EXCEPTIONAL AND COMPLEMENTABLE UNITS IN RINGS

GRIGORE CALUGAREANU

ABSTRACT. A unit u in aring R is called exceptional if 1 —u is also a unit. Such
units have been previously studied from a Number Theory perspective. In this
paper, we investigate exceptional units from the standpoint of Ring Theory,
with particular emphasis on matrix rings, where several characterizations are
provided. We define and explore a special subclass of exceptional units, termed
complementable units. An exceptional unit u is called complementable if u(1—
u) = 1. We determine the residue class rings that contain complementable
units and identify such units in certain matrix rings.

1. INTRODUCTION

There are three particularly important subsets of a ring R: Idem(R), the set of
idempotents, N(R), the set of nilpotents, and U(R), the set of units in the ring R.

Given an element a from any of these sets, one may ask whether 1 — a also
belongs to the same set. For idempotents, the answer is affirmative: 1 — a is the
complementary idempotent. For nilpotents, the answer is negative, as 1 — a is
always a unit. For units, this question gives rise to the following definition.

A unit u € U(R) is called exceptional (or exunit, for short) if 1 —u € U(R). We
denote the set of all exceptional units in R by U.(R). Equivalently, u € U,(R) if
there exists a unit v € U(R) such that u + v = 1.

Similar questions have been addressed in Ring Theory for other classes of ele-
ments. For instance, the property that 1 — a shares the same structure as a holds
for nil-clean, clean, or exchange elements, but fails in general for (unit-)regular or
weakly clean elements (see [12]).

The study of unit pairs u, v such that uw + v =1 (or equivalently 1+ u + v = 0)
is not new. This equation was considered by Nagell in a series of papers ([6] 1959,
[7] 1960, [8] 1964, [9] 1968, [10] 1969), where he investigated its solvability over
algebraic extensions of the rationals. For example, solvability was established in
quadratic extensions, in cubic extensions with negative discriminant, and in certain
quartic extensions. Moreover, Nagell (1964), and independently S. Chowla (1961),
proved that over an arbitrary algebraic extension, this equation admits only finitely
many solutions in units u, v. Thus, exceptional units were originally studied from
a Number Theoretic perspective.

After a hiatus of approximately 45 years, exceptional units have re-emerged in
recent research, specifically within Z, and, more broadly, in finite commutative
rings (see [11], [14], [5]), again primarily from a Number Theoretic viewpoint. For
example, Sander ([11]) determines the number of ways an element in Z, can be
expressed as a sum of two exceptional units - that is, the sumset U.(Z,) + U.(Z,,)
is characterized.
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In this paper, we shift focus to a Ring Theoretic investigation of exceptional
units, with special emphasis on matrix rings. In Section 2, we present general
results about exceptional units in arbitrary unital rings. In Section 3, we provide
several characterizations of exceptional units specifically in matrix rings. In Section
4, we define and examine a special subclass of exceptional units, termed comple-
mentable. An exunit u is called complementable if u(1 —u) = 1. We determine the
complementable units in residue class rings and in certain matrix rings.

Throughout this paper, all rings considered are associative and unital. By a
triangular matrix, we always mean an upper triangular matrix. A unit of the form
1+ t, where t € N(R), is called unipotent. When convenient, we use the standard
abbreviation “iff” for “if and only if.”

2. GENERAL FACTS

As mentioned in the introduction, v € U(R) is exceptional iff there exists v €
U(R) such that w4+ v = 1. Clearly, this implies that v is also exceptional. Thus,
the definition naturally gives rise to pairs of exunits. In what follows, we use the
term pair of exunits exclusively in this sense.

In general, the set U(R) is not closed under addition. However, exunits arise
precisely in those cases where a sum of units is again a unit. Indeed, if u +v = w
with u, v, w € U(R) then uw~! + vw™! = 1, showing that uw ™!, vw~! form a pair
of exunits.

A ring R is called 2-good (see [13]) if every element of R can be written as the
sum of two units. In such rings, every unit gives rise to (at least) one pair of exunits.

In any nonzero ring, the identity element 1 € U(R) is not exceptional. More
generally, unipotent units are not exceptional.

A ring was termed UU in [3] if U(R) = 1+ N(R), that is, all units are unipotent.
Consequently, UU rings contain no exunits. Notably, Boolean rings or the field Fa
are UU rings and hence have no exunits. In fact, Fy is the only field without exunits.

In any division ring D, every unit except 1 is clearly exceptional. Therefore,
U.(D)=D —{0,1}.

