check (even *together with* the three necessary conditions on t and d) that

(i) $rk(A) = 0$, $rk(I_2 - A) = 2$ may not imply $A^2 = A$,

Example. Take $A = 2E_{12}$ over \mathbb{Z}_6 . Then $rk(A) = 0$, $rk(I_2 - A) = 2$ (a unit), $Tr(A) = \det(A) = 0$, $t(t - 1) = 2d$, $(t - 2)d = 0$, $d^2 = d$ all hold, but A is not idempotent.

and

(ii) $rk(A) = 1 = rk(I_2 - A)$ may not imply $A^2 = A$.

Example. $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ was an example in Section 2: $rk(A) = 1$. Next, $I_2 - A = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}$ has a unit entry and zero divisor determinant. By Lemma 2.1, $rk(I_2 - A) = 1$.

As $d = 0$, the conditions $d^2 = d$, $(t - 2)d = 0$ hold. Unfortunately, $t(t - 1) = 2d$ fails. Clearly, A is not idempotent (this example is close but not complete).

1) Take $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$ over \mathbb{Z}_6 . Here $t = 0$, $d = 3$ so $d^2 = d$, $(t-2)d = 0$ and $t(t-1) = 2d$, hold. By Lemma 2.1, $rk(A) = 1$. Further, $I_2 - A = \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix}$ has a unit entry and $\det(I_2 - A) = 4$, a zero divisor. Again, by Lemma 2.1, $rk(I_2 - A) = 1$. So $rk(A) + rk(I_2 - A) = 2$, but A is not idempotent.

However, $rk(A) = 1 \neq 0 = Tr(A)$.

2) Take $A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$ over \mathbb{Z}_6 , which is not idempotent ($A^2 = 3I_2 \neq A$). Here again $t = 0$, $d = 3$ so $d^2 = d$, $(t-2)d = 0$ and $t(t-1) = 2d$, hold. By Lemma 2.1 (i), $rk(A) = 0 = Tr(A)$.

However, by Lemma 2.1 (vii), $I_2 - A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ has rank = 1 and so $rk(A) + rk(I_2 - A) = 1 \neq 2$.

7. FINAL EXAMPLE

In closing, we provide an example of 2×2 matrix which satisfies all the above mentioned conditions (that is, the three conditions involving only trace and determinant and the two rank conditions) but is not idempotent.

Example. Take $A = 2I_2$ over \mathbb{Z}_4 , which is nilpotent and so not idempotent. As $t = d = 0$, the three necessary conditions hold. As for the rank conditions:

(a) $rk(A) = 0 = Tr(A)$, because $Ann(I_1(A)) = Ann(2R) = 2R \neq 0$.

(b) $I_2 - A = 3I_2$ has $\det(3I_2) = 1$ so is a unit. Hence $rk(I_2 - A) = 2$ and finally $rk(A) + rk(I_2 - A) = 2$.

REFERENCES

- [1] W. C. Brown *Matrices over commutative rings*. Marcel Dekker Inc., 1993.
- [2] G. Călugăreanu *3 × 3 idempotent matrices over some domains and a conjecture on nil-clean matrices*. Scientific Annals of "Al.I. Cuza" University, **68** (1) (2022), 91-106.