The property of being exceptional is invariant under conjugation: for u € U.(R)
and v € U(R), the conjugate v~tuv € U (R), since 1 —v~tuv = v~} (1—u)v € U(R).

However, the set U.(R) is not closed under negation or multiplication. That is,
even if u,v € U,(R), it is not necessarily the case that —u € U,(R) or uv € U,(R),
as concrete examples will demonstrate.

We collect several elementary properties in the next proposition, with examples
provided thereafter.

Proposition 2.1. (a) In any ring R, the only possible order 2 exunit is —1. This
is the case iff 2 € U(R).

(b) All possible (order n) exunits are roots of the polynomial 1+ X + ...+ X"~ 1,
that is, are roots of unity # 1.

(¢) The number of exunits in Z,, isn [[(1 — %) with prime p.

pln

(d) Any pair of exunits u,v € R determines another two pairs of exunits: u~
—vut and v™!, —v~lu. These three pairs are different iff u,v are not roots of the
polynomial X? — X +1 € R[X].

1
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(e) For any pair of exunits, u= v = vu~! resp. (equivalently) uv=" = v~ u (each
exunit commutes with the inverse of its pair). More, exunits in a pair are mutually
conjugate.

(f) Inverses of exunits are also exunits.

Proof. (a) Suppose u? = 1 is an exunit. Then by left multiplying (1 — u)(1+ u) =
1—u? =0 with (1—u)"! weget 1+u =0, i.e. u= —1. However, —1 is exceptional
iff 1 — (—1) =2 is a unit. Actually whenever 2 is a unit, it is also an exunit.

(b) If a™ = 1 in any (unital) ring R, then a € U(R) and if a € U.(R), by left
multiplying (1 —a)(1+a+a®+..4+a"" 1) =1—a" =0 with (1 —a)~! we obtain
l+a+a*+..+a" ' =0.

(c) See [11]. Nevertheless, the topic may have been addressed in earlier sources.

(d) Multiplying u + v = 1, both sides with u~! and v~!, respectively, gives
l=ut+(—uw)=ut+(—vu ) and 1 =v =t + (—uwv™!) = v~ + (v 1u).

For the second statement, suppose u+v =1,1—u+u2=0= 1+ v+ v2 Then
v=—u? u = —v? and since u® = v3 = —1 (by multiplying with 1 +u resp. 1+v),
ul=—-u?=v(andvt=—-v?=u),sol =u"t+ (—u"tv) =v !+ (—uv~1) are
the same pair.

(e) Follows from the proof of (d). It is easy to check v = uvu~! and u = v~ luv.

(f) fu,1 —u € U(R) then 1 —u=! = —(1 —uw)u~! € U(R). O

Remarks. 1) 4 and 11 are order 2 units in Z5, but none is exceptional. The
exunits in Zi5 are 2,8, 14.

Negatives of exunits may not be exunit: indeed, —2 = 13 is not an exunit

Products of exunits may not be exunits. Even w(l — u) ¢ U(R) is possible:
2414 =1 but 2-14 = 13 is not an exunit.

2) For each idempotent e € R, 2e—1 is an order 2 unit. By the above proposition,
it is an exunit iff 2e — 1 = —1, i.e. iff 2e =0 (e.g. 3 in Zg).

3) Among other characterizations, a ring R is local iff for any a € R, a € U(R)
or 1 —a € U(R). Since the disjunction ”or” has not an exclusive meaning, local
rings may have exunits. Indeed, 2 is a unit (so forms a pair of exunits with —1) in
the ring of integers localized at the prime ideal pZ: Z,) = {™ € Q : ged(p,n) = 1},
for any odd prime p. Clearly 2 - % =1, with p not dividing 2.

Other properties are given in the next list.

Theorem 2.2. (a) An element is an exunit in a direct product (sum) of rings iff
all its components are exunits.

(b) Let u be an exunit in R, e> = e € R and e+ u € eRe. Then eue is an exunit
in eRe. However, corners of rings with exunits may not have exunits.

(c) Let A be a proper ideal in R. If u is an exunit in R then uw+ A is an ezunit
in R/A. However, exunits may not lift in a factor ring R modulo a proper ideal.

Proof. (a) Obvious.

(b) Recall that the units in a corner ring are given by the equality U(eRe) =
(eRe)N (€4 U(R)). Equivalently, a = € + w is a unit in eRe iff a € eRe. Also note
that in this case, a = eae = eue, and so eu~'e is the inverse of a = eue (both in
eRe).

So every unit a of eRe is determined by a unit v of R. If u is an exunit, we just
multiply u + v = 1 both sides with e: eue + eve = e.
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For the last claim: Z is a corner for My(Z), which has plenty of exunits (see
Proposition 3.9, next section).

(c) The first part is obvious. As seen above 2,8, 14 are exunits in Z/15Z, but do
not lift since Z has no exunits. (]

3. EXUNITS IN MATRIX RINGS

We primarily consider the problem over commutative rings, in order to take
advantage of tools such as the determinant, the Cayley—Hamilton theorem, and
related techniques.

We note that a matrix U € M, (R) is an exceptional unit if and only if its
transpose U7 is also an exceptional unit.

Furthermore, exceptional invertible matrices can be characterized in terms of
their characteristic polynomials, a connection that will be explored in detail.

Proposition 3.1. Let R be a commutative ring, U € GL,(R) and let py(X) =
det(X I, — U) be the characteristic polynomial of U. Then U is exceptional iff
pu(l) € U(R).

Proof. Obvious: py(1) = det(I, — U). O

Corollary 3.2. (i) A 2 x 2 matriz U over a commutative ring R is an exunit iff
det(U) €e U(R) and 1 — Tr(U) 4+ det(U) € U(R).

(i) A 3 x 3 matriz U over a commutative ring R is an exunit iff det(U) € U(R)
and 1 —Tr(U) + (Tr(U)? — Tr(U?)) — det(U) € U(R).
Proof. (i) Indeed, det(Iy —U) =1 —Te(U) + det(U).

(i) Indeed, py(X) = X3 — Tr(U)X? + 1[Tr(U)? — Tr(U?)]X — det(U) and so
det(I3 —U) =1—Tr(U) 4 3[Tr(U)? — Tr(U?)] — det(U). O

Remarks. 1) In the general case, if the ring R has zero characteristic, a charac-
terization in terms of traces of powers of U holds. Indeed, py (X) = det(XI,—U) =

Te(U) k—1 0 .. 0

Tr(U?) ™U) k-2 .. 0
> XR(=1)k LTy, with Ty, = det : : :
h=0 Tr(U*1)  Tr(U*2) w1

Tr(UF)  Tr(U* 1) .. Tr(U)

Therefore U € GL,(R) is exceptional iff det(I,, — U) = Y (=1)* T}, € U(R).

2) Clearly, all invertible 2 x 2 matrices with Tr(U) = 1 (over any commutative
ring) are exceptional, since in that case det(Iy — U) = det(U).

The triangular case can be easily ruled out over any ring, not necessarily com-
mutative.

Proposition 3.3. Let U be a triangular invertible n X n matriz over any ring R.
Then U is exceptional iff the diagonal entries are exceptional units. If 2 € U(R)
then 21, is an exceptional unit.

Proof. A triangular matrix U = [u;;] is invertible iff its diagonal entries are units,
that is w11, ..., Un, € U(R). Same for I, — U, ie. 1 —ujq,....;1 — upy € U(R). So
all diagonal entries must be exunits. O
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Since U(Z) = {£1} and none is exceptional we obtain at once
Corollary 3.4. There are no triangular integral exceptional invertible matrices.

However, there exist 2 x 2 and 3 x 3 triangular exunits. Moreover, these can be
diagonal.

Example. Over Zs, for any a, the matrices are exunits (in particular

2 a
0 2
U = 21, is diagonal). Similarly U = 215 is a diagonal 3 X 3 exunit.

Proposition 3.5. A triangular matriz U over any division ring D is an exunit iff
no diagonal entry is 0 or 1.

Proof. In any division ring D, U.(D) = D —{0,1}. O

Having settled the case of 2 x 2 matrices with at least one zero off-diagonal entry
(i.e., triangular matrices), we now turn our attention to matrices with at least one
zero on the diagonal.

Proposition 3.6. Let A = [

(i) A is invertible.
(i) A is an exunit iff a — 14 be € U(R).

(iii) Same conclusions for matrices of form { 2 Z } (here ¢cb+d —1 € U(R)

‘CL 8 } € My(R) with b,c € U(R). Then

gives the exunits).
~1
Proof. (i) It is readily checked that A=t = [ b91 —bfl 1 ]
ii) By writing (A — Ix)W = I, with W = TV e get
Y z 1

(a—Dz+bz=1
(a—1y+bt=0
cx—z=0
cy—t=1
a solvable linear system iff a —1+bc € U(R) (we replace z = cx in the first equation
and t = cy — 1 in the second equation). If so, we get
(A—I)"' = (@a—1+bec)™ ! (a—1+bc)~ b
2 Tl ela=1+be)"t cla—14be)"'b—1 |’
since the right inverse W turns out to be also a left inverse.
(iii) These matrices are obtained from the ones in the statement, by conjugation
. 0 1
with { 1 0 } . (]

Remark. If R is a division ring, the conditions are simply b # 0 # ¢ and
a — 14 bc # 0, respectively.

A 3 x 3 version also holds.

Proposition 3.7. Let A = € M3(R) with c,e, f € U(R). Then

~ Qe
oo o
SO0
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(i) A is invertible.
(ii) A is an exunit iff d is a unit and b — (a +cf —1)d"1(e — 1) € U(R).

Proof. (i) As in the previous proposition, we search for a 3 x 3 matrix W such that
AW = I3 and check that also WA = I3 holds. The suitable (unique) matrix is
0 0 !
Al = 0 et —etdf!
¢l —clbe™t —cltaf ' +cthe M df !

(ii) Analogously, for (A — I3)V = I3, we replace a and d by a — 1, d — 1,
respectively and the SE corner by —1. The system is solvable iff d is a unit
and b — (a — 1+ cf)d~!(e — 1) has a right inverse. However, since we have to
check also V(A — I3) = I3, we need this to be a (two-sided) unit. If we denote
a=b—(a—1+cf)d(e—1)]and B=(a—1+cf)d ! we get

—d Ye—1Da d7 1+ (e—1)af] —d~ e —1)ac
(A-I3)7 = ! —af ac
—fd Y e—1Da fd Y1+ (e—1aB] —fdt(e—1)ac—1
(note that b — B(e — 1) = a7 1). O

Recall that a ring R is called Dedekind finite if ab =1 for a,b € R implies ba = 1
(i.e., one-sided invertible elements are two-sided). Matrix rings over commutative
rings are Dedekind finite.

In the general 2 x 2 case, if My(R) is Dedekind finite (in particular, if R is
commutative), we have the following result.

a

Proposition 3.8. Let U = [ - b ] be a matriz, a,d € U(R) and suppose Ma(R)

d
is Dedekind finite. Then U is an unit iff a—bd~'c,d —ca='b € U(R) and an exunit
iff alsoa —1—bd te,d —1—ca='b € U(R).

Proof. Let W = { ”Z Y ] be such that UW = I,. This amounts to the system

t
ar+bz=1
ay+bt=0
cx+dz=0
cy+dt=1
and the middle equations can be solved as y = —a~'bt and z = —d " 'cz.

By replacement we get (a — bd~'c)z = 1 and (d — ca™'b)t = 1 so W exists
iff @ —bd"le,d — ca™'b € U(R). In order to have an exunit, we also need a
matrix P such that (U — I)P = I, that is, the same as above, replacing a by
a—1 and d by d — 1 (this explains why we prefer U — I instead of I — U). So
a—1-bdte,d—1—catbeU(R). O

Remarks. 1) Over any division ring, the conditions become a — bd~tc # 0,1 #
d — ca1b.
2) There are another three similar characterizations for exunits U = [ CCL b ]

d
with Dedekind finite My (R):
(i) a,a—1,c € U(R) (so a is exunit) together with b —ac™'d, d — ca™'b € U(R)
and b— (a —1)c (d—1), (d—1) —cla—1)"'b € U(R),
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(ii) b, c € U(R) together with b—ac='d, c—db—ta € U(R) and b—(a—1)c~1(d—1),
c—(d-1)b"a—-1) € UR),

(iii) b,d,d —1 € U(R) (so d is exunit) together with a —bd~'¢, c—db~'a € U(R)
anda—1-b(d—1)"te,c—(d—1)b" (a—1) € UR).

The remaining possibilities a,b € U(R) or ¢,d € U(R) are also covered by
transpose.

3) For b,c € U(R) and d = 0, the conditions are b+ (a —1)c™!, c+b"1(a—1) €
U(R), both equivalent to bc + a — 1 € U(R), as in the previous proposition.

The following characterization, which follows from Corollary 3.2, provides a more
detailed description of 2 x 2 integral exunits.

Proposition 3.9. A 2 x 2 integral matriz U is an exunit iff det(U) = 1 and
Tr(U) € {1,3}, or else det(U) = —1 and Tr(U) € {-1,1}.

Recall that Z does not contain exunits, while My (Z) does.
Corollary 3.10. Even if a ring lacks exunits, its matriz ring may contain exunits.

Corollary 3.11. For a 2 x 2 integral exunit U, —U is also an ezxunit iff det(U) =
—1.

Proof. Just note that Tr(—U) = —Tr(U) and det(—U) = det(U). O

Example. In the previous section, examples were given in residue class rings,
in order to show that negatives or products of exunits may not be exunits. Here
are some examples in matrix rings.

U = [ 15 } is an integral exunit, but —U = { L =5 ] is not (its trace is

-1 4 1 -4
-3).
. 3 —10 | .
Moreover, U and Iy — U are exunits but U(Iy — U) = o _q | isnot: the
trace is —4 (alternatively: I — { ; —_170 } — [ :; 180 } is not invertible).

Determining the 3 x 3 integral exceptional invertible matrices is considerably
more challenging. To approach this problem, we examine several special cases.

An integral matrix is invertible iff its determinant equals £1. This condition
implies that the entries in any row or column must be coprime - that is, their
greatest common divisor must be 1. More precisely, we have the following result.

Proposition 3.12. Let a,b, ¢ be entries in any row (or any column) of an integral
invertible 3 x 3 matriz U and let a be the diagonal entry. Two necessary conditions
for U to be an exunit are: a,b,c are coprime and so are 1 — a, b, c.

So if a, b, ¢ are entries in a row (or column) and a is the diagonal entry, we should
have ged(a; ged(b; ) = 1 = ged(1 — a; ged(b; ¢)).
In a special case, we have the following result.

Proposition 3.13. Let U be a 3 x 3 integral invertible matriz.

(i) If U has two even, non-diagonal entries, in the same row or column, then U
is not exceptional.

(ii) There exist infinitely many integral exceptional invertible matrices with two
even entries in the same row or column, provided that one of these lies on the
diagonal.
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Proof. (i) If two not diagonal entries in the same row (or column) of U are even,
since U is invertible, the corresponding diagonal entry must be odd. Then in I3 —U,
the entries in the same row (or column) are even and so det(l3 — U) € 2Z. Hence
U is not an exunit.

(ii) We discuss the case u;; = uz; = 0 and, since det(U) = %1, accordingly
Ug1 = +1.

If det(U) =1 and U221 = ].7 then for U3z = U13 = U3z = ].7 U2 = 0 and U23 = 72,
0 0 1
we have infinitely many exunits: U = 1 a —2 |. The case us; = —1 is
01 1
analogous.
If det(U) = —1 and ugy = 1, then for uzs = w1z = 1, uss = —1, ugs = 0
0 0 1
and wugg = —2, we have infinitely many exunits: U = [ 1 a —2 |. The case
0 -1 1
ug1 = —1 is analogous.

4. COMPLEMENTABLE (EX)UNITS

The starting point of this section is the observation that the equation z(1—xz) = 0
defines precisely the idempotent elements in any unital ring. This naturally leads
to the question: what kind of elements are defined by the equation z(1 —z) =17

Since z and 1 — x commute in any ring, it follows that both must be units, and
more precisely, that 1 — 2z = 2~ L.

Thus, this equation defines a special class of (ex)units u € U(R), for which 1 —u
is the inverse of u. To simplify terminology, we call such elements complementable
units and suggestively, we refer to the inverse u=! = 1 — u as the complementary
unit to u. Clearly, if v is complementable, then so is 1 — w.

It is well-known that such units do not exist in Z, Q and R, but they do exist in
the field of complex numbers. Specifically, there are exactly two such units in C,
complementary to each other: u; 2 = (1 + iV/3).

As a positive example in finite rings, the element 2 is self~-complementable (i.e.,
1 —wu = w) in Zs, since 2(1 —2) = 2-2 = 1. On the other hand, the element 1 is
never complementable in any unital ring.

The central problem in this line of study is the existence problem - determining
when such complementable units exist - both in division rings (or fields) and in
arbitrary rings, whether commutative or not. In what follows, we address this
problem for residue class rings Z,, and for M, (R), the ring of n x n matrices over
commutative rings R, with special emphasis to the n = 2 case.

4.1. In residue class rings Z,. For easy reference we mention the equivalent
definitions of complementable units.

Lemma 4.1. Let a be an element of a ring R. The following conditions are equiv-
alent.
(i) a* —a+1=0,
(i) a(l —a) =1,
(iii) a is a unit and 1 —a = a™?,
(iv) a is a unit and a +a=* = 1.

First we discuss the case when the unit u is self-complementable.
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Proposition 4.2. In a ring R there exist self-complementable units iff 3 = 0 iff
char(R) = 3. In this case, 2 is the only self-complementable unit.

Proof. Equivalently, we are searching for units u such that 2u =1 and % = 1.
It follows that w = 27! and so 272 = 1. Hence 4 = 1 and this holds if 3 = 0.
Conversely, if 3=0then2-2=1land1-2=-1=-140=-1+3=2. O

Corollary 4.3. Zg is the only residue class ring which has self-complementable
units. In Zs, 2 is the only self-complementable unit.

Except for self-complementable units, all complementable units must occur in
pairs. Therefore, if any such units exist, their total number must be even.

In both Z and Z,, (for some positive integer n), the elements u and 1 — u have
opposite parity. As a result, the product u(1 — u) is even. This implies that a
necessary condition for the existence of complementable units is that 2 must be a
unit. Consequently, there are no complementable units in Z and such units may
exist in Z,, only when n is odd, that is, when 2 is a unit in Z,.

However, this condition is not sufficient. For example, in Zs, which is a field,
so all nonzero elements are units, none are complementable. The relevant pairs
(u,1 —u) are: (2,4),(3,3),(4,2) but none of these satisfies u(1 —u) = 1. On the
other hand, in Z7, there are two complementable (and complementary) units: 3 and
5. These correspond to the pairs (3,5) where 5 = 1 — 3 mod 7 and (5,3) where
3=1—-5mod 7.

In order to characterize the complementable units in residue class rings, we need
some prerequisites.
We first recall some well-known (or easy to prove) facts.

Lemma 4.4. 1. FEvery prime number, excepting 2 and 3, is of form 6n + 1 or
6n — 1.

2. Products of integers of the form 6n + 1 are also of the form 6n 4+ 1. In
particular, this holds for products of powers of prime numbers that are themselves
of the form 6n + 1.

3. Let d be an odd positive integer. Then d =1 (mod 3) iff d =1 (mod 6).

4. 9 does not divide n> —n + 1, for any positive integer n.

Proof. 3. One way is obvious. Conversely, suppose d = 3k + 1 for some k. As d is
odd, it follows that 2 | k and so d = 6h + 1 for some h.

4. Denote 0 :=n? —n+ 1. For n =3m, 0 = 3m(3m — 1) + 1, for n = 3m + 1,
c=3m(Bm+1)+1and for n=3m+2, 0 =9Im(m+1)+3. O

We also need the classical Hensel’s Lemma.

Lemma 4.5. Let f(x) be a polynomial with integer coefficients, and let p be a
prime. Suppose f(a) =0 mod p, and f'(a) # 0 mod p. Then, mod p?, there erists
a unique integer b such that b= a mod p and f(b) =0 mod p?.

One can also keep repeating this process to find roots modulo p3, p*,...
A special case will be useful.

Corollary 4.6. Let p be a prime number greater than 3. If 22 = —3 mod p is
solvable over the integers then also x> = —3 mod p* is solvable over the integers,
for every k > 2.
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Proof. Define the polynomial f(x) = 22 +3. Then by hypothesis f(—3) = 0 mod p.
Next, we show that f/'(z) £ 0 mod p.

Since 22 = —3 mod p and p > 3, we have z # 0 (mod p), hence f'(x) = 2z # 0
(mod p).

So Hensel’s Lemma applies and we can lift the solution £ = —3 mod p to a
unique solution modulo p?, i.e., there exists a unique nonnegative b < p? such that
b= —3 mod p such that b> = —3 mod p?. This process extends uniquely to higher
powers p”. ([

To solve the congruence 22 —x + 1 = 0 (mod 2k + 1), we equivalently seek the
solutions of the associated quadratic Diophantine equation

2 —x+1=(2k+1)y.
Theorem 4.7. Let k be a positive integer. The quadratic Diophantine equation
2 —x4+1=2k+1)y

has integer solutions if and only if 2k + 1 is either a product of powers of prime
numbers of the form 6n + 1 for some n > 1, or such a product multiplied by 3
(allowing n = 0 in this case). That is, the equation is solvable if and only if

2k+1¢e {pr pi=1 (mod 6)} U {3 . pr p;=1 (mod 6)}
Proof. We start with the Diophantine equation
2 —x+1=(2k+1)y.

Multiplying both sides by 4 we get (2 — 1) + 3 = 4(2k + 1)y. Thus, the equation
has integer solutions iff the congruence

T? = -3 (mod 4(2k 4+ 1)) where T'= 2z — 1.

is solvable.
We factor the modulus as 4(2k + 1) = 2%(2k + 1). The congruence T? = —3
mod 4 becomes:
7°=1 mod4=T=1,3 mod4

So solutions modulo 4 always exist. The solvability now depends on whether
T? = -3 (mod 2k + 1)

is solvable. That is, we must determine when —3 is a quadratic residue modulo
2k + 1.
Note that if 9 | m then T? = —3 (mod 2k + 1) has no integer solutions.

Let p be an odd prime greater than 3. We use the Legendre symbol (‘73) =
(_—1) (%) and standard results for

()= (-G

and so (%) = (g) Thus, —3 is a quadratic residue modulo p if and only if

(%) = 1, which holds precisely when p =1 (mod 3). As mentioned in Lemma 4.4,
3, these primes are exactly those of the form p = 6n + 1.

Further, we perform the extension to powers of prime numbers with Corollary
4.6 and to composite moduli via the Chinese Remainder Theorem (CRT).
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Let m = 2k + 1 be a product of odd primes.

o If all prime factors of m are congruent to 1 (mod 3) (i.e., 6n+1), then —3 is
a quadratic residue modulo each factor. By the CRT, it is also a quadratic
residue modulo m.

e If m = 3-m/, where m’ is a product of primes = 1 (mod 6), then —3 =0
(mod 3), so it is trivially a quadratic residue mod 3. Since it is also a
residue modulo m’, CRT implies it is a residue modulo m.

Therefore, —3 is a quadratic residue modulo m is a necessary condition.
Conversely, suppose —3 is a quadratic residue modulo some odd prime p. Then
_3 p
A N (g) —1=p=1 (mod3)=p=6n+1
p
as p is odd. Similarly, the same holds for products of such primes and their product
with 3. O

Corollary 4.8. Let m > 1 be any positive integer. In the residue class ring Zn,
there exist complementable units if and only if m is either a product of powers of
prime numbers of the form 6n + 1 for some n > 1, or such a product multiplied by
3 (allowing n = 0 in this case).

We now present several examples of complementary units in some small order
residue class rings.

(2,2) in Z3, (3,5) in Z7, (4, 10) in Z13, (5, 17) in Zgl, (6,26) in Zgl, (77 37) in
Z43.

(8,12) in Zig, (11,27) in Zs7, (17,23) in Zsg, (19,31) in Z4g, (8,50) in Zs7,
(14, 48) in Zg1, (30, 38) in Zgr.

However, a pair of complementable units in a given Z,, may not be unique (if it
exists). An example: (10,82) and (17,75) in Zg;.

While no simple, universal formula seems to exist for all values of n — particularly
when dealing with composite moduli — if 6n + 1 = p is prime, then square roots
of —3 mod p can be computed using the Tonelli-Shanks algorithm. Even so, a
detailed discussion of this method falls outside the scope of this paper.

However, in a significant number of special cases, we can identify the comple-
mentary units.

Proposition 4.9. The equation 2> —x+1 =0 (mod 2k+1) is solvable if 2k +1 =
m(m+ 1) + 1, for some positive integer m > 1.

Proof. We just verify that (m+1)2—(m+1)+1 = m?*+m+1 = 0 (mod m(m—1)+1).
Hence m + 1 is a solution.

A second solution exists: m2+1. Indeed, (m?+1)2—(m2?+1)+1 = m*+m?+1 =
(m? +m+1)(m? —m+1). O

Therefore

Corollary 4.10. For every positive integer m, m~+1 and m?+1 are complementary
UNGLS 1N L2 4 ppp1 -

Proof. Indeed, (m + 1)+ (m?+1) = (m? +m +1) + 1. O
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Remark. The cases listed in the above proposition (i.e., 2k+1 = m(m+1)+1),
belong to the set described in Theorem 4.7, that is, product of powers of prime
numbers of the form 6n + 1, possibly multiplied by 3. This follows directly from
the existence of complementary units in Z,,2,,,.1 and the previous corollary.

4.2. In My(R) for commutative rings. By matrix multiplication, we can state
the complementable conditions in the general n x n case.

Theorem 4.11. The complementable n X n units over any commutative ring R are
the matrices U = [aijl1<i j<n Such that

n
(1) for every i € {1,...,n}, ai;(1 —ay) =1+ ) ajja;;,
j=1

#i
n
(i1) for every i,j € {1,...,n}, i # j, ai; (1 — a;;) = Y Ginaw;.
k=1
ki

Proof. Start with an invertible matrix U = [a;;] € M, (R) for a commutative ring
R. Then U(I, — U) = I,, amounts to the conditions in the statement. (]

Let R be a commutative ring and let s € R. Denote D(s) = {t € R : st = 0}, the
set of the zero divisors associated to s and by D(R) the set of all the zero divisors
of R.

Proposition 4.12. The complementable 2 X 2 units over any commutative ring R

are the matrices U = CCL Z such that a(1 —a) —bc = 1 = d(1 —d) — be and
b(l—a—d)=0=c(l—a—d). In particular,

(i) if 1 — Tr(U) is not a zero divisor, the complementable 2 x 2 units are scalar
(i.e., als, for some complementable element a of R),

(i) if Tr(U) = 1, the complementable 2 x 2 units are of form [ (CI 1

a(l —a) =1+ be.

b } with
—a

Proof. For the n = 2 case, (like in the previous case, we start with an invertible

matrix U = CCL Z } € My(R) for a commutative ring R. Then U(l; —U) = I,

amounts to the following four conditions:

a(l—a)—bc=1=4d(1—d)— b,
bl—a—d)=0=c(l—a—-d)

From the first two equalities we get (a —d)(1 —a—d) =0 and so, if 1 —a —d is
not zero but zero divisor, b,c,a —d € D(1 —a — d).

The special cases follow.

Case (i). 1 =Tr(U) =1—a —d is not a zero divisor.

Then b=c¢=a—d=0andso a =d. Finally U = als, with any complementable
element a of R.

Case (ii). Tr(U) =1,ie,a+d=1. Thend=1—a and a(l —a) =1+ be.

Finally, U = [ Z 1 f a }, with a(1l —a) = 1+ be. Since det(U) = 1, according to

Lemma 4.1 (iii), the complementary unit is the inverse U 1. O
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Examples. In Z;3, (4,10) are complementary units and in Zs;, (5,15) are
complementary units.

The first two examples correspond to the special cases in the previous proof.

(i) The scalar matrices 415, 1015 are complementary units in My(Z13), and 51,
1515 are complementary units in My (Zo1)

(i) The matrix U = [ r

g 7 ] is a complementable unit in My (Z13), with U~ =

T T .
5 7 as complementary unit.

Note that Zs; has zero divisors, namely D(Zg1) = 3721 U 7Zs;.
(iii)a Consider U = 134 170 € My (Zs1) which has b,c € D(Z21), 1 —a—d =
9 € D(Zo1) and det(U) = 16 € U(Za1). We can check a(l —a) —bc =1 = d(1 —

d)—be, Tr(U) =a+d=1341, I, — U = [ Y o } det(Iy — U) = 4 € U(Zan).
Finally, U(Is —U) = ;gg ;jg = I5, whence U and Is — U are complementary

units with trace # 1 and det # 1.

(iii)b Take U = [ }Z 172 } over Za1, which is Case (ii), above. Here Tr(U) =
- L [12 14
a+d =1 and the complementary unit is [y —U =U"" = 7 10 |

Remarks. 1) With b,¢c € D(7) = 3Z;, computer found 32 complementable
units, all with trace a +d = 1. With b,c¢ € D(3) = {0,7,14}, computer found 16
complementable units. Only 8 of these have trace = 1 and the other 8 have trace
€ {10, 13}. These occur in pairs, since Iy — (I —U) = U.

2) The Cayley-Hamilton’s theorem for every 2 x 2 matrix A over any commutative
ring R reads as follows:

A% —Tr(A)A + det(A) I = 0,.

It gives precisely our starting equation, whenever Tr(A) = det(A) = 1. Therefore,
over any commutative ring R, the 2 X 2 matrices whose trace and determinant equal
to 1, are complementable units (this is case (ii) in Proposition 4.12). This actually
shows that complementable 2 x 2 units abound.

From Lemma 4.1, (ii) it follows that the complementary unit is precisely the
inverse.

To provide some more examples in the ring M5 (Z), note that for any given integer
b (or c), the solutions of the quadratic Diophantine equation a? — a + bc + 1 = 0,
with unknowns a, ¢ (resp. a, b), often give complementable 2 x 2 integral units.
The solutions were found using [4] (or [1]).
1—-2n —4n®+2n—1

1 2n
mentable units, for each integer n. The complementary unit is the inverse U, t.
2—-6n —12n%+6n—1

3 6n —1
mentable units, for each integer n. Again, the complementary unit is the inverse
VoL

For ¢ =1 we obtain U, = ] , infinitely many comple-

For ¢ = 3 we obtain V,, = ] , infinitely many comple-
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For ¢ = 2,4,5,6,8,9,10,11, 12 there are no complementable units. There are
many complementable units also for ¢ = 7,13 and many others.
